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Abstract: The main aim of this paper is to introduce a new class of Lommel matrix polynomials with
the help of hypergeometric matrix function within complex analysis. We derive several properties
such as an entire function, order, type, matrix recurrence relations, differential equation and integral
representations for Lommel matrix polynomials and discuss its various special cases. Finally, we
establish an entire function, order, type, explicit representation and several properties of modi-
fied Lommel matrix polynomials. There are also several unique examples of our comprehensive
results constructed.
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1. Introduction

The Eugen von Lommel introduced Lommel polynomial Ry, ,(z) of degree m in %

which for m = 0,1,2,... and any v in [1-3], and Watson arisen for these polynomials
in the theory of Bessel functions in [4]. The study of special matrix polynomials and
orthogonal matrix polynomials is important due to their applications in certain areas of
statistics, physics, engineering, Lie groups theory, group representation theory and differ-
ential equations. Recently, Significant results emerged in the classical theory of orthogonal
polynomials and special functions have been expanded to include many orthogonal matrix
limits and special matrix functions and applications that have continued to appear in the
literature until now (see for example [5-22]). In [23-25], Mathai et al. studied some Special
function of matrix arguments. in [26], Nisar et al. introduced the modified Hermite matrix
polynomials. In [27,28] Aydi et al. established Some formulas for quadruple hyperge-
ometric functions. In mathematics, specifically in linear algebra, a symmetric matrix is
a square matrix that is equal to its transpose, and a skew-symmetric (antimetric or anti-
symmetric) matrix is a square matrix which its transpose equals its negative. Symmetric
matrices appear naturally in a variety of important applications, such as statistical anal-
ysis, control theory, and optimization. Classical orthogonal polynomials are solutions of
differential equations. Therefore, Lommel matrix polynomials are an illustrative example
of symmetric polynomials. Symmetric type of Lommel matrix polynomials is in general of
physical importance.

The motive for that work is an extension of the paper presented by Shehata’s recent
paper on Lommel matrix functions [29] and to prove new properties for Lommel matrix
polynomials(LMPs). The outline of this paper is the following: Section 2 deals with
the study of some generalizations of hypergeometric matrix function and prove new
interesting properties. Section 3 provides the definition of Lommel matrix polynomials
(LMPs), and recurrence matrix relations for Lommel matrix polynomials are given. We give
also a matrix differential equation of the second order which is satisfied by Lommel matrix
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polynomials and we show the integral representations for Lommel matrix polynomials.
Furthermore, the results of Sections 2 and 3 are used in Sections 4 and 5 to investigate
the behavior of modified Lommel matrix polynomials (MLMPs). Finally, we give some
concluding remarks in Section 6.

Preliminaries

In this subsection, we summarize basic facts, lemmas, notations and definitions of
matrix functional calculus.

Throughout this paper, the identity matrix and the null matrix or zero matrix in C***
will be denoted by I and 0, respectively. If Q is a matrix in C*** in the complex space
CH** of all square matrices of common order C?, its spectrum o(Q) denotes the set of all
eigenvalues of Q. The two-norm || Q|| is defined as

HQH = sup ||XQH2,
x#0 Hx”Z

where ||x]|2 = (xTx)% is the Euclidean norm of x for a vector x € C’.

Theorem 1 (Dunford and Schwartz [30]). If ¥(z) and Q(z) are holomorphic functions of
complex variable z, which are defined in an open set ® of complex plane, then

where A, Q are commutative matrices in C'*¢ with o(A) C ® and 0(Q) C @, such that
AQ = QA.

Definition 1 (Jodar and Cortés [31]). For Q in C***, we say that Q is a positive stable matrix if
Re(u) >0, Yueo(Q). 1)

Definition 2 (Jédar and Cortés [31]). Let Q be a positive stable matrix in C*C then Gamma
matrix function T'(Q) is defined by

rQ) = /Ooo e 1ldy 19T = exp ((Q ~I)In t). @)

Definition 3 (Jédar and Sastre [12]). If Q is a matrix in C™¥ such that
Q + rI is an invertible matrix for all integers r > 0, 3)

then T(Q) is an invertible matrix in C*** and the matrix analogues of Pochhammer symbol or
shifted factorial is defined by

