Coronary artery bypass grafting (CABG) is defined as “open-heart surgery in which a section of a blood vessel is grafted from the aorta to the coronary artery to bypass the blocked section of the coronary artery. Cardiac surgery became more feasible in the late 1930s with the development of the heart-lung machine by Dr. John Gibbon which enabled cardiopulmonary bypass (CPB). This study aimed at comparing early postoperative outcomes between patients undergone CABG on-pump versus off-pump. The study was done on 40 patients, 20 of them was done by on-pump technique and the other 20 was done by off-pump technique. All the patients were transferred to intensive care unit and were observed for the following criteria: Early postoperative bleeding, Cardiac support (Medical or Mechanical), Different types of Arrythmias, Renal function and Hospital stay. Early postoperative bleeding: appears to be more with On-pump technique in the first 3 post operative days. Cardiac support (Medical or Mechanical): No significant difference with both techniques. Different types of Arrythmias: No significant difference with both techniques. Renal function: No significant difference with both techniques except of only one patient needed renal dialysis was done by on-pump technique. Hospital stay: No significant difference with both techniques with mean days of hospital stay for all patients of 8 days. In conclusion, our trial did not show any overall advantage to the use of the off-pump as compared with the on-pump cardiac surgical approach for coronary bypass grafting
Mitotic count in breast cancer is an important prognostic marker. Unfortunately, substantial inter- and intraobserver variation exists when pathologists manually count mitotic figures. To alleviate this problem, we developed a new technique incorporating both haematoxylin and eosin (H&E) and phosphorylated histone H3 (PHH3), a marker highly specific to mitotic figures, and compared it to visual scoring of mitotic figures using H&E only.
Two full-face sections from 97 cases were cut, one stained with H&E only, and the other was stained with PHH3 and counterstained with H&E (PHH3–H&E). Counting mitoses using PHH3–H&E was compared to traditional mitoses scoring using H&E in terms of reproducibility, scoring time, and the ability to detect mitosis hotspots. We assessed the agreement between manual and image analysis-assisted scoring of mitotic figures using H&E and PHH3–H&E-stained cells. The diagnostic performance of PHH3 in detecting mitotic figures in terms of sensitivity and specificity was measured. Finally, PHH3 replaced the mitosis score in a multivariate analysis to assess its significance.
Pathologists detected significantly higher mitotic figures using the PHH3–H&E (median ± SD, 20 ± 33) compared with H&E alone (median ± SD, 16 ± 25), P < 0.001. The concordance between pathologists in identifying mitotic figures was highest when using the dual PHH3–H&E technique; in addition, it highlighted mitotic figures at low power, allowing better agreement on choosing the hotspot area (k = 0.842) in comparison with standard H&E (k = 0.625). A better agreement between image analysis-assisted software and the human eye was observed for PHH3-stained mitotic figures. When the mitosis score was replaced with PHH3 in a Cox regression model with other grade components, PHH3 was an independent predictor of survival (hazard ratio [HR] 5.66, 95% confidence interval [CI] 1.92–16.69; P = 0.002), and even showed a more significant association with breast cancer-specific survival (BCSS) than mitosis (HR 3.63, 95% CI 1.49–8.86; P = 0.005) and Ki67 (P = 0.27).
Using PHH3–H&E-stained slides can reliably be used in routine scoring of mitotic figures and integrating both techniques will compensate for each other's limitations and improve diagnostic accuracy, quality, and precision.
Breast cancer (BC) expressing low levels of human epidermal growth factor receptor 2 (HER2 Low) is an emerging category that needs further refining. This study aims to provide a comprehensive clinico-pathological and molecular profile of HER2 Low BC including response to therapy and patient outcome in the adjuvant and neoadjuvant settings.
Two different independent and well-characterised BC cohorts were included. Nottingham cohort (A) (n = 5744) and The Cancer Genome Atlas (TCGA) BC cohort (B) (n = 854). The clinical, molecular, biological and immunological profile of HER2 Low BC was investigated. Transcriptomic and pathway enrichment analyses were performed on the TCGA BC cohort and validated through next-generation sequencing in a subset of Nottingham cases.
Ninety percent of HER2 Low tumours were hormone receptor (HR) positive (HR+), enriched with luminal intrinsic molecular subtype, lacking significant expression of HER2 oncogenic signalling genes and of favourable clinical behaviour compared to HER2 negative (HER2-) BC. In HR+ BC, no significant prognostic differences were detected between HER2 Low and HER2- tumours. However, in HR- BC, HER2 Low tumours were less aggressive with longer patient survival. Transcriptomic data showed that the majority of HR- /HER2 Low tumours were of luminal androgen receptor (LAR) intrinsic subtype, enriched with T-helper lymphocytes, activated dendritic cells and tumour associated neutrophils, while most HR-/HER2- tumours were basal-like, enriched with tumour associated macrophages.
HER2 Low BC is mainly driven by HR signalling in HR+ tumours. HR-/HER2 Low tumours tend to be enriched with LAR genes with a unique immune profile.
