Skip to main content

Kidney segmentation from DCE-MRI converging level set methods, fuzzy clustering and Markov random field modeling

Research Abstract

Early diagnosis of transplanted kidney function requires precise Kidney segmentation from Dynamic Contrast-Enhanced Magnetic Resonance Imaging images as a preliminary step. In this regard, this paper aims to propose an automated and accurate DCE-MRI kidney segmentation method integrating fuzzy c-means (FCM) clustering and Markov random field modeling into a level set formulation. The fuzzy memberships, kidney’s shape prior model, and spatial interactions modeled using a second-order MRF guide the LS contour evolution towards the target kidney. Several experiments on real medical data of 45 subjects have shown that the proposed method can achieve high and consistent segmentation accuracy regardless of where the LS contour was initialized. It achieves an accuracy of 0.956 ± 0.019 in Dice similarity coefficient (DSC) and 1.15 ± 1.46 in 95% percentile of Hausdorff distance (HD95). Our …

Research Authors
Moumen El-Melegy, Rasha Kamel, Mohamed Abou El-Ghar, Mohamed Shehata, Fahmi Khalifa, Ayman El-Baz
Research Date
Research Department
Research Journal
Scientific Reports
Research Year
2022

Linear Regression Classification in the Quaternion and Reduced Biquaternion Domains

Research Abstract

Linear regression classification (LRC) has proven to be a successful recognition tool in recent years. LRC depends on using the least square algorithm to get the solution of the linear regression equation. To improve the performance of the LRC algorithm, in this paper, we extend the LRC strategy to both quaternion and reduced biquaternion domains to consider image color information. We derive closed-form solutions from the properties of both domains . We also improve on the accuracy of the closed-form solutions using nonlinear optimization. Our experiments on three benchmark color face recognition databases demonstrate the effectiveness of the proposed methods for recognizing color faces.

Research Authors
Moumen T El-Melegy, Aliaa T Kamal
Research Date
Research Department
Research Journal
IEEE Signal Processing Letters
Research Year
2022

The Information Technology Institute announces the opening of registration to grant intensive training in distinguished technological specializations to graduates of Egyptian universities from 2014 to 2023 at the Institute's headquarters

**** دورات تدريبية مقدمة بمحافظة أسيوط ****

يعلن معهد تكنولوجيا المعلومات عن فتح باب التسجيل لمنح التدريب المكثف في تخصصات تكنولوجية متميزة لخريجي الجامعات المصرية من عام ٢٠١٤ وحتى عام ٢٠٢٣ بمقر المعهد بمحافظة أسيوط، وهي كالآتي:

UI/UX Designer

لمزيد من المعلومات حول التخصص ادخل على الرابط التالي:

https://drive.google.com/.../1qXHm8t3j0k9sCjrxOAs.../view...

Software Engineering Fundamentals

لمزيد من المعلومات حول التخصص ادخل على الرابط التالي:

https://drive.google.com/.../1S8g.../view...

E-Learning

لمزيد من المعلومات حول التخصص ادخل على الرابط التالي:

https://drive.google.com/.../1TbPRffsjQu1YVKkx8gU.../view...

Frontend & Cross-Platform Mobile Development

لمزيد من المعلومات حول التخصص ادخل على الرابط التالي:

https://drive.google.com/.../1bSC.../view...

- المستندات المطلوبة ومراحل التسجيل موضحة برابط التسجيل

- نظام الحضور بالدورات التدريبية هو نظام مختلط Blended Learning

- يبدأ التسجيل اعتباراً من يوم الأحد الموافق ١٤ مايو ٢٠٢٣ ويستمر حتى يوم الأربعاء الموافق ٢٤ مايو ٢٠٢٣

- يتم التسجيل من خلال الرابط التالي على الموقع الرسمي لمعهد تكنولوجيا المعلومات

https://www.iti.gov.eg/.../intake/details/Round1%2023%202

Subscribe to