Silver nanoparticle–induced nephrotoxicity in Clarias gariepinus: physio-histological biomarkers
NULL
Do you have any questions? (088) 2345643 - 2412000 sci_dean@aun.edu.eg
NULL
The seaweed Cystoseira trinodis was fermented by different fungi prior to extraction of fucoidan and alginate to enhance their antioxidative potential. All the investigated fungi were able to produce fucoidanase (1.05–3.41 U/ml) and alginate lyase (7.27–18.59 U/mL). Different fungal species induced a reduction in the molecular weight (MW) of fucoidan and alginate in comparison to the unfermented control. The MW of fucoidan reduced by 41–81.5%, while the MW of alginate was reduced by 28–75%, depending on the fungal species. Significant increases in the fucose and sulphate contents of fucoidan and mannuronic/guluronic acid ratio of alginate were induced by fungal fermentation. Fungal pretreatment enhanced the ferric reducing antioxidant power, total antioxidant capacity and hydroxyl radical scavenging activity of both fucoidan and alginate. Additionally, enzymatic pretreatment of the macroalgal biomass assisted in the recovery of fucoidan and alginate with low molecular weight and enhanced antioxidative potential.
The seaweed Cystoseira trinodis was fermented by different fungi prior to extraction of fucoidan and alginate to enhance their antioxidative potential. All the investigated fungi were able to produce fucoidanase (1.05–3.41 U/ml) and alginate lyase (7.27–18.59 U/mL). Different fungal species induced a reduction in the molecular weight (MW) of fucoidan and alginate in comparison to the unfermented control. The MW of fucoidan reduced by 41–81.5%, while the MW of alginate was reduced by 28–75%, depending on the fungal species. Significant increases in the fucose and sulphate contents of fucoidan and mannuronic/guluronic acid ratio of alginate were induced by fungal fermentation. Fungal pretreatment enhanced the ferric reducing antioxidant power, total antioxidant capacity and hydroxyl radical scavenging activity of both fucoidan and alginate. Additionally, enzymatic pretreatment of the macroalgal biomass assisted in the recovery of fucoidan and alginate with low molecular weight and enhanced antioxidative potential.
The seaweed Cystoseira trinodis was fermented by different fungi prior to extraction of fucoidan and alginate to enhance their antioxidative potential. All the investigated fungi were able to produce fucoidanase (1.05–3.41 U/ml) and alginate lyase (7.27–18.59 U/mL). Different fungal species induced a reduction in the molecular weight (MW) of fucoidan and alginate in comparison to the unfermented control. The MW of fucoidan reduced by 41–81.5%, while the MW of alginate was reduced by 28–75%, depending on the fungal species. Significant increases in the fucose and sulphate contents of fucoidan and mannuronic/guluronic acid ratio of alginate were induced by fungal fermentation. Fungal pretreatment enhanced the ferric reducing antioxidant power, total antioxidant capacity and hydroxyl radical scavenging activity of both fucoidan and alginate. Additionally, enzymatic pretreatment of the macroalgal biomass assisted in the recovery of fucoidan and alginate with low molecular weight and enhanced antioxidative potential.
The seaweed Cystoseira trinodis was fermented by different fungi prior to extraction of fucoidan and alginate to enhance their antioxidative potential. All the investigated fungi were able to produce fucoidanase (1.05–3.41 U/ml) and alginate lyase (7.27–18.59 U/mL). Different fungal species induced a reduction in the molecular weight (MW) of fucoidan and alginate in comparison to the unfermented control. The MW of fucoidan reduced by 41–81.5%, while the MW of alginate was reduced by 28–75%, depending on the fungal species. Significant increases in the fucose and sulphate contents of fucoidan and mannuronic/guluronic acid ratio of alginate were induced by fungal fermentation. Fungal pretreatment enhanced the ferric reducing antioxidant power, total antioxidant capacity and hydroxyl radical scavenging activity of both fucoidan and alginate. Additionally, enzymatic pretreatment of the macroalgal biomass assisted in the recovery of fucoidan and alginate with low molecular weight and enhanced antioxidative potential.
Fucoidanase and alginate lyase are promising biocatalysts for several biotechnological applications. The sequentially extracted fucoidan and alginate from the brown macroalgae Sargassum latifolium were used for the optimization of a cost-effective culture medium for fucoidanase and alginate lyase production by the marine fungus Dendryphiella arenaria. Plackett–Burman statistical design was conducted for initial determination of the importance of 11 independent variables on enzyme potentiation, and the significant variables were further optimized using Box–Behnken design. The optimum conditions for fucoidanase production were fucoidan (1.5% w/v), NaCl (1.5%), urea (0.3%), and incubation period (2 days), which gives ~ 4 U mL−1 of crude fucoidanase. While, alginate (1.5% w/v), NaCl (4%), NH4Cl (0.3%), and incubation period (6 days) were the optimum conditions that enhanced alginate lyase production to ~ 24 U mL−1. Additionally, a new protocol for the enzymatic saccharification of fucoidan and alginate was optimized using Box–Behnken design with respect to substrate concentration, enzyme dosage, and temperature. The enzymatic saccharification of citric acid-extracted fucoidan gave a maximum yield of reducing sugar 365 mg g−1 fucoidan, while the alkali-extracted alginate gave 439.66 mg g−1 alginate. The results showed that the two enzymes could be exploited for the efficient production of reducing sugars from fucoidan and alginate, which are the key substrate for producing biofuels from brown macroalgal biomass.
