This paper introduces the enhancement of Visible Light Communications (VLC) for V2V using artificial intelligence models. Different V2V scenarios are simulated. The first scenario considers a specific longitudinal separation and a variable lateral shift between vehicles. The second scenario assumes random longitudinal separation and a specific lateral shift between vehicles. Significant obstacles that impair performance and dependability in V2V communication systems include bit errors, high power consumption, and interference. By combining Convolutional Neural Networks (CNNs), Generative Adversarial Network (GAN), Gated Recurrent Unit (GRU), and Deep Denoising Autoencoder (DDAE), this paper suggests a deep learning-based system to address these issues. The framework comprises four modules, a power reduction module that uses a GAN to generate low-power signals while maintaining signal …