Skip to main content

Poly(ethylene oxide)-block-Polyphosphester-based Paclitaxel Conjugates as a Platform for Ultra-High Paclitaxel-Loaded Multifunctional Nanoparticles

Research Abstract
A new type of degradable, nanoscopic polymer assembly containing ultra-high levels of drug loading via covalent attachment within amphiphilic core–shell nanoparticle morphology has been generated as a potentially effective and safe anti-cancer agent. Poly(ethylene oxide)-block-polyphosphoester-based paclitaxel drug conjugates (PEO-b-PPE-g-PTX) were synthesized by a rapid, scalable and versatile approach that involves only two steps: organocatalyst-promoted ring-opening-polymerization followed by click reaction-based conjugation of a PTX prodrug. Variations in the polymer-to-PTX stoichiometries allowed for optimization of the conjugation efficiency, the PTX drug loading and the resulting water solubilities of the entire polymer and the PTX content. The PEO-b-PPE-g-PTX formed well-defined micelles in aqueous solution, with a PTX loading capacity as high as 65 wt%, and a maximum PTX concentration of 6.2 mg mL−1 in water, which is 25 000-fold higher than the aqueous solubility of free PTX. The positive cell-killing activity of PEO-b-PPE-g-PTX against several cancer cell lines is demonstrated, and the presence of pendant reactive functionality provides a powerful platform for future work to involve conjugation of multiple drugs and imaging agents to achieve chemotherapy and bioimaging.
Research Authors
Shiyi Zhang, Jiong Zou, Mahmoud Elsabahy, Amolkumar Karwa, Ang Li, Dennis A. Moore, Richard B. Dorshow, Karen L. Wooley
Research Department
Research Journal
Chemical Science, DOI: 10.1039/c3sc50252j
Research Member
Research Rank
1
Research Vol
Vol. 4
Research Year
2013

Multifunctional Hierarchically Assembled Nanostructures as Complex Stage-Wise Dual-Delivery Systems for Coincidental Yet Differential Trafficking of siRNA and Paclitaxel

Research Abstract
Development of multifunctional nanostructures that can be tuned to codeliver multiple drugs and diagnostic agents to diseased tissues is of great importance. Hierarchically assembled theranostic (HAT) nanostructures based on anionic cylindrical shell cross-linked nanoparticles and cationic shell cross-linked knedel-like nanoparticles (cSCKs) have recently been developed by our group to deliver siRNA intracellularly and to undergo radiolabeling. In the current study, paclitaxel, a hydrophobic anticancer drug, and siRNA have been successfully loaded into the cylindrical and spherical components of the hierarchical assemblies, respectively. Cytotoxicity, immunotoxicity, and intracellular delivery mechanism of the HAT nanostructures and their individual components have been investigated. Decoration of nanoparticles with F3-tumor homing peptide was shown to enhance the selective cellular uptake of the spherical particles, whereas the HAT nanoassemblies underwent an interesting disassembly process in contact with either OVCAR-3 or RAW 264.7 cell lines. The HAT nanostructures were found to "stick" to the cell membrane and "trigger" the release of spherical cSCKs templated onto their surfaces intracellularly, while retaining the cylindrical part on the cell surface. Combination of paclitaxel and cell-death siRNA (siRNA that induces cell death) into the HAT nanostructures resulted in greater reduction in cell viability than siRNA complexed with Lipofectamine and the assemblies loaded with the individual drugs. In addition, a shape-dependent immunotoxicity was observed for both spherical and cylindrical nanoparticles with the latter being highly immunotoxic. Supramolecular assembly of the two nanoparticles into the HAT nanostructures significantly reduced the immunotoxicity of both cSCKs and cylinders. HAT nanostructures decorated with targeting moieties, loaded with nucleic acids, hydrophobic drugs, radiolabels, and fluorophores, with control over their toxicity, immunotoxicity, and intracellular delivery might have great potential for biomedical delivery applications.
Research Authors
Mahmoud Elsabahy, Ritu Shrestha, Corrie Clark, Sara Taylor, Jeffrey Leonard, Karen L. Wooley
Research Department
Research Journal
Nano Letters, dx.doi.org/10.1021/nl4006645
Research Member
Research Rank
1
Research Vol
Vol. 13
Research Year
2013

Shell-Crosslinked Knedel-like Nanoparticles Induce Lower Immunotoxicity than their Non-Crosslinked Analogs

