تجاوز إلى المحتوى الرئيسي

Tempered fractional Jacobi-Müntz basis for image reconstruction application and high-order pseudospectral tempered fractional differential matrices

ملخص البحث

This paper develops two tempered fractional matrices that are computationally accurate, efficient,
and stable to treat myriad tempered fractional differential problems. The suggested approaches are
versatile in handling both spatial and temporal dimensions and treating integer- and fractionalorder
derivatives as well as non-tempered scenarios via utilizing pseudospectral techniques. We
depend on Lagrange basis functions, which are derived from the tempered Jacobi-Müntz functions
based on the left- and right-definitions of Erdélyi-Kober fractional derivatives. We aim to obtain
the pseudospectral-tempered fractional differentiation matrices in two distinct ways. The study
involves a numerical measurement of the condition number of tempered fractional differentiation
matrices and the time spent to create the collocation matrices and find the numerical solutions.

مؤلف البحث
Sayed A. Dahy, H.M. El-Hawary, Alaa Fahim, Amal A. Farhat
تاريخ البحث
قسم البحث
مجلة البحث
Applied Mathematics and Computation
صفحات البحث
128954
الناشر
Elsevier
عدد البحث
481
موقع البحث
https://www.sciencedirect.com/science/article/pii/S0096300324004156?casa_token=xXOcJRZCd7cAAAAA:WBvHHW8d9GIwL0MFO1pIcelw5fepgujpgdfJuUMrjFfps5bNomCtbgBOk22BY1bP37Y4RhvtOTnm
سنة البحث
2024