تجاوز إلى المحتوى الرئيسي

Heat transfer analysis of Al₂O₃–Cu/water nanofluid in a C-shaped wavy cavity under inclined magnetic effects

ملخص البحث

This study investigates the thermal dynamics of a C-shaped, wavy, porous cavity filled with Al₂O₃-Cu/H₂O hybrid nanofluids, influenced by an inclined magnetic field and a heat source/sink. The governing equations are non- dimensionalized and resolved using the finite difference method in a proprietary MATLAB solver. The study investigates the influence of numerous dimensionless parameters such as length of heat position(B = 0.2, 0.4, 0.8), heat source/sink (Q = 4, 0, 1), Porosity ( ∈ =0.1, 0.3, 0.9), Rayleigh number(Ra = 10, 100, 10000), Hartmann number(Ha = 0, 25, 50),length of a cavity (H = 0.5, 10, 100), length of ED/H (L2 = 0.2, 0.4, 0.6) and distance of AD/H (L1 = 0.2, 0.4, 0.6)are analyzed. The findings demonstrate that an elevated Rayleigh number augments convection, whilst increased porosity promotes heat transfer efficiency. The Al₂O₃-Cu/H₂O hybrid nanofluids markedly improve heat transfer owing to their exceptional thermal conductivity. The average Nusselt number validates the efficacy of hybrid nanofluids in enhancing thermal performance. The results indicate that hybrid nanofluids enhance heat transfer, while magnetic fields hinder convection, and the cavity shape in f luences flow patterns. By limiting convective flow, an increased Hartmann number leads to heat transport that is dominated by conduction. Additionally, the length of the heater has a direct influence on the generation of vortices and the enhancement of localized heat and heat transfer.

قسم البحث
مجلة البحث
International Journal of Thermofluids
مؤلف البحث
سنة البحث
2025