تجاوز إلى المحتوى الرئيسي

Perfluoro-Functionalized Conducting Polymers Enhance Electrocatalytic Oxygen Reduction

ملخص البحث

In this study, films of perfluoro-functionalized poly(3,4-ethylenedioxythiophene) [poly(EDOT-F)] were prepared directly through electropolymerization for use as catalysts for the oxygen reduction reaction (ORR), applying the rotating ring disk electrode technique. Poly(EDOT-F) operated catalytically through a two-electron and/or mixed pathway. Spinel Co3O4 nanospheres were introduced into poly(EDOT-F) to enhance its ORR performance and electron transfer number (n). Benefiting from its unique interconnected pore structure and its resemblance to the binder Nafion, poly(EDOT-F) could be used as a single replacement for both the binder and the carbon support required for the spinel Co3O4 nanospheres. The Co3O4/poly(EDOT-F) composite, when used as an electrode, exhibited a limiting current density of −4.761 mA cm–2 at 0.18 V (vs RHE) (cf. 20% Pt/C: −3.615 mA cm–2), an onset potential of 0.99 V (cf. 20% Pt/C: 0.938 V), and a half-wave potential of 0.628 V (cf. 20% Pt/C: 0.727 V) in 0.1 M aqueous KOH. The electron transfer number of the Co3O4/poly(EDOT-F) nanocomposite in the ORR was 3.84, suggesting a desirable four-electron pathway. This high electrocatalytic activity presumably resulted from the synergistic effect of the Co3O4 nanospheres and the poly(EDOT-F) polymer, which created many more active sites, enhanced the electron transfer kinetics, and eventually improved the ORR performance.

مؤلف البحث
Tharwat Hassan Mansoure, Hailemichael Ayalew, Wei-Lun Kao, Jing-Jong Shyue, Shyh-Chyang Luo, Yuan-Chung Cheng, and Hsiao-hua Yu
قسم البحث
مجلة البحث
ACS Applied Energy Materials
مؤلف البحث
صفحات البحث
1171-1180
الناشر
American Chemical Society
تصنيف البحث
1
عدد البحث
3, 1
موقع البحث
https://pubs.acs.org/journal/aaemcq
سنة البحث
2020