تجاوز إلى المحتوى الرئيسي

Optimizing Regression Models for Predicting Noise Pollution Caused by Road Traffic

ملخص البحث

The study focuses on addressing the growing concern of noise pollution resulting from 
increased transportation. Effective strategies are necessary to mitigate the impact of noise pollution. 
The study utilizes noise regression models to estimate road-traffic-induced noise pollution. However, 
the availability and reliability of such models can be limited. To enhance the accuracy of predictions, 
optimization techniques are employed. A dataset encompassing various landscape configurations 
is generated, and three regression models (regression tree, support vector machines, and Gaussian 
process regression) are constructed for noise-pollution prediction. Optimization is performed by fine- 
tuning hyperparameters for each model. Performance measures such as mean square error (MSE), 
root mean square error (RMSE), and coefficient of determination (R2 ) are utilized to determine the 
optimal hyperparameter values. The results demonstrate that the optimization process significantly 
improves the models’ performance. The optimized Gaussian process regression model exhibits the 
highest prediction accuracy, with an MSE of 0.19, RMSE of 0.04, and R2 reaching 1. However, this 
model is comparatively slower in terms of computation speed. The study provides valuable insights 
for developing effective solutions and action plans to mitigate the adverse effects of noise pollution.

مؤلف البحث
Amal A. Al-Shargabi, Abdulbasit Almhafdy, Saleem S. AlSaleem, Umberto Berardi and Ahmed AbdelMonteleb M. Ali
تاريخ البحث
مستند البحث
sustainability-2404912.pdf (1.8 ميغابايت)
مجلة البحث
Sustainaiblity
مؤلف البحث
صفحات البحث
18
الناشر
MDPI
تصنيف البحث
ISI Q2
عدد البحث
15
موقع البحث
https://www.mdpi.com/2071-1050/15/13/10020
سنة البحث
2023