Skip to main content

Double-signal quantification of amoxicillin based on interaction with 4-aminoantipyrine at copper and nitrogen co-doped carbon quantum dots as an artificial nanozyme

Research Abstract

An one-pot hydrothermal method was developed for synthesis of carbon quantum dots co-doped with copper and nitrogen (Cu, N@CQDs). The synthesized Cu, N@CQDs has unique advantages such as high fluorescence quantum yield (39.1%) and high catalytic activity. Oxidative coupling of amoxicillin (AMX) with 4-aminoantipyrine (4-NH2-APE) in the presence of H2O2 as an oxidant to produce pink quinoneimine chromogen was carried out with the aid of Cu, N@CQDs as a peroxidase-like catalyst. This system was used for the colorimetric and fluorometric assays of AMX with reliable results. Colorimetric method is based on the measurement of a pink-colored product at λmax = 505 nm while the fluorometric assay is based on the quenching of the fluorescence emission of Cu, N@CQDs at 440 nm after excitation at 370 nm. For the colorimetric method, the absorption intensity linearly increased over the concentration range 4.3–110.0 µM with LOD (S/N = 3) of 1.3 µM. For the fluorometric method, the emission intensity of Cu, N@CQDs linearly decreased upon addition of AMX in the concentration range 0.2–120.0 µM with a limit of detection (LOD, S/N = 3) of 0.06 µM. The proposed system was applied to the determination of AMX in different real samples such as pharmaceutical capsules, human serum, milk, and conduit water samples with recoveries in the range 95.8–104.1% and relative standard deviation (RSD %) less than 4.1%.

Research Authors
Ashraf M. Mahmoud, Mohamed M. El-Wekil, Ramadan Ali, Hany A. Batakoushy & Reem Y. Shahin
Research Date
Research Journal
Microchimica Acta
Research Publisher
Springer
Research Rank
Q1
Research Vol
189
Research Website
https://doi.org/10.1007/s00604-022-05253-1
Research Year
2022

Fluorometric and electrochemical dual-mode detection of toxic flavonoid rutin based on new nitrogen and sulfur co-doped carbon dots: Enhanced selectivity based on masking the interfering flavonoids with BSA complexation

Research Abstract

A simple, cost-effective, and convenient bimodal strategy for the detection of toxic flavonoid rutin was proposed. The strategy depends on fluorometric and electrochemical determination of rutin using new type of nitrogen and sulfur co-doped carbon dots (N, S@C-dots). The fluorescence detection based on quenching the emission of N, S@C-dots by rutin through inner-filter effect (IFE), while the electrochemical detection based on direct oxidation of rutin at glassy carbon electrode (GCE) modified with N, S@C-dots. Many factors affecting fluorometric and electrochemical measurements were optimized. The decrease of emission intensity and the increase of the electrochemical signal are linear over the concentration range of 0.02−92.3 μM and 0.2−130 × 10−8 M, respectively. The limits of detections (LODs) were found to be 8.0 nM and 0.8 nM for the fluorometric and electrochemical methods, respectively. Moreover, short response times (2.0 and 2.5 min) were achieved using the fluorometric and electrochemical methods, respectively. The selectivity of the fluorometric sensor towards rutin was enhanced; in the presence of other interfering flavonoids; by the addition of bovine serum albumin (BSA).

Research Authors
Ashraf M. Mahmoud, Mater H. Mahnashi, Adel Al Fatease, Mahmoud A. H. Mostafa, Mohamed M.El-Wekil, Ramadan Alif
Research Date
Research Journal
Journal of Food Composition and Analysis
Research Publisher
ElSevier
Research Rank
Q2
Research Vol
108
Research Website
https://doi.org/10.1016/j.jfca.2022.104428
Research Year
2022

Highly selective and sensitive electrochemical determination of cysteine based on complexation with gold nanoparticle–modified copper-based metal organic frameworks

Research Abstract

A gold nanoparticle–modified copper-based metal organic framework (Au NPs@Cu-BDC) was fabricated for the electrochemical determination of cysteine (Cys-SH). The nanocomposites were characterized using different techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), powder X-ray spectroscopy (PXRD), thermogravimetry (TGA), nitrogen adsorption–desorption isotherms, and Fourier transform infrared spectroscopy (FTIR). Formation of a new anodic peak of Cu(II)-Cys complex at + 0.43 V was used to detect Cys-SH. Cyclic and square wave voltammetric studies proved that the Au NPs enhanced the conductivity of Cu-BDC. The proposed electrode exhibited a linear range of 0.0015–10.5 μM and low detection limit of 0.0004 μM with a good sensitivity of 0.78 ± 0.01 μA μM. The as-fabricated electrode was successfully used for the estimation of Cys-SH in real samples (human plasma, urine, and saliva) with recovery % of 99–100% and RSD % of 2.7–3.6%, respectively.