(Q)r=0Q(Q+D)(Q+2I)...(Q+ (r—1)I) =T(Q+MI 1(Q); r>1, (Qo=1 4

Fact 1 (Jodar and Cortés [32]). Let us denote the real numbers M(Q), m(Q) for Q € C*** as
in the following

M(Q) = max{Re(z) : z € 0(Q)} and m(Q) = min{Re(z) : z € 0(A)}. (5)

Notation 1 (Jédar and Cortés [33]). If Q is a matrix in CY, then it follows that

(-1 1
Qlllzt)”
IIefQ|<efM<Q>r§(” !! S, t=0 ©)
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and considering that mQ = eQ™M™ (") one gets

(-1 1 T
r=0 !

Definition 4 (Jédar and Cortés [32,33]). The hypergeometric matrix function oF is defined by

(A)(P),[(Q)] 7", (8)

o0 Zr
Fi(APQz) =)

r=0

where A, P, and Q are matrices of C*** such that Q + r1 is an invertible matrix for every integer
r> 0.

Definition 5. Let us take Q a matrix in C*** such that
v is not a negative integer for every v € o(Q), )

then the Bessel matrix functions (BMFs) Jq(z) of the first kind of order Q was defined in [16,34,35]
as follows :

c© (_1)\s Q-+2sI
Jo(z) = ;) ( ;) I 1(Q+(s+1I) (;z>

X

Theorem 2 (Jédar and Cortés [31]). Let Q be a positive stable matrix satisfying the condition
Re(v) > 0 for every eigenvalue v € o(Q) and let r > 1 be an integer, then we have

) (10)

Q
Z) I H(Q+1) oFy <—;Q+I;—Z4); |z| < o0; |arg(z)| < m.

N~

r(Q) = lim (r — 1)1[(Q):] /<, a1

where (Q), is defined by (4).

Definition 6 (Jodar and Cortés [31]). Let A and Q be positive stable matrices in C'*! then Beta
matrix function B(A, Q) is defined by

B(A,Q) = /01 A1 1 Tgy, (12)

Lemma 1. If A, Q and A + Q are positive stable matrices in C'** satisfying the conditions
AQ = QA,and A+ I, Q + rland A 4+ Q + rI are invertible matrices for all eigenvalues r > 0
in [31], then we have

B(A,Q) =T(A)I(QI'(A+Q). (13)

Lemma 2 (Defez and Jédar [36]). Forr > 0,s > 0and Q(s, r) is a matrix in Ccixe, the following
relation is satisfied :

Y. Y Q@s,r) = i i Q(s,r —s). (14)



Symmetry 2021, 13, 2335 40f17

Corollary 1 (Batahan [37]; Defez and J6dar [38]). Let A and Q be matrices in C™ sych that
A, Q and Q — A are positive stable matrices with AQ = QA and Q + rI is an invertible matrix
for every integer r > 0. Then, for r is a non-negative integer, the following holds

) ( L A; Q,-1) — (@ A)[(Q)] . (15)

2. Hypergeometric Matrix Function ;F3: Definition and Properties

In this section, we define the hypergeometric matrix function ,F; under certain condi-
tions. The radius of convergence properties, order, type, matrix differential equations and
transformation of the hypergeometric matrix function ,F;3 are given.

Definition 7. Let us define the hypergeometric matrix function oF3 in the form

= (AD(A2 Q)] (Q2)] (@)

oF3 = ,F;3 <A1,A2; Q1,Q2,Q3;Z) =)
- (16)
-

z°Us,

where Aq, Ay, Qy, Qy and Q5 are commutative matrices C' such that

Q1 +5I,Qy + sl and Q3 + sI  are invertible matrices for each integer s > 0. 17)

For the radius of convergence with the help of the relation in [39—41] and (11), then
we have

@ =

1 .
= = limsup([|Us])

