This paper considers fuzzifying topologies, a special case of I-fuzzy topologies (bifuzzy topologies) introduced by Ying [16, (I)]. It investigates topological notions defined by means of regular open sets when these are planted into the framework of Ying’s fuzzifying topological spaces (in Lukasiewwicz fuzzy logic). The concept of fuzzifying nearly compact spaces is introduced and some of its properties are obtained. We use the finite intersection property to give a characterization of fuzzifying nearly compact spaces. Furthermore, we study the image of fuzzifying nearly compact spaces under fuzzifying completely continuous functions, fuzzifying almost continuity and fuzzifying R-map.