Congratulations to Dr. Hisham Al-Bassit - Pediatric Orthopedic Teacher
Alzheimer’s disease (AD) is one of the most prevalent neurodegenerative illnesses, and yet, no workable treatments have been discovered to prevent or reverse AD. Curcumin (CUR), the major polyphenolic compound of turmeric (Curcuma longa) rhizomes, and Ginkgo biloba extract (GBE) are natural substances derived from conventional Chinese herbs that have long been shown to provide therapeutic advantages for AD. The uptake of curcumin into the brain is severely restricted by its low ability to cross the blood–brain barrier (BBB). Meanwhile, GBE has been shown to improve BBB permeability. The present study evaluated the neuroprotective effects and pharmacokinetic profile of curcumin and GBE combination to find out whether GBE can enhance curcumin’s beneficial effects in AD by raising its brain concentration. Results revealed that CUR + GBE achieved significantly higher levels of curcumin in the brain and plasma after 30 min and 1 h of oral administration, compared to curcumin alone, and this was confirmed by reversed phase high-performance liquid chromatography (RP-HPLC). The effect of combined oral treatment, for 28 successive days, on cognitive function and other AD-like alterations was studied in scopolamine-heavy metal mixtures (SCO + HMM) AD model in rats. The combination reversed at least, partially on the learning and memory impairment induced by SCO + HMM. This was associated with a more pronounced inhibitory effect on acetylcholinesterase (AChE), caspase-3, hippocampal amyloid beta (Aβ1-42), and phosphorylated tau protein (p-tau) count, and pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukine-1beta (IL-1β), as compared to the curcumin alone-treated group. Additionally, the combined treatment significantly decreased lipid peroxidation (MDA) and increased levels of reduced glutathione (GSH), when compared with the curcumin alone. These findings support the concept that the combination strategy might be an alternative therapy in the management/prevention of neurological disorders. This study sheds light on a new approach for exploring new phyto-therapies for AD and emphasizes that more research should focus on the synergic effects of herbal drugs in future.
We investigated the whole blood GLUT1 mRNA expression and serum pigment epithelium-derived factor (PEDF), interleukin-6 (IL-6), fetuin-A, and pentraxin-3 (PTX3) levels in psoriatic patients and tested their correlations with the severity of psoriasis using the psoriasis area and severity index (PASI) score. Also, we tested the GLUT1 mRNA expression after an in vitro treatment of human skin fibroblast (HSF) cell lines with PEDF. The case–control part of the study recruited 74 participants (44 psoriatic patients and 30 healthy volunteers). Whole blood GLUT1 mRNA fold changes were estimated by RT-PCR, and serum PEDF, IL-6, fetuin-A, and PTX3 levels were measured by ELISA kits. In the experimental part, the HSF cell lines were treated with different concentrations of PEDF for different times to test its effect on the GLUT1 mRNA expression. The whole blood GLUT 1 expression significantly increased in psoriatic patients and correlated positively with serum IL-6, fetuin-A, PTX3 levels and with the severity of psoriasis while negatively with serum PEDF levels. The PEDF-treated HSF cell lines showed a time- and dose-dependent decline in the GLUT 1 mRNA expression. The whole blood GLUT 1 mRNA is a non-invasive biomarker that is associated with the severity of psoriasis. PEDF represses GLUT 1 expression and may be a potential therapeutic agent in psoriasis.
Deputy's approval form to set a date for discussing a scientific thesis
https://www.aun.edu.eg/medicine/ar/postgrad/overview
Discussion of the doctoral thesis submitted by Dr. / Amani Radwan Zaki Hassan - Assistant Lecturer, Department of Anatomy - Faculty of Medicine - Assiut University


