Novel fractional-order generic Jacobi-Fourier moments for image analysis
NULL
Do you have any questions? (088) 2345643 - 2412000 sci_dean@aun.edu.eg
NULL
NULL
NULL
NULL
NULL
The evolution of animal behaviour is poorly understood. Despite numerous correlations between interspecific divergence in behaviour and nervous system structure and function, demonstrations of the genetic basis of these behavioural differences remain rare. Here we develop a neurogenetic model, Drosophila sechellia, a species that displays marked differences in behaviour compared to its close cousin Drosophila melanogaster, which are linked to its extreme specialization on noni fruit (Morinda citrifolia). Using calcium imaging, we identify olfactory pathways in D. sechellia that detect volatiles emitted by the noni host. Our mutational analysis indicates roles for different olfactory receptors in long- and short-range attraction to noni, and our cross-species allele-transfer experiments demonstrate that the tuning of one of these receptors is important for species-specific host-seeking. We identify the molecular determinants of this functional change, and characterize their evolutionary origin and behavioural importance. We perform circuit tracing in the D. sechellia brain, and find that receptor adaptations are accompanied by increased sensory pooling onto interneurons as well as species-specific central projection patterns. This work reveals an accumulation of molecular, physiological and anatomical traits that are linked to behavioural divergence between species, and defines a model for investigating speciation and the evolution of the nervous system.
NULL
The evolution of animal behaviour is poorly understood. Despite numerous correlations of behavioural and nervous system divergence, demonstration of the genetic basis of interspecific behavioural differences remains rare. Here we develop a novel neurogenetic model, Drosophila sechellia, a close cousin of D. melanogaster that displays profound behavioural changes linked to its extreme host fruit specialisation. Through calcium imaging, we identify olfactory pathways detecting host volatiles. Mutational analysis indicates roles for individual receptors in long- and short-range attraction. Cross-species allele transfer demonstrates that differential tuning of one receptor is important for species-specific behaviour. We identify the molecular determinants of this functional change, and characterise their behavioural significance and evolutionary origin. Circuit tracing reveals that receptor adaptations are accompanied by increased sensory pooling onto interneurons and novel central projection patterns. This work links molecular and neuronal changes to behavioural divergence and defines a powerful model for investigating nervous system evolution and speciation.
In the vinegar fly Drosophila melanogaster, the majority of olfactory receptors mediating the detection of volatile chemicals found in their natural habitat have been functionally characterized (deorphanized) in vivo. In this process, receptors have been assigned ligands leading to either excitation or inhibition in the olfactory sensory neuron where they are expressed. In other, non-drosophilid insect species, scientists have not yet been able to compile datasets about ligand–receptor interactions anywhere near as extensive as in the model organism D. melanogaster, as genetic tools necessary for receptor deorphanization are still missing. Recently, it was discovered that exposure to artificially high concentrations of odorants leads to reliable alterations in mRNA levels of interacting odorant receptors in mammals. Analyzing receptor expression after odorant exposure can, therefore, help to identify ligand–receptor interactions in vivo without the need for other genetic tools. Transfer of the same methodology from mice to a small number of receptors in D. melanogaster resulted in a similar trend, indicating that odorant exposure induced alterations in mRNA levels are generally applicable for deorphanization of interacting chemosensory receptors. Here, we evaluated the potential of the DREAM (Deorphanization of receptors based on expression alterations in mRNA levels) technique for high-throughput deorphanization of chemosensory receptors in insect species using D. melanogaster as a model. We confirmed that in some cases the exposure of a chemosensory receptor to high concentration of its best ligand leads to measureable alterations in mRNA levels. However, unlike in mammals, we found several cases where either confirmed ligands did not induce alterations in mRNA levels of the corresponding chemosensory receptors, or where gene transcript-levels were altered even though there is no evidence for a ligand–receptor interaction. Hence, there are severe limitations to the suitability of the DREAM technique for deorphanization as a general tool to characterize olfactory receptors in insects.
In Drosophila melanogaster, the sex pheromone produced by males, cis-vaccenyl acetate (cVA), evokes a stereotypic gender-specific behavior in both males and females. As Drosophila adults feed, mate, and oviposit on food, they perceive the pheromone as a blend against a background of food odors. Previous studies have reported that food odors enhance flies’ behavioral response to cVA, specifically in virgin females. However, how and where the different olfactory inputs interact has so far remained unknown. In this study, we elucidated the neuronal mechanism underlying the response at an anatomical, functional, and behavioral level. Our data show that in virgin females cVA and the complex food odor vinegar evoke a synergistic response in the cVA-responsive glomerulus DA1. This synergism, however, does not appear at the input level of the glomerulus, but is restricted to the projection neuron level only. Notably, it is abolished by a mutation in gap junctions in projection neurons and is found to be mediated by electrical synapses between excitatory local interneurons and projection neurons. As a behavioral consequence, we demonstrate that virgin females in the presence of vinegar become receptive more rapidly to courting males, while male courtship is not affected. Altogether, our results suggest that lateral excitation via gap junctions modulates odor tuning in the antennal lobe and drives synergistic interactions between two ecologically relevant odors, representing food and sex.