Research Authors
Ashraf M. Mahmoud, Saad A. Alkahtani & Mohamed M. El-Wekil
Research Date
Research Journal
Analytical and Bioanalytical Chemistry
Research Publisher
Springer
Research Rank
Q2
Research Vol
414
Research Website
https://doi.org/10.1007/s00216-021-03852-0
Research Year
2022

An innovative dual recognition aptasensor for specific detection of Staphylococcus aureus based on Au/Fe3O4 binary hybrid

Research Abstract

Pathogenic bacteria cause disease outbreaks and threaten human health, prompting the research on advanced detection assays. Herein, we developed a selective molecular imprinted aptasensor for sensitive and prompt quantitation of Staphylococcus aureus (S. aureus) bacteria. The aptasensor was constructed by immobilization of aptamer on gold nanoparticles modified magnetic nanoparticles (apt-AuNPs@ Fe3O4). A functional monomer (o-phenylenediamine, o-phen) was electro-polymerized on the surface of the as-synthesized nanocomposite in the presence of a template (S. aureus). After removing S. aureus, the formed imprinted sites were available to extract pathogenic bacteria from complicated matrices. The surface morphology of the as-fabricated nanocomposites was characterized using different spectroscopic and electrochemical methods. Moreover, we thoroughly evaluated factors affecting the synthesis and determination procedures. The molecular imprinted aptasensor exhibited a wide linear range of 101–107 CFU mL−1 with a Limit of Detection, LOD (signal to noise = 3) of 1 CFU mL−1. The aptasensor detected S. aureus in milk, conduit water, and apple juice samples with good recoveries % and satisfactory relative standard deviations (RSDs %) values.

Research Authors
Mohamed M. El-Wekil, Hamada Mohamed Halby, Mahmoud Darweesh, Mohamed E. Ali & Ramadan Ali
Research Date
Research Journal
Scientific Reports
Research Publisher
Nature
Research Rank
Q1
Research Vol
12
Research Website
ttps://doi.org/10.1038/s41598-022-15637-1
Research Year
2022

Bifunctional nanoprobe for dual-mode detection based on blue emissive iron and nitrogen co-doped carbon dots as a peroxidase-mimic platform

Research Abstract

In this study, iron and nitrogen co-doped carbon dots (Fe/N@C-dots) were fabricated via one pot hydrothermal method. The as-synthesized Fe/N@C-dots exhibited unique properties such as high catalytic activity and fluorescence quantum yield (33.8%). The peroxidase-like activity of Fe/N@C-dots was used to detect H2O2 in the presence of phenol and 4-aminoantipyrine (4-AMAP) to yield a pink colored product (quinoneimine chromogen), which was measured at λmax = 505 nm (colorimetric method). Moreover, the pink colored product quenched the fluorescence of Fe/N@C-dots via inner-filter effect and static quenching (fluorometric method). The enzyme like activity of Fe/N@C-dots was cascaded with the enzymatic activity of glucose oxidase (GOx) to evaluate the practical application of Fe/N@C-dots to develop dual-channel sensor (fluorometric and colorimetric) for high selective and sensitive detection of glucose. It was found that the absorption intensities were increased linearly with glucose concentration in the range of 2.13–130 μM with LOD (S/N = 3) of 0.58 μM, while fluorescence intensities were decreased linearly after addition of glucose in the range of 1.33–140 μM with LOD (S/N = 3) of 0.36 μM. The Fe/N@C-dots/4-AMAP/phenol/GOx system along with the fluorometric method were applied efficiently to determine glucose in many samples including human serum, urine, and saliva with acceptable recoveries % in the range of 93.8–106.1% and RSD % not more than 3.7%, suggesting the reliability of the as-fabricated biosensor.

Research Authors
Yahya S. Alqahtani, Ashraf M. Mahmoud, Mohamed M. El-Wekil
Research Date
Research Journal
Talanta
Research Publisher
ElSevier
Research Rank
Q1
Research Vol
253
Research Website
https://doi.org/10.1016/j.talanta.2022.124024
Research Year
2022

Charge-Transfer Complex of Linifanib with 2,3-dichloro-3,5-dicyano-1,4-benzoquinone: Synthesis, Spectroscopic Characterization, Computational Molecular Modelling and Application in the Development of Novel 96-microwell Spectrophotometric Assay