R B S—00
-1 -1 RN
= sh—glosup(H (Al)s(Az)s[(Ql)s] Sy[(QZ)S] [(Q3)S] >
. —AL(A s —A2(A s —Q B
N hlisogp [ S(s_(l)l!)(s B 1)!SA15(S_(1)2!)(5 - 1)!5A2ﬁ(5 — D!(Q1)s) s
o - 1 (18)
X (557 ! (s = 1)![(Qy)s] s (Ssi 1! (s — 1)![(Q3)s]71593§ ]
l_
~ limsup U’Fl(Al)T1(Az)T(QOT(Qz)T(Qs)SA]sAZsleQZSQS(S_ll)'S' ]
1 1
’ A Az]||1s—Q —Q2||ls— Q3| | °
< limsup [ sAlsA2s’le*Q25*Q3m < limsup [Ils s |||(ss _11|§|!Ss! Ills 3”] _
From (5)—(7) into (18), we write
1 1 AL () yyiay S (A2 [ €2 In(s;
xS 1121S£p {(S—l)!S!SM(A ) r;) 1 r! SM(A: )E)f

wsmi@n s (@11 A6 gy § (1 Q2 I £ In(s))"

| |
r=0 r r=0 r

oomian 5 (1@ A inGe)y }

|
r=0 r
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Using the identity

(] Ay || 2 In(s))"
r!

< (£In(s))1 Z > (LA _ = (LIn(s)) tellAall,

r=0 r=0 !
we get
1 1
Z <1 gM(A1) (M(Az) g—m(Q1) g—m(Q2) g—m(Q3)
R~ Tlso‘ip{ G DL Wams()y o

1
« ellAtllglAzll (g1 (5))5¢=5¢1 @1l Qs } —0.

Summarizing, the result has been proven.
Theorem 3. The hypergeometric matrix function oF3 is an entire function of z.

Theorem 4. The hypergeometric matrix function oF3 is an entire function of order % and type zero.

Proof. If

z) = i akzk (19)
k=0

is an entire function in [39,42,43], then the order and type of f are given by

. kIn(k
p(f) = limsup (1 ) (20)
k—o0 ln(m)
and
o
1 3
T= 1imsupk<|ak|> . (21)
ep k—o0
Now, we calculate the order of the function ;F3 as follows:
. sin(s) H . sIn(s) ’
F3) = limsu = limsu
pLabs) = limeup [y | = P i (@0 (@0 (Qu): (AT (AT )
| e 5|
= limsu = limsup || — (22)
s%oop ln(S! s%oop
. 1 1
= limsup ==
s—00 HO—i—O—ﬁ—I—FO—l—O—f—I—f—O—f—O—i—O—FI—0+0+I—0+0+I—0H

=5
where

¥ = ['(A])T(A2)T(Qq +sDT(Qy +sD)T(Q3 + s)T " (Aq +sI)T " (Ag + s1)
Q)T Q)T (Qs)

and
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o InT(A1) +InT(Ag) —InT(Q;) — InT(Qy) — InT(Qy) 3 In(27s) N sin(s)  sln(e)
sIn(s) sin(s) sln(s) slIn(s)
L 2n@r(Qi+(s=DD)  (Qi+(s=DDHIN(Qi+(s =1 _ (Qi+(s =D Ine)
sIn(s) sIn(s) sin(s)
L 4@+ (= V1) (@ (s~ DI+ (s~ V1) _ (Qa+ (s~ 1) In(e)
sIn(s) sIn(s) sin(s)
L 2n@r(Qs+(s=D)  (Q3+(s=DDHIN(Qs+(s =T _ (Qs+ (s =D Ine)
sIn(s) sIn(s) sin(s)
B FIn(27t(A1 + (s — 1)I)) (A 4+ (s=DD)In(Ag + (s = DI) n (A1 + (s—1)I)In(e)
sin(s) sin(s) sin(s)
B FIn(27t(Ax + (s — 1)I)) (A2 4+ (s=DD)In(Ax + (s = DI) n (A2 + (s —1)I)In(e)
sin(s) sin(s) sin(s)

Further, we calculate the type of the function ,F3 as follows:

()’

which gives

(23)

7

s<(A1)S(A2)S[(Q1)S]1[(Qz)s]1[(Q3)s]1>§

s!

