The retina consists of various cell types arranged in eight cell layers and two membranes that originate from the neuroectodermal cells. In this study, the timing of differentiation and distribution of the cellular components and the layers of the rabbit retina are investigated using light and electron microscopy and immunohistochemical techniques. There were 32 rabbit embryos and 12 rabbits used. The rabbit retina begins its prenatal development on the 10th day of gestation in the form of optic cup. The process of neuro‐ and gliogenesis occurs in several stages: In the first stage, the ganglionic cells are differentiated at the 15th day. The second stage includes the differentiation of Muller, amacrine, and cone cells on the 23rd day. The differentiation of bipolar, horizontal, and rod cells and formation of the inner segments of the photoreceptors consider the late stage that occurs by the 27th and 30th day of gestation.