Tumor-associated stroma in breast cancer (BC) is complex and exhibits a high degree of heterogeneity. To date, no standardized assessment method has been established. Artificial intelligence (AI) could provide an objective morphologic assessment of tumors and stroma, with the potential to identify new features not discernible by visual microscopy. In this study, we used AI to assess the clinical significance of (1) stroma-to-tumor ratio (S:TR) and (2) the spatial arrangement of stromal cells, tumor cell density, and tumor burden in BC. Whole-slide images of a large cohort (n = 1968) of well-characterized luminal BC cases were examined. Region and cell-level annotation was performed, and supervised deep learning models were applied for automated quantification of tumor and stromal features. S:TR was calculated in terms of surface area and cell count ratio, and the S:TR heterogeneity and spatial distribution …
Tumour infiltrating lymphocytes (TILs) are a prognostic parameter in triple-negative and human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC). However, their role in luminal (oestrogen receptor positive and HER2 negative (ER + /HER2-)) BC remains unclear. In this study, we used artificial intelligence (AI) to assess the prognostic significance of TILs in a large well-characterised cohort of luminal BC.
Supervised deep learning model analysis of Haematoxylin and Eosin (H&E)-stained whole slide images (WSI) was applied to a cohort of 2231 luminal early-stage BC patients with long-term follow-up. Stromal TILs (sTILs) and intratumoural TILs (tTILs) were quantified and their spatial distribution within tumour tissue, as well as the proportion of stroma involved by sTILs were assessed. The association of TILs with clinicopathological parameters and patient outcome was determined.
A strong positive linear correlation was observed between sTILs and tTILs. High sTILs and tTILs counts, as well as their proximity to stromal and tumour cells (co-occurrence) were associated with poor clinical outcomes and unfavourable clinicopathological parameters including high tumour grade, lymph node metastasis, large tumour size, and young age. AI-based assessment of the proportion of stroma composed of sTILs (as assessed visually in routine practice) was not predictive of patient outcome. tTILs was an independent predictor of worse patient outcome in multivariate Cox Regression analysis.
AI-based detection of TILs counts, and their spatial distribution provides prognostic value in luminal early-stage BC patients. The utilisation of AI algorithms could provide a comprehensive assessment of TILs as a morphological variable in WSIs beyond eyeballing assessment.
Estrogen receptor (ER) status in breast cancer (BC) is determined using immunohistochemistry (IHC) with nuclear expression in ≥1% of cells defined as ER-positive. BC with 1%-9% expression (ER-low-positive), is a clinically and biologically unique subgroup. In this study, we hypothesized that ER-low-positive BC represents a heterogeneous group with a mixture of ER-positive and ER-negative tumor, which may explain their divergent clinical behavior. A large BC cohort (n = 8171) was investigated and categorized into 3 groups: ER-low-positive (1%-9%), ER-positive (≥10%), and ER-negative (<1%) where clinicopathological and outcome characteristics were compared. A subset of ER-low-positive cases was further evaluated using IHC, RNAscope, and RT-qPCR. PAM50 subtyping and ESR1 mRNA expression levels were assessed in ER-low-positive cases within The Cancer Genome Atlas data set. The reliability of image analysis software in assessment of ER expression in the ER-low-positive category was also assessed. ER-low-positive tumors constituted <2% of BC cases examined and showed significant clinicopathological similarity to ER-negative tumors. Most of these tumors were nonluminal types showing low ESR1 mRNA expression. Further validation of ER status revealed that 45% of these tumors were ER-negative with repeated IHC staining and confirmed by RNAscope and RT-qPCR. ER-low-positive tumors diagnosed on needle core biopsy were enriched with false-positive ER staining. BCs with 10% ER behaved similar to ER-positive, rather than ER-negative or low-positive BCs. Moderate concordance was found in assessment of ER-low-positive tumors, and this was not improved by image analysis. Routinely diagnosed ER-low-positive BC includes a proportion of ER-negative cases. We recommend repeat testing of BC showing 1%-9% ER expression and using a cutoff ≥10% expression to define ER positivity to help better inform treatment decisions.
Ki67 expression is one of the most important and cost-effective surrogate markers to assess for tumour cell proliferation in breast cancer (BC). The Ki67 labelling index has prognostic and predictive value in patients with early-stage BC, particularly in the hormone receptor-positive, HER2 (human epidermal growth factor receptor 2)-negative (luminal) tumours. However, many challenges exist in using Ki67 in routine clinical practice and it is still not universally used in the clinical setting. Addressing these challenges can potentially improve the clinical utility of Ki67 in BC. In this article, we review the function, immunohistochemical (IHC) expression, methods for scoring and interpretation of results as well as address several challenges of Ki67 assessment in BC. The prodigious attention associated with use of Ki67 IHC as a prognostic marker in BC resulted in high expectation and overestimation of its performance. However, the realisation of some pitfalls and disadvantages, which are expected with any similar markers, resulted in an increasing criticism of its clinical use. It is time to consider a pragmatic approach and weigh the benefits against the weaknesses and identify factors to achieve the best clinical utility. Here we highlight the strengths of its performance and provide some insights to overcome the existing challenges.
The most frequent cause of hyperthyroidism in children is Graves’ disease (GD). Vascular endothelium is a specific target of thyroid hormone. The purpose of this study is to assess flow-mediated dilatation (FMD)% and serum von Willebrand factor (vWF) levels in children with newly diagnosed GD to reflect the extent of endothelial dysfunction in those children. In this study, 40 children with newly discovered GD and 40 children who were healthy served as the control group. Both patients and controls had anthropometric assessment, as well as measurements of fasting lipids, glucose, insulin, high-sensitivity C-reactive protein (hs-CRP), TSH, and free thyroxine (FT4 and FT3), thyrotropin receptor antibodies TRAbs and vWF. Noninvasive ultrasound was utilized to quantify the carotid arteries’ intima-media thickness and the brachial artery’s FMD. Patients reported significantly reduced FMD response and greater vWF …