Research Abstract

Background: Linifanib (LFB) is a multi-targeted receptor tyrosine kinase inhibitor used in
the treatment of hepatocellular carcinoma and other types of cancer. The charge-transfer (CT)
interaction of LFB is important in studying its receptor binding mechanisms and useful in the
development of a reliable CT-based spectrophotometric assay for LFB in its pharmaceutical
formulation to assure its therapeutic benefits.
Purpose: The aim of this study was to investigate the CT reaction of LFB with 2,3-dichloro-
3,5-dicyano-1,4-benzoquinone (DDQ) and its application in the development of a novel 96-
microwell spectrophotometric assay for LFB.
Methods: The reaction was investigated, its conditions were optimized, the physicochemical
and constants of the CT complex and stoichiometric ratio of the complex were determined.
The solid-state LFB-DDQ complex was synthesized and its structure was analyzed by
UV-visible, FT-IR, and 1H-NMR spectroscopic techniques, and also by the computational
molecular modeling. The reaction was employed in the development of a novel 96-microwell
spectrophotometric assay for LFB.
Results: The reaction resulted in the formation of a red-colored product, and the spectrophotometric
investigations confirmed that the reaction had a CT nature. The molar absorptivity
of the complex was linearly correlated with the dielectric constant and polarity index of
the solvent; the correlation coefficients were 0.9526 and 0.9459, respectively. The stoichiometric
ratio of LFB:DDQ was 1:2. The spectroscopic and computational data confirmed the
sites of interaction on the LFB molecule, and accordingly, the reaction mechanism was
postulated. The reaction was utilized in the development of the first 96-microwell spectrophotometric
assay for LFB. The assay limits of detection and quantitation were 1.31 and 3.96
μg/well, respectively. The assay was successfully applied to the analysis of LFB in its bulk
and tablets with high accuracy and precision.
Conclusion: The assay is simple, rapid, accurate, eco-friendly as it consumes low volumes
of organic solvent, and has high analysis throughput.
Keywords: linifanib, 2,3-dichloro-3,5-dicyano-1,4-benzoquinone, charge-transfer reaction,
spectroscopic techniques, 96-microwell spectrophotometric assay, high-throughput
pharmaceutical analysis

Research Authors
Ibrahim A Darwish, Nasr Y Khalil, Nawaf A Alsaif, Rashed N Herqash, Ahmed YA Sayed, Hamdy M Abdel-Rahman
Research Date
Research Journal
Drug Design, Development and Therapy
Research Publisher
Dovepress
Research Vol
15
Research Website
http://doi.org/10.2147/DDDT.S296502
Research Year
2021

Design, synthesis and mechanistic study of new 1,2,4-triazole derivatives as antimicrobial agents

Research Abstract

Novel 5-amino-1,2,4-triazole derivatives and their cyclized 1,2,4-triazolo[1,5-a]pyrimidine analogues were
designed, synthesized and evaluated for their antimicrobial activities. They were tested against five bacterial
strains (Methicillin Resistant S. aureus (MRSA), E. coli, K. pneumoniae, A. baumannii and P. aeruginosa) using
ciprofloxacin as a positive control and against two fungal strains (C. albicans and C. neoformans) using fluconazole and amphotericin B as positive controls. Compounds 9, 13a and 13b showed high to moderate antifungal activities against candida albicans (MIC values = 4–32 μg/ml), with considerable safety profiles; where no cytotoxicity against human embryonic kidney or red blood cells were detected at concentrations up to 32 μg/mL. Furthermore, compound 9 showed significant inhibitory activity against lansterol 14α-demethylase (IC50 = 0.27 μM), compared to the reference drug fluconazole (IC50 = 0.25 μM). Molecular docking of compound 9 into the active site of the cytochrome P450 enzyme revealed comparable binding modes and docking scores to those of fluconazole. Finally, in silico ADME studies prediction and drug-like properties of these compounds revealed
favorable oral bioavailability results.

Research Authors
Noha H. Amin , Mohamed T. El-Saadi, Ahmed A. Ibrahim , Hamdy M. Abdel-Rahman
Research Date
Research Journal
Bioorganic Chemistry
Research Publisher
Esevier
Research Vol
111
Research Website
https://doi.org/10.1016/j.bioorg.2021.104841
Research Year
2021

Bacterial virulence factBacterial virulence factors: a target for heterocyclic compounds to combat bacterial resistanceors: a target for heterocyclic compounds to combat bacterial resistance

Research Abstract

Antibiotic resistance is one of the most important challenges of the 21st century. However, the growing
understanding of bacterial pathogenesis and cell-to-cell communication has revealed many potential
strategies for the discovery of drugs that can be used for the treatment of bacterial infections. Interfering
with bacterial virulence and/or quorum sensing could be a particularly interesting approach, because it is
believed to exert less selective pressure on the bacterial resistance than with traditional strategies,
geared toward killing bacteria or preventing their growth. Here, we discuss the mechanism of bacterial
virulence, presenting promising strategies and recently synthesized heterocyclic compounds to combat
future bacterial infections.

