ملخص البحث
In this work, we prove that the ratio of torsion and curvature of any dual rectifying curve is
a non-constant linear function of its dual arc length parameter. Thereafter, a dual dierential equation
of third order is constructed for every dual curve. Then, several well-known characterizations of dual
spherical, normal and rectifying curves are consequences of this dierential equation. Finally, we
prove a simple new characterization of dual spherical curves in terms of the Darboux vector.
تاريخ البحث
قسم البحث
مجلة البحث
AIMS Mathematics
مؤلف البحث
صفحات البحث
3339- 3351
الناشر
AIMS Mathematics
تصنيف البحث
Q2
عدد البحث
Vol. 6, No. 4
موقع البحث
http://www.aimspress.com/journal/Math
سنة البحث
2021