Do you have any questions? (088) 2345643 - 2412000 sci_dean@aun.edu.eg
Hemorrhagic cystitis is a potentially deadly complication associated with radiation therapy and chemotherapy. This study explored the protective effect of edaravone (ED) on cyclophosphamide (CP)-induced hemorrhagic cystitis, oxidative stress, and inflammation in rats. The animals received 20 mg/kg ED for 10 days and a single injection of 200 mg/kg CP on day 7. CP induced tissue injury manifested by the diffuse necrotic changes, disorganization of lining mucosa, focal hemorrhagic patches, mucosal/submucosal inflammatory cells infiltrates, and edema. CP increased malondialdehyde (MDA), nitric oxide (NO), tumor necrosis factor-alpha, and interleukin 6 (IL-6), decreased IL-10, and upregulated toll-like receptor 4 (TLR-4), nuclear factor-kappa B (NF-κB) p65, Janus kinase 1 (JAK1), and signal transducer and activator of transcription 3 (STAT3) in the urinary bladder of rats. ED effectively prevented the histopathological alterations, decreased MDA, NO, and inflammatory mediators, and downregulated TLR-4, NF-κB, JAK1, and STAT3 in CP-induced rats. Treatment with ED upregulated ikβ kinase β, IL-10, nuclear factor-erythroid 2 related factor 2 (Nrf2), and cytoglobin, and boosted glutathione, superoxide dismutase, and glutathione S-transferase. Molecular docking simulations revealed the ability of ED to bind TLR-4, NF-κB, JAK1, and STAT3. In vitro, ED increased the cytotoxic activity of CP against HeLa, Caco-2, and K562 cell lines. In conclusion, ED prevented CP-induced hemorrhagic cystitis in rats by attenuating oxidative stress, suppressing TLR-4/NF-κB, and JAK1/STAT3 signaling and boosted Nrf2, cytoglobin, and antioxidants.
Highly efficient Cu-doped TiO2 photocatalysts (CTO) with variation in Cu concentration (4 to 16 wt.%) were prepared via a modified sol-gel technique. X-ray diffraction (XRD) data indicate a pure anatase structure with a small crystallite size of 22.16 nm obtained for CTO-12 (12 wt.% Cu). The average crystallite size and energy bandgap with variation in Cu doping were also studied. All the samples exhibited a spherical morphology. The increment in the Cu concentration caused a systematic decrease in the photoluminescence (PL) intensity, which indicated a lower recombination rate of electron-hole pairs and hence higher separation efficiency. CTO-12 served as the best-suited photocatalyst, tested for photocatalytic degradation of cationic basic (methylene blue, rhodamine B) and anionic acidic (Methyl orange) dyes under UV light irradiation. The comparative study illustrates higher degradation efficiency obtained for cationic dyes than anionic dyes in the order of RhB>MB>MO. The highest degradation (95.3%) was obtained for RhB dye in 180 min. In addition, the further kinetic study suggested the degradation of dyes followed the first-order kinetics. The recyclability data demonstrated superior stability and reliability of the photocatalyst, suggesting its future utilization in potential wastewater treatment applications.