1.
= —limsup
€0 s—o0

1
T(oF3) = o liIrLsup
S—00

1
T(,F3) = e—limsups i

S— 00
_1 lim sup s|[v/2re~A1+D (A + sT)M +SI=31 /2 = (Aa+sD) (Ap + sI)AZJrSI*%I
€P  s—oo

-1

-1
> (‘/27T€_(Q1+SI)(Q1 + SI)QH—SI—%I) <‘ /27T€_(Q2+SI)(Q2 + SI)Qz—&-sI—%I)

4
s

: (me—@m)(% +sl>Qa+sl—%l)_1F_l(A“F_l<A2>F<Ql>f<Qz>r<Q3>

1
27e 5572

ef(AlJrsI)(Al +SI)A1+517%167(A2+SI) (As +SI)A2+517%I€(Q1+51)

1.
~ —limsups
e 5—00
(Q1+SI)—Q1—SI+%IE(Q2+SI)<Q2+SI)—Q2—SI+%16(Q3+SI)(Q3+SI)—Q3—SI+%I g
X 1
e5s°72

QT Q03— A1-Ar 25l (A +SI)A1+SI—%I(A2 _|_SI)A2+SI—%I

1.
~ — limsups
§—00

s

X (Qq + s1)~ Q1 31(Q, 4 1)~ QI+ (Qy 4 5) QI 3lg st

1
~ —e¥ limsups||(Aq + sT)ArTsI-21(A, 4 sp)Aatsl—31

ep S—00

s

% (Ql +SI)7Q1751+%I(Q2 +SI)7Q2751+%I(Q3 +SI)7Q3751+%1575+%

S

(A1 +sI)(Ap +sI) p

(Ap +sI)A1—21
s(Q1 + sI)(Qz + sI)(Q3 + sI)

1 .
~ —e* limsups
ep 5300

s

x| (A + s1)A2731(Qy +51) " @31 (Qy 4 s1) "2 F21(Qq 4+ 1)~z | — 0,
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where
Q =T'(A1 +sDI'(Az +sDI(Q1)I(Q2)T(Q3)I ™ (A1) (Ar)
X T7HQ1 +sDI(Qa +sI1(Qs +s1).
O
Next, by using of a operator § = z 4, which has an interesting property 0z¢ = kz*,
we obtain
0 (0T+Q —1)(0T1+Qy—1)(01+ Q3 —1),F;
= il %(sl + Q1 —I)(sT+ Q2 — I)(sT+ Qs — I)(A1)s(A2)s[(Q1)s] ™ [(Q2)s] 7' [(Qa)s] ™
= 3 (o (A0 (A2)l(Q)sa] T (Qa)oca] T (Q3)ocr]

Replace s by s + 1, we have

0 (01+Q —D(OI1+Qy—D)(01+Q3—1),F;
0 s+1
Y A (A2 (@) (2] (@)

s=0
= 2(9 I+ Al)(g I+ Az) 2F3.

This result is summarized below.

Theorem 5. The function yF3 is a solution of a matrix differential equation
BOI+Q —I)(OTI+Q—I)(0I+Q3—1I)—z(0I+A;)(0I+Ay)| F3=0. (24)

Here, we establish various transformation formulae for hypergeometric matrix func-
tion > F3.

Theorem 6. Let A and Q be matrices in C**¢, where1 — A —sI, Q, A+ Q + (s — 1)L are positive
stable matrices and Q + sI is an invertible matrix for every integer s > 0 and AQ = QA, then

) ( _SLI—A—sIQ; 1) —(A+Q-Dx[Q.A+Q-1J . @)

Proof. From (15) and taking A — I — A — sI, we have

2Fi(—sLI—A—sLQ;1) = (Q+A+ (s — D[(Q)s] !
=T(Q)T(A+Q+ (2s — DT H(Q+sD)I (A+Q+ (s — 1)I)
=TA+Q+(2s—1)DI" YA+ Q-DI(A+Q-DI(A+Q+ (s— 1))
T(Q)r'(Q+sI).

(26)

Indeed, by (4) we can rewrite the formula
FA+Q+(2s—1)HI '(A+Q~1) = (A+Q—1I)y,
TA+Q-DI A+ Q+(s— 1) = [(A+Q-T)i] 7, (27)
T(Q)I(Q+sI) = [(Q)s] ..