Fucoidanase and alginate lyase are promising biocatalysts for several biotechnological applications. The sequentially extracted fucoidan and alginate from the brown macroalgae Sargassum latifolium were used for the optimization of a cost-effective culture medium for fucoidanase and alginate lyase production by the marine fungus Dendryphiella arenaria. Plackett–Burman statistical design was conducted for initial determination of the importance of 11 independent variables on enzyme potentiation, and the significant variables were further optimized using Box–Behnken design. The optimum conditions for fucoidanase production were fucoidan (1.5% w/v), NaCl (1.5%), urea (0.3%), and incubation period (2 days), which gives ~ 4 U mL−1 of crude fucoidanase. While, alginate (1.5% w/v), NaCl (4%), NH4Cl (0.3%), and incubation period (6 days) were the optimum conditions that enhanced alginate lyase production to ~ 24 U mL−1. Additionally, a new protocol for the enzymatic saccharification of fucoidan and alginate was optimized using Box–Behnken design with respect to substrate concentration, enzyme dosage, and temperature. The enzymatic saccharification of citric acid-extracted fucoidan gave a maximum yield of reducing sugar 365 mg g−1 fucoidan, while the alkali-extracted alginate gave 439.66 mg g−1 alginate. The results showed that the two enzymes could be exploited for the efficient production of reducing sugars from fucoidan and alginate, which are the key substrate for producing biofuels from brown macroalgal biomass.
Fucoidanase and alginate lyase are promising biocatalysts for several biotechnological applications. The sequentially extracted fucoidan and alginate from the brown macroalgae Sargassum latifolium were used for the optimization of a cost-effective culture medium for fucoidanase and alginate lyase production by the marine fungus Dendryphiella arenaria. Plackett–Burman statistical design was conducted for initial determination of the importance of 11 independent variables on enzyme potentiation, and the significant variables were further optimized using Box–Behnken design. The optimum conditions for fucoidanase production were fucoidan (1.5% w/v), NaCl (1.5%), urea (0.3%), and incubation period (2 days), which gives ~ 4 U mL−1 of crude fucoidanase. While, alginate (1.5% w/v), NaCl (4%), NH4Cl (0.3%), and incubation period (6 days) were the optimum conditions that enhanced alginate lyase production to ~ 24 U mL−1. Additionally, a new protocol for the enzymatic saccharification of fucoidan and alginate was optimized using Box–Behnken design with respect to substrate concentration, enzyme dosage, and temperature. The enzymatic saccharification of citric acid-extracted fucoidan gave a maximum yield of reducing sugar 365 mg g−1 fucoidan, while the alkali-extracted alginate gave 439.66 mg g−1 alginate. The results showed that the two enzymes could be exploited for the efficient production of reducing sugars from fucoidan and alginate, which are the key substrate for producing biofuels from brown macroalgal biomass.
Fucoidanase and alginate lyase are promising biocatalysts for several biotechnological applications. The sequentially extracted fucoidan and alginate from the brown macroalgae Sargassum latifolium were used for the optimization of a cost-effective culture medium for fucoidanase and alginate lyase production by the marine fungus Dendryphiella arenaria. Plackett–Burman statistical design was conducted for initial determination of the importance of 11 independent variables on enzyme potentiation, and the significant variables were further optimized using Box–Behnken design. The optimum conditions for fucoidanase production were fucoidan (1.5% w/v), NaCl (1.5%), urea (0.3%), and incubation period (2 days), which gives ~ 4 U mL−1 of crude fucoidanase. While, alginate (1.5% w/v), NaCl (4%), NH4Cl (0.3%), and incubation period (6 days) were the optimum conditions that enhanced alginate lyase production to ~ 24 U mL−1. Additionally, a new protocol for the enzymatic saccharification of fucoidan and alginate was optimized using Box–Behnken design with respect to substrate concentration, enzyme dosage, and temperature. The enzymatic saccharification of citric acid-extracted fucoidan gave a maximum yield of reducing sugar 365 mg g−1 fucoidan, while the alkali-extracted alginate gave 439.66 mg g−1 alginate. The results showed that the two enzymes could be exploited for the efficient production of reducing sugars from fucoidan and alginate, which are the key substrate for producing biofuels from brown macroalgal biomass.
Fucoidanase is a promising biocatalyst for several biotechnological applications. Crude fucoidanase production by Dendryphiella arenaria was optimized using a natural low-cost medium composed of Cystoseira trinodis and natural seawater. The results showed that seaweed biomass concentration and incubation period were the most significant factors affecting fucoidanase production. At the optimized conditions [seaweed biomass (4.25% w/v), seawater concentration (100% v/v), and incubation period (2 days)], the fucoidanase production was 3.43 U/mL. The crude fucoidanase exhibited a wide pH (3–9) stability with residual activity > 58%. The enzyme showed a good thermostability at 40 and 50 °C with half-lives of 239.02 and 115.52 min, respectively. Several parameters of thermal inactivation kinetics and thermodynamics were calculated, and suggested that the enzyme would be thermostable. Additionally, enzymatic extract containing fucoidanase was used for the enzymatic saccharification of the brown algal biomass in terms of seaweed particle size, solid/liquid ratio, and enzyme dosage. The maximum reducing sugars obtained was 57.11 mg/g. To the best of our knowledge, this is the first report regarding fungal fucoidanase optimization mediated saccharification of a brown seaweed.