تجاوز إلى المحتوى الرئيسي

Varieties of Algebras without the Amalgamation Property‏

ملخص البحث

Let α be an ordinal and κ be a cardinal, both infinite, such that κ ≤ |α|. For τ ∈αα, let sup(τ) = {i ∈ α: τ(i) ≠ i}. Let G κ = {τ ∈αα: |sup(τ)| < κ}. We consider variants of polyadic equality algebras by taking cylindrifications on Γ ⊆ α, |Γ| < κ and substitutions restricted to G κ. Such algebras are also enriched with generalized diagonal elements. We show that for any variety V containing the class of representable algebas and satisfying a finite schema of equations, V fails to have the amalgamation property. In particular, many varieties of Halmos’ quasi-polyadic equality algebras and Lucas’ extended cylindric algebras (including that of the representable algebras) fail to have the amalgamation property.

مؤلف البحث
Basim Samir
قسم البحث
مجلة البحث
Communications in Algebra
مؤلف البحث
صفحات البحث
2425-2436
الناشر
Taylor & Francis Group
تصنيف البحث
1
عدد البحث
Volume 43, Issue 6
موقع البحث
http://www.tandfonline.com/doi/abs/10.1080/00927872.2013.876236#.VY3ra2VbfFw
سنة البحث
2015