From (26) and (27), we obtain (25). O
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Theorem 7. If A and Q are commutative matrices in CY? then

oF1<—;A;Z) oFl(—;Q;Z) = 2F3<;(A+Q)/;(A+Q—I);A,Q,A+Q—I;4Z>, (28)

where I — A —ml, Q, A + Q + (m — 1)1 are positive stable matrices for every integer m > 0 and
A +5I, Q+sI, A+ Q+ (s — 1)L are invertible matrices for every integer s = 0.

Proof. From (14) and (15), we have

OFl(_?Af'Z) 0F1<—;Q;z> = i [(A)m] 1(Q)s] 1zmts

Is!
pam0 m!s!

[(A)m—s] 1[(Q)s] 12"

I
hgk:
M=

m=0s=0 S!(m*s)!

o m _ _ —1/_ -1
S F (AL (A
= i 2f1<—mI,I—A—mI;Q;1>KA)":]_12m

m=0 m:

o0 -1
= 3 (A+Q - anl(@] (A + Q- 1)) 1ALl o

m=0 :
= L (5401 (3A+Q) (A (@l A+ Q- Du 5
—2F(3(A+ Q) 3A+Q-1AQA+Q-Tz).

Then, the prove is finished. O

Theorem 8. Let A and Q be matrices in C*¢ satisfying the conditions —A —sI, Q+1, A+ Q +
(s 4+ 1)1 are positive stable matrices for every integer s > 0and A+ (s + 1)L, Q + (s + 1), A+
Q + (s + 1)L are invertible matrices for every integer s > 0, AQ = QA and let [5(z) and Jg(z)
be two BMFs of complex variable z, then the product of two BMFs have the following properties:

2\ AQ
n@hE =(3) A+

. . (29)
X 2F3<2(A+Q) +1,2(A+Q+1);A+1,Q+I,A+Q+1,-—z2>.
Proof. Similar to (28), we can easily prove the formula (29). O

Corollary 2. Let A be a matrix in C** satisfying the conditions — A — sI, A +1,2A + (s + 1)I
are positive stable matrices for every integer s > 0 and A + (s + 1)I, 2A + (s + 1)1 are invertible
matrices for every integer s > 0, then the product of two BMFs satisfy the following properties :

2A
]i(z)-(i) (T7HA +1))? 1F2<A+;I;A+I,2A+I;—zz>. (30)

Proof. Taking A = Q in (29), we obtain (30). O

3. On Lommel’s Matrix Polynomials

Here we define Lommel matrix polynomials (LMPs) and derive matrix recurrence
relations, differential equations and integral representations for these matrix polynomials.
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Definition 8. Let us consider the Lommel’s matrix polynomials (LMPs)

A
Raola) =T(A+ QT '(B)(2) aFa(30-4) 3410 -AT-A- Q)2 20 @1

where A and Q are matrices in C** satisfy the condition

Q, I+ A —sland I — A — Q + sl are positive stable matrices for each integer s > 0,and

32
Q+5sLsI — A and I — A — Q + sl are invertible matrices for each integer s > 0, AQ = QA. (32)

Throughout the current section consider that the matrices A and Q are commutative
matrices in C*¢ and satisfy condition (32).

Theorem 9. The polynomials z* R g (z) is an entire function of order % and type zero.

Explicitly, the first few polynomials are in succession from the formulae

RfZI,Q(Z) = —I, R,I’Q(Z) =0, RO,Q(Z) = I,

2 4
Rio(z) = EQ’ Rorq(z) = ?Q(Q+I) —ILz#0.

Corollary 3. If I —Q — A, —A, A —2I and 21 — Q are commutative matrices in C***
satisfying (32), we have the formula

RA,Q(—Z) = EAln(il)RA’Q (Z), (33)
Raq(z) = eAln(_l)RA,I—Q—A(Z)/ (34)

and
R aq(z) = e A DIEDR, 5o o(2). (35)

Proof. Using (31), we get (33). By the same manner way, we can easily prove the
formulas (34) and (35). O

Next, let us give the connection of LMPs and BMFs.

Corollary 4. Let rA and Q + 1 be matrices in C** satisfy (32) and T (rA + Q + 1) is an invertible
matrix in C***. Then the connection of LMPs and BMFs satisfy

rA+Q
lim (ZZ> Raoa(Z)T M rA+Q+1) = Jo(z). (36)

r—>00

Proof. From (31), we have

1 1

rA+Q (_1)]( Q-2kI
<2z) Rrager(a) ' (rA+Q+1) = ¥ 1 (z) T(Q+ K+ 1)
k>0 :

xT(rA —kKI+DT(rA+Q —kKI+ DI 1 (rA —2kI + DI 1 (rA + Q +1).

Now, we can write
0=T(A—kKI+DI(rA+Q -k + DI 1(rA -2kl + DI ' (rA+Q +1),

so that
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0=(rA—KkI)(rA—kKI—1)...(rA —2kI+D)(rA+ Q) '(rA+Q 1)1 ... (rA+ Q — kI + 1) L.

Hence,
16l <1,
and
iy 0 =
Since

711( 1 Q+2kI
k;J( k!) (zz) I Y(Q+KI+1)

is absolutely convergent, it follows that

r—0oo

rA+Q I (_1)k 1 Q-+2kI
lim (22) Roaoii(z)T 'rA+Q+1) =Y (z) I H(Q+kI+1)

O

Theorem 10. The LMPs is a solution of the Lommel matrix differential equation

(I+A)(01+2Q+A—21)(01—2Q —A)(61—A —2I) +4229(9+1)I} Rao(z) = 0. (37)

Proof. Using (24) and (31), the proof is done. O

Corollary 5. The LMPs and Laguerre matrix polynomials L,SA'” (z) satisfy following connection

v B 1 -
LM (z) =27'T(A + 1>RnI,A+I(vz)r {(nI+A+1),vz #0. 38)

Proof. In [12], we recall the definition for Laguerre matrix polynomials Lgf ) (z)

(71)7’(}3 + I)m[(E + I)r]_l (VZ)V

ri(m—r)! ’ 39)

Lz = )
r=0

where E is a matrix in C** satisfy —r ¢ o(E) for every integer » > 0 and v is a complex
number for Re(v) > 0. From (31) and (39), we obtain (38). O

Theorem 11. IfA +1, A — I, Q + I and Q — I are matrices C**! satisfying the condition (32),
the LMPs R g (z) satisfies the following matrix pure recurrence relations

Ra-_1,0+1(2) + Ratr0-1(2) = g(Q —I)Rp(z),2 #0, (40)

Ra 10(2) + Ras10(2) = - (A + Q)Rag(z),2 £ 0 @)

and

2
Ra-1,0(2) + Ra41,0(2) —Ra_10+1(2) = Ray1,0-1(2) = E(A +I)Raq(z),z#0. (42)
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Proof. From (31), we have

) A-1 ~ (_1)k22k
z

Ractou® + Rasgals) = T(A) +@r0)(2) L5
—0 :

< (3= (=34-1) @k (@) (1))

AFL 0o 1k 2k
“A-a-Quterarore-nr@() LS (- 54)
—0 :

«(=3A+D) (@D -A-D (1-A-Q) = 2@
k

rasorie(?) §CUE (50-4)) (~34) [

2/ =0

2
x[(=A))TI-A-Q)] ™ = Z(Q-DRap(2).
For the proof of (41), we have

2

A-1I «
Ra10() +Rang) =Ta+or'@(2)

(—1)kz2 (1

x 2(2I—A)>k

. ( - §<A_1>)k<q+k1>1[<3>k11[<I—A>k}1[<I—A— Q" +T(A+Q)

< (Q-Dr(Q) (Z)AH 3 U= < - §A>k<‘ 2(A ‘>>k

z =

0
QI M(-A-I) ] ' [A-A—-Q)] "

<
_g . g A (_1)k22k 1 B _1
=Zasrasor@(2) L SR (Gaom) (54,
< [(Q) (AW - A~ Q)™ = 2(A+ Q)Rag ().

