Skip to main content

Enhancing Functional Writing Skills and Reducing Writing Apprehension in FCI Graduates through an E-Blog-Based ESP Program

Research Abstract
Biological green synthesis of silver nanoparticles (AgNPs) from silver salts is a growing advanced approach to avoid the requirement of costly instruments and involvement of hazardous chemicals as well. However, increasing use of AgNPs raises potential toxicity level in the environment. In this investigation, leaf extract of rosemary (Rosmarinus officinalis) used as a reducing and stabilizing agent for biosynthesis of AgNPs. The biosynthesized AgNPs were authorized by UV-vis spectrophotometer and X-ray diffraction (XRD) analysis. The shape and size of the biosynthesized AgNPs were studied using high resolution transmission electron microscope (TEM). The toxicity of the biosynthesized silver nanoparticles on wheat and tomato plants was studied by soaking wheat grains and tomato seeds in 100 mg/L AgNPs and follow its effect on seedling growth of wheat (at 10 days) and on vegetative growth of tomato and wheat plants (at 35 days). Some physiological parameters as germination percentage of wheat seedling, length of seedling, dry weight, pigment fractions (chl.a, chl.b and caroteinoids), soluble proteins, lipid peroxidation (MDA) and antioxidant enzymes (catalase and peroxidase) of two plants were measured. AgNPs has a non-significant inhibitory effect on germination percentage of wheat, dry weight and pigment fractions. The biosynthesized AgNPs has a noticeable stress effect on tomato plant as reduced chlorophyll a and dry weight. Generally, AgNPs stimulate MDA accumulation in tomato and wheat plants. There was a noticeable different effect of AgNPs on soluble proteins and antioxidant enzymes as catalase and peroxidase among tomato and wheat plants.
Research Authors
Dr Mahmoud M. S. Abdallah, Dr Rehab A. Elsayed, Ayat Y. Youssif
Research Date
Research Department
Research File
Research Journal
Academic Journal of Faculty of Education, Assiut University
Research Pages
1-31
Research Publisher
ISSN 1916-9752 E-ISSN 1916-9760
Research Rank
12
Research Vol
41
Research Website
https://mfes.journals.ekb.eg/
Research Year
2025