ملخص البحث
Background: Early gut microbiome development is critical for neonatal health, and its dysbiosis may impact long-term animal productivity. This study examined the effects of parenteral Ceftiofur Crystalline Free Acid (CCFA) on the composition and diversity of the neonatal lamb fecal microbiome. The emergence of antimicrobial resistance genes associated with CCFA exposure was also investigated. Results: There were distinct microbial populations in the CCFA-treated lambs compared to the control group at each time point, with a highly significant decrease in alpha and beta diversity. The CCFA treatment showed a reduction in several key microbial taxa during nursing, but these differences were diminished by day 56. Unlike the control group, CCFA-treated lambs had core microbes potentially carrying multiple antibiotic resistance genes, including those for beta-lactam, fosfomycin, methicillin, and multidrug resistance. Methods: Twenty-four healthy neonatal lambs were randomly assigned to CCFA-treated (n = 12) and control (n = 12) groups. Fecal samples were collected on days 0, 7, 14, 28, and 56. Genomic DNA was extracted and sequenced using the Illumina MiSeq platform. Microbial composition was analyzed using the MG-RAST pipeline with the RefSeq database. Conclusions: Despite temporary reductions in critical bacterial populations during nursing, the early sheep fecal microbiome demonstrated resilience by repopulating after CCFA antibiotic disruption. While this highlights microbiota stability after short-course antibiotic exposure, the transient disturbance underscores potential risks to early gut health. Importantly, persistent CCFA resistance poses environmental dissemination risks, emphasizing the need for cautious antibiotic use in livestock to mitigate ecological impacts.
تاريخ البحث
قسم البحث
مجلة البحث
Antibiotics
مؤلف البحث
صفحات البحث
434
عدد البحث
14
سنة البحث
2025