By combining (40) and (41), we obtain (42). O

Theorem 12. IfA +1, A — 1, Q + I and Q — I are matrices C'** satisfying the condition (32),
we obtain the following matrix differential relations

, 1
Rao(2) = Z(A+2D)Ra0(2) + Ratro-1(2) — Rasi0(2),2 # 0, (43)
, 1
Ra(2) = —ZARa0(z) + Ra-10(2) — Ra-1041(2),2 70, (44)
, 1
Rao(z) = Z(A+2Q) Rao(z) ~ Ra-10+1(2) ~Rat10(2),2 #0 (45)

and

, 1
Raq(z) = =2 (A+2Q —2I) Ra(2) + Ras10-1(2) + Ra-10(2), 2 #0.  (46)
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Proof. Taking the derivative of both side of (31) with respect to z, we get

s arnar@(3) £ U (o) (1)

2/ k=0

A o vk 2k—
<@ A M- a- 0 raror () 5 EETES

2/ k=0

< (30-2)) (~38) @0 AN a- A=)

- —%AF(A+ Q)r'(Q) (i)A i (71131](221( G(I _A))k<_ A)k

k=0

1

2

A o

% Q] [(-A)] (T~ A- Q)] +2r(A+Qr Q) (2> y U

k
1 1 _ _ _
(30-m)  (-34), (@kal Al [0~ A~ Q)

()z (s-w) (- 32) o

zZ

<A A - O ;(Q '+ (1-A-Q) 1)F(A+Q)r1(Q><2>A
1
2

z
<3 S0 (G- >)k( (A=20) [(Q+ 1) [1- A)] "

A o (_1\k 2k
<@a-a- = -lararor () £ ) (Ja-a)

k=0

k

A-I
< - ;) WA - A— Q) - Ta +Qr e+ (2

=] k2k 1 B 71 B . B )
<E U (- m) (- 5a-m) (@ na - A

><[<21—A—Q>k11+r<A+Q—1>r1<Q>(§)Ai = (Ga-w).

X

- 5(A-20) [+ il (- ANl H2r - A- Q!
k

N\)—\/-\

(A +2I)Raq(z) + Ra+1,0-1(2) — Rat1,0(2).

By using (40)—(42), we obtain (44)—(46). Thus the proof is completed. O

Now, we obtain a class of new integral representations involving Lommel matrix
polynomials.
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Theorem 13. The LMPs Ry q(z) satisfy the following integral representations:

1
Rao(z / 2 (IHA) (1 _ 1)QF3A-3T 1f2<— SA-AI-A-Q —zzt>dt

r(A+Q)<§>A Fl(;(l - )> (Q - (I—A))/

_ [ hara) g gy dasan 1f2< ~laQ1-A-0Q zzt>dt
2\, /1 1 #7)
<rasor-a)(2) rier(ja-a)r( - ja+a),

_ t*%(”A)(l _ t)f(%(I+A)+Q) 1f2< — %A; Q,—A; —22t> dt

rasori-a-o)(2) rior(lo-a)r(la-a o),

whereF(%(IA)),F(Q -1 A)),F(Q),F( — ;(HA)) andF(%(IA) Q) are

invertible matrices and

1
Rao(z / p A I Q+%A 11f2<2(1A);A,IAQ;z2t)dt

T'(A+Q) (i)A rt ( - ;A> rt (Q + EA),

1
:/ t*%A*I(l—t)f%A*I 1f2 (;(I—A),’Q,I—A—Q;—zzt>dt
0

T(A+Q)T(—A) @)A rtrt ( — 1A) r! ( — 1A>,

1 1
~ [lriapetn g (Ja- Ay, a2

r<A+Q>r<I—A—Q>(§)Ar—1< r(-ga)ri (i ga),

where F( — %A) ,T (Q + %A) ,T(Q)andT (I -Q- %A) are invertible matrices.

(48)

Proof. By using (12), (13) and (31), we obtain (47) and (48). O

4. Modified Lommel Matrix Polynomials hp o(z)

Throughout the current section suppose that the matrices A and Q are commutative
matrices in C/* and satisfy (32), we define the modified Lommel matrix polynomials
(MLMPs) and discus various properties established by these polynomials.

Definition 9. Let A and Q be commutative matrices in C*** satisfying the condition (32), then
we define the modified Lommel matrix polynomials hy q(z) by

ha o(z2) :RA,Q(%)

1 1 (49)
—T(A+Q)T1(Q)(2Z)A2F3(—2A,2( AQ -AT-Q- A_)Z#,
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Theorem 14. For MLMPs hy g(z) the following matrix pure recurrence relation holds
haq(z) =2z2(A+Q —T)ha_10(z) —ha-210(2), (50)
where A — 1, A — 21 and Q — 1 are commutative matrices in Céxt satisfy (32).