Research Abstract
The development of stable nanoparticles that can withstand the changing conditions experienced in a biological setting and also be of low toxicity and immunogenicity is of particular importance to address the problems associated with currently utilized nanotechnology-based therapeutics and diagnostics. The use of crosslinked nanoparticles continues to receive special impetus, due to their robust structure and high kinetic stability, and they have recently been shown to induce lower cytotoxicity than their non-crosslinked micellar counterparts. In the current study, poly(acrylamidoethylamine)-block-poly(DL-lactide) (PAEA90-b-PDLLA40) copolymers were synthesized, self-assembled in water to yield nanoscopic polymeric micelles, and the effects of decorating the micellar surface with poly(ethylene glycol) (i.e. PEGylation) and crosslinking the PAEA layer to varying extents on the physicochemical characteristics, cytotoxicity and immunotoxicity of the nanoparticles were studied. Herein, we report for the first time that crosslinking can efficiently reduce the immunotoxicity of polymeric nanomaterials. In addition, increasing the degree of crosslinking further reduced the accessibility of biomolecules to the core of the nanoparticles and decreased their cytotoxicity and immunotoxicity. It is also highlighted that crosslinking can be more efficient than PEGylation in reducing the immunotoxicity of nanomaterials. Shell-crosslinking of block copolymer micelles, therefore, is expected to advance their clinical development beyond the earlier known effects, and to broaden the implications in the field of nanomedicine.
Research Authors
Mahmoud Elsabahy, Sandani Samarajeewa, Jeffery E. Raymond, Corrie Clark, Karen L. Wooley
Research Department
Research Journal
Journal of Materials Chemistry B, DOI: 10.1039/c3tb20668h
Research Member
Research Rank
1
Research Vol
Vol. 1
Research Year
2013

Discovery of New HER2/EGFR Dual Kinase Inhibitors Based on the Anilinoquinazoline Scaffold as Potential Anti-Cancer Agents

Research Abstract
Herein, we designed and synthesized certain anilinoquinazoline derivatives bearing bulky arylpyridinyl, arylpropenoyl and arylpyrazolyl moieties at the 40 position of the anilinoquinazoline, as potential dual HER2/EGFR kinase inhibitors. A detailed molecular modeling study was performed by docking the synthesized compounds in the active site of the epidermal growth factor receptor (EGFR). The synthesized compounds were further tested for their inhibitory activity on EGFR and HER2 tyrosine kinases. The aryl 2-imino-1,2-dihydropyridine derivatives 5d and 5e displayed the most potent inhibitory activity on EGFR with IC50 equal to 2.09 and 1.94 µM, respectively, and with IC50 equal to 3.98 and 1.04 µM on HER2, respectively. Furthermore, the anti-proliferative activity of these most active compounds on MDA-MB-231 breast cancer cell lines, known to overexpress EGFR, showed an IC50 range of 2.4 and 2.5 µM, respectively.
Research Authors
Maiada M. Sadek, Rabah A. Serrya, Abdel-Hamid N. Kafafy, Marawan Ahmed, Feng Wang, Khaled A. M. Abouzid
Research Journal
J. Enzyme Inhib. Med. Chem., DOI 10.3109/14756366.2013.765417
Research Member
Abdel-Hamid Nagib Ahmed Kafafy
Research Rank
1
Research Vol
Vol. 29, No. 2
Research Year
2014

Assessment of New Anti-HER2 Ligands Using Combined Docking, QM/MM Scoring and MD Simulation

Research Abstract
In the development of new anti-cancer drugs to tackle the problem of resistance to current chemotherapeutic agents, a new series of anti-HER2 (human epidermal growth factor receptors 2) agents has been synthesized and investigated using different computational methods. Although non-selective, the most active inhibitor in the new series shows higher activity toward HER2 than EGFR. The induced fit docking protocol (IFD) is performed to find possible binding poses of the new inhibitors in the active site of the HER2 receptor. Molecular dynamic simulations of the inhibitor–protein complexes for the two most active compounds from the new series are carried out. Simulations stability is checked using different stability parameters. Different scoring functions are employed.
Research Authors
Marawan Ahmed, Maiada M. Sadek, Rabah A. Serrya, Abdel-Hamid N. Kafafy, Khaled A. Abouzid, Feng Wang
Research Journal
Journal of Molecular Graphics and Modelling, http://dx.doi.org/10.1016/j.jmgm.2012.12.001
Research Member
Abdel-Hamid Nagib Ahmed Kafafy
Research Rank
1
Research Vol
Vol. 40
Research Year
2013

Differential Immunotoxicities of Poly(ethylene glycol)- vs. Poly(carboxybetaine)-Coated Nanoparticles

