Research Abstract
Callus was induced from hypocotyl and primary leaf explants of cumin (Cuminum cyminum L.) seedlings on a medium with 4 M 2,4-D alone or plus 2 or 4 M kinetin. An embryogenic callus developed within 2 weeks after transferring the callus to medium lacking plant growth regulators (PGR). The presence of kinetin in the callus induction medium with 2,4-D enhanced both the callus proliferation and the subsequent differentiation of the embryoids on the PGR-free medium. Plumules with or without simultaneously developed roots were observed 3–4 weeks after subculturing the embryogenic callus on medium containing 0.5 or 1.0 M kinetin. Subsequently, they were transferred onto half-strength medium supplemented with 1 M indole-3-butyric acid (IBA) and 2% polyethylene glycol (PEG, 6000) for root induction and/or proliferation, and in vitro hardening of the regenerated plants. The survival rate ex vitro was 70%. No plants developed from the embryogenic callus continuously incubated on medium lacking kinetin. We concluded that kinetin is crucial for plant regeneration from the induced embryoids of cumin.