Proof. The proof of the theorem is very a similar to Theorem 11. [J

By the help of explicit representations (49), we obtain for the MLMPs hy g(z)

h_1g(z) =0, hog(z) =1, hyg(z) =22Q
horo(z) =Q(Q +1)(22)> — 1, (51)
haro(z) =Q(Q +1)(Q +21)(22)% — 2(Q + 1) (22).

Corollary 6. The MLMPs hy q(z) and Bessel matrix functions satisfy following connection
1
: 1I-A-rQ -1 _ 2
rhn})o(Zz) hy o(z)T (A+7rQ) = Ja—1 (Z),z £0, (52)

where T(A + rQ) is an invertible matrix in C*<C.
Proof. The proof of the corollary is very similar to Corollary 4. O
Corollary 7. For modified Lommel matrix polynomials, we have
hao(—2) = eAn(Vhy o(2). (53)
Proof. Using (49), we get proof of Corollary. [

Theorem 15. The following modified Lommel matrix differential equation for MLMPs hy q(z)
holds true:

Z2OT+A)(OT+2Q+A—-2D)(01—-2Q —A)(OT1— A —2I) +46(0 +1)I|hag(z) = 0. (54)

Proof. Putting A} = —1A, A, = J(I-A),Q; = Q0Q, = -AQ; =I-Q—Aand
z= —Ziz from (49) into (24) we get (54). O

5. Modified Lommel Matrix Polynomials f5 g (z)

Throughout the current section consider that the matrices A and Q + I are commuta-
tive matrices in C*** and satisfy (32), we define the modified Lommel matrix polynomials
(MLMPs) and discuss several result proved by these polynomials.

Definition 10. Let A and Q + I be commutative matrices in C**! satisfy (32). Then, we define
the modified Lommel matrix polynomials f5 g(z) by the equation

1
fa,0(z) =22%Rp 0+1(2V/2)

(T(A—KI+ DI Y(A-2kI+DI(Q+A—kI)I (A + kI)Z_%AH(I

- ,EJ‘” i (55)

1
2

_T(A+Q+ DT (Q+ 1)z 34, <(1 _a), —%A; O+1-A Q- A, —z).



Symmetry 2021, 13, 2335 15 0f 17

So that the Lommel matrix polynomials are as follows

(L) (L 56
Ra,01(2) >z fa0 iz ) (56)

Theorem 16. The z2Af A,Q(2) is an entire function of order % and type zero.

Theorem 17. For MLMPs zfp q(z), the following matrix recurrence relations hold

fa110(z) = (A+Q+1)fa o(z) — zfa 10(2), (57)
fai1,0-1(2) = Qfs0(z) —zfa_1011(2), (58)
1 d[g
2014, z fA/Q (Z) = ZfA,LQ(Z) + fAJrI/Q,I(Z),Z #0 (59)
and
d| _a_
ﬁﬂquAIhQ@}:hHQI@%4A%dﬂr (60)

where A — 1, A + 1, Q + I and Q + 21 are matrices in Ct<¢ satisfy (32).
Proof. With the help of (55) by using a similar technique, we try easily to obtain (57)-(60). O

Theorem 18. For MLMPs fa q(z), the following matrix pure recurrence relation hold

(A+Q)fara10(2) =(A+Q+1)|(A+Q)(A+Q+2I) — 221 fa 0(2)

— (A +Q+ ZI)szA,QLQ (Z),

(61)

where A — 21 and A + 21 are matrices in C*** satisfy (32).

Theorem 19. For the matrix polynomials f5 (z), we have the following matrix differential

equation
91+1A 91+1A+Q GI—EA—I QI—EA—Q—I
2 2 2 2

1 (62)
—z0 (6 I+ 2I)] fao(z) =0.

Proof. Using (19) and (55), the proof is done. O

6. Concluding Remarks

We conclude our present study, we have investigated the radius of convergence prop-