Research Abstract
Although the careful selection of shell-forming polymers for the construction of nanoparticles is an obvious parameter to consider for shielding of core materials and their payloads, providing for prolonged circulation in vivo by limiting uptake by the immune organs, and thus, allowing accumulation at the target sites, the immunotoxicities that such shielding layers elicit is often overlooked. For instance, we have previously performed rigorous in vitro and in vivo comparisons between two sets of nanoparticles coated with either non-ionic poly(ethylene glycol) (PEG) or zwitterionic poly(carboxybetaine) (PCB), but only now report the immunotoxicity and anti-biofouling properties of both polymers, as homopolymers or nanoparticle-decorating shell, in comparison to the uncoated nanoparticles, and Cremophor-EL, a well-known low molecular weight surfactant used for formulation of several drugs. It was found that both PEG and PCB polymers could induce the expression of cytokines in vitro and in vivo, with PCB being more immunotoxic than PEG, which corroborates the in vivo pharmacokinetics and biodistribution profiles of the two sets of nanoparticles. This is the first study to report on the ability of PEG, the most commonly utilized polymer to coat nanomaterials, and PCB, an emerging zwitterionic anti-biofouling polymer, to induce the secretion of cytokines and be of potential immunotoxicity. Furthermore, we report here on the possible use of immunotoxicity assays to partially predict in vivo pharmacokinetics and biodistribution of nanomaterials.
Research Authors
Mahmoud Elsabahy, Ang Li, Fuwu Zhang, Deborah Sultan, Yongjian Liu, Karen L. Wooley
Research Department
Research Journal
Journal of Controlled Release, http://dx.doi.org/10.1016/j.jconrel.2013.09.010
Research Member
Research Rank
1
Research Vol
Vol. 172
Research Year
2013

Surface Charges and Shell Crosslinks Each Play Significant Roles in Mediating Degradation, Biofouling, Cytotoxicity and Immunotoxicity for Polyphosphoester-based Nanoparticles

Research Abstract
The construction of nanostructures from biodegradable precursors and shell/core crosslinking have been pursued as strategies to solve the problems of toxicity and limited stability, respectively. Polyphosphoester (PPE)-based micelles and crosslinked nanoparticles with non-ionic, anionic, cationic, and zwitterionic surface characteristics for potential packaging and delivery of therapeutic and diagnostic agents, were constructed using a quick and efficient synthetic strategy, and importantly, demonstrated remarkable differences in terms of cytotoxicity, immunotoxicity, and biofouling properties, as a function of their surface characteristics and also with dependence on crosslinking throughout the shell layers. For instance, crosslinking of zwitterionic micelles significantly reduced the immunotoxicity, as evidenced from the absence of secretions of any of the 23 measured cytokines from RAW 264.7 mouse macrophages treated with the nanoparticles. The micelles and their crosslinked analogs demonstrated lower cytotoxicity than several commercially-available vehicles, and their degradation products were not cytotoxic to cells at the range of the tested concentrations. PPE-nanoparticles are expected to have broad implications in clinical nanomedicine as alternative vehicles to those involved in several of the currently available medications.
Research Authors
Mahmoud Elsabahy, Shiyi Zhang, Fuwu Zhang, Zhou J. Deng, Young H. Lim, Hai Wang, Perouza Parsamian, Paula T. Hammond, Karen L. Wooley
Research Department
Research Journal
Scientific Reports, DOI: 10.1038/srep03313
Research Member
Research Rank
1
Research Vol
Vol. 3, 3313
Research Year
2013

Stability and Magnetically Induced Heating Behavior of Lipid-Coated Fe3O4 Nanoparticles

Research Abstract
Magnetic nanoparticles that are currently explored for various biomedical applications exhibit a high propensity to minimize total surface energy through aggregation. This study introduces a unique, thermoresponsive nanocomposite design demonstrating substantial colloidal stability of superparamagnetic Fe3O4 nanoparticles (SPIONs) due to a surface-immobilized lipid layer. Lipid coating was accomplished in different buffer systems, pH 7.4, using an equimolar mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and L-α-dipalmitoyl-phosphatidyl glycerol (DPPG). Particle size and zeta potential were measured by dynamic laser light scattering. Heating behavior within an alternating magnetic field was compared between the commercial MFG-1000 magnetic field generator at 7 mT (1 MHz) and an experimental, laboratory-made magnetic hyperthermia system at 16.6 mT (13.7 MHz). The results revealed that product quality of lipid-coated SPIONs was significantly dependent on the colloidal stability of uncoated SPIONs during the coating process. Greatest stability was achieved at 0.02 mg/mL in citrate buffer (mean diameter = 80.0 ± 1.7 nm; zeta potential = −47.1 ± 2.6 mV). Surface immobilization of an equimolar DPPC/DPPG layer effectively reduced the impact of buffer components on particle aggregation. Most stable suspensions of lipid-coated nanoparticles were obtained at 0.02 mg/mL in citrate buffer (mean diameter = 179.3 ± 13.9 nm; zeta potential = −19.1 ± 2.3 mV). The configuration of the magnetic field generator significantly affected the heating properties of fabricated SPIONs. Heating rates of uncoated nanoparticles were substantially dependent on buffer composition but less influenced by particle concentration. In contrast, thermal behavior of lipid-coated nanoparticles within an alternating magnetic field was less influenced by suspension vehicle but dramatically more sensitive to particle concentration. These results underline the advantages of lipid-coated SPIONs on colloidal stability without compromising magnetically induced hyperthermia properties. Since phospholipids are biocompatible, these unique lipid-coated Fe3O4 nanoparticles offer exciting opportunities as thermoresponsive drug delivery carriers for targeted, stimulus-induced therapeutic interventions.
Research Authors
Ayat A. Allam, Md Ehsan Sadat, Sarah J. Potter, David B. Mast, Dina F. Mohamed,
Fawzia S. Habib, Giovanni M. Pauletti
Research Department
Research Journal
Nanoscale Research Letters, doi:10.1186/1556-276X-8-426
Research Member
Research Rank
1
Research Vol
Vol. 8, 426
Research Year
2013