Research Authors
Rehab H. Abd El-Aleam, Riham F. George, Hanan H. Georgey and Hamdy M. Abdel-Rahman
Research Date
Research Journal
RSC Advances
Research Publisher
Royal Society of Chemistry
Research Vol
11
Research Website
DOI: 10.1039/d1ra06238g
Research Year
2021

Design, synthesis, biological assessment and in silico ADME prediction of new 2-(4- (methylsulfonyl) phenyl) benzimidazoles as selective cyclooxygenase-2 inhibitors

Research Abstract

A novel series of benzimidazole derivatives wherein 4-(methylsulfonyl) phenyl pharmacophore attached via
its C-2 position was designed and synthesized. These compounds were evaluated in vitro as cyclooxygenase-1(COX-1)/cyclooxygenese-2(COX-2) inhibitors. Furthermore, the synthesized compounds were also in vivo evaluated for their anti-inflammatory activity and ulcerogenic liability. Examination of histopathological lesions was also performed to evaluate the cariogenic effect of most active compounds. In silico prediction of physicochemical properties, ADME, and drug-likeness profiles were also studied. Several compounds as 11b, 11k, 12b, and 12d showed selective inhibition to (COX-2) isozyme. Compound 11b showed the most potent (COX-2) inhibitory activity with (IC50 ¼ 0.10 mM) and selectivity index (SI ¼ 134); the tested compounds also have shown good anti-inflammatory activity. Regarding the ulcerogenic liability, compound 11b was also safest one (Ulcer Index) (UI ¼ 0.83). The results of the molecular docking studies is closely related to the results of the in vitro COX-2 inhibitory activities.

Research Authors
Mohamed A. S. Badawy, Eman K. A. Abdelall, EL-Shaymaa EL-Nahass, Khaled R. A. Abdellatif and Hamdy M. Abdel-Rahman
Research Date
Research Journal
RSC Advances
Research Publisher
Royal Society of Chemistry
Research Vol
11
Research Website
DOI: 10.1039/d1ra04756f
Research Year
2021

Lipophilicity study of different cephalosporins: Computational prediction of minimum inhibitory concentration using salting-out chromatography

Research Abstract

The chromatographic and lipophilicity characters of seven cephalosporins of different four classes (ce
phradine, cefaclor, cefprozil, cefixime, cefotaxime, ceftazidime and cefepime) were examined by salting out thin-layer chromatography (SOTLC). SOTLC using ammonium sulfate salt was employed to predict the
pophilicity of the proposed drugs via their retention behavior. The calculated RM0 values showed liner relationship with the molar concentration of ammonium sulfate in mobile phase in the range of 0.5–2.5 mol/L. Additionally, quantitative structure retention relationship (QSRR) was generated to figure out the relationship between the calculated chromatographic parameters (RM0 and C0) and log P of the studied cephalosporins. Good correlations were found between the chromatographically obtained retention meters (RM0 and C0) and some molecular descriptors of the examined drugs. Furthermore, an efficient QSAR model was carried out using the calculated chromatographic parameters (RM0 and C0) and log P of the studied cephalosporins to predict minimum inhibitory concentration (MIC) and blood brain barrier (BBB) penetration of the examined drugs. The study was extended to separate and quantify the selected biotics in their pure forms and pharmaceutical formulations. Normal phase thin layer chromatographic (NP-TLC) method using a usable developing system of acetone: methanol: water: ammonium hydroxide: glacial acetic acid (90: 10: 18: 3: 2, by volume) was successfully applied to resolve the studied porins. Linearity was achieved in the range of 0.2–3 μg/mL for most of the studied antibiotics. The oped SOTLC method can be considered as a good start alternative to reversed phase thin layer chromatography (RP-TLC) for prediction of the lipophilic properties of examined cephalosporins. Moreover, the proposed NP-TLC densitometric method can be easily applied for quality control analysis of the chosen drugs and other structurally related components.

Research Authors
Asmaa M. AboulMagd, Nada S. Abdelwahab, Maha M. Abdelrahman, Hamdy M. Abdel-Rahman, Nehal F. Farid
Research Date
Research Journal
Journal of Pharmaceutical and Biomedical Analysis
Research Publisher
Elsevier
Research Vol
206
Research Website
https://doi.org/10.1016/j.jpba.2021.114358
Research Year
2021
Subscribe to