Stability and Magnetically Induced Heating Behavior of Lipid-Coated Fe3O4 Nanoparticles

Research Abstract
Magnetic nanoparticles that are currently explored for various biomedical applications exhibit a high propensity to minimize total surface energy through aggregation. This study introduces a unique, thermoresponsive nanocomposite design demonstrating substantial colloidal stability of superparamagnetic Fe3O4 nanoparticles (SPIONs) due to a surface-immobilized lipid layer. Lipid coating was accomplished in different buffer systems, pH 7.4, using an equimolar mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and L-α-dipalmitoyl-phosphatidyl glycerol (DPPG). Particle size and zeta potential were measured by dynamic laser light scattering. Heating behavior within an alternating magnetic field was compared between the commercial MFG-1000 magnetic field generator at 7 mT (1 MHz) and an experimental, laboratory-made magnetic hyperthermia system at 16.6 mT (13.7 MHz). The results revealed that product quality of lipid-coated SPIONs was significantly dependent on the colloidal stability of uncoated SPIONs during the coating process. Greatest stability was achieved at 0.02 mg/mL in citrate buffer (mean diameter = 80.0 ± 1.7 nm; zeta potential = −47.1 ± 2.6 mV). Surface immobilization of an equimolar DPPC/DPPG layer effectively reduced the impact of buffer components on particle aggregation. Most stable suspensions of lipid-coated nanoparticles were obtained at 0.02 mg/mL in citrate buffer (mean diameter = 179.3 ± 13.9 nm; zeta potential = −19.1 ± 2.3 mV). The configuration of the magnetic field generator significantly affected the heating properties of fabricated SPIONs. Heating rates of uncoated nanoparticles were substantially dependent on buffer composition but less influenced by particle concentration. In contrast, thermal behavior of lipid-coated nanoparticles within an alternating magnetic field was less influenced by suspension vehicle but dramatically more sensitive to particle concentration. These results underline the advantages of lipid-coated SPIONs on colloidal stability without compromising magnetically induced hyperthermia properties. Since phospholipids are biocompatible, these unique lipid-coated Fe3O4 nanoparticles offer exciting opportunities as thermoresponsive drug delivery carriers for targeted, stimulus-induced therapeutic interventions.
Research Authors
Ayat A. Allam, Md Ehsan Sadat, Sarah J. Potter, David B. Mast, Dina F. Mohamed,
Fawzia S. Habib, Giovanni M. Pauletti
Research Department
Research Journal
Nanoscale Research Letters, doi:10.1186/1556-276X-8-426
Research Rank
1
Research Vol
Vol. 8, 426
Research Year
2013

Hierarchically Assembled Theranostic Nanostructures for siRNA Delivery and Imaging Applications

Research Abstract
Dual functional hierarchically assembled nanostructures, with two unique functions of carrying therapeutic cargo electrostatically and maintaining radiolabeled imaging agents covalently within separate component building blocks, have been developed via the supramolecular assembly of several spherical cationic shell cross-linked nanoparticles clustered around a central anionic shell cross-linked cylinder. The shells of the cationic nanoparticles and the hydrophobic core domain of the anionic central cylindrical nanostructure of the assemblies were utilized to complex negatively charged nucleic acids (siRNA) and to undergo radiolabeling, respectively, for potential theranostic applications. The assemblies exhibited exceptional cell transfection and radiolabeling efficiencies, providing an overall advantage over the individual components, which could each facilitate only one or the other of the functions.
Research Authors
Ritu Shrestha, Mahmoud Elsabahy, Hannah Luehmann, Sandani Samarajeewa, Stephanie Florez-Malaver, Nam S. Lee, Michael J. Welch, Yongjian Liu, Karen L. Wooley
Research Department
Research Journal
J. Am. Chem. Soc., dx.doi.org/10.1021/ja306616n
Research Member
Research Rank
1
Research Vol
Vol. 134
Research Year
2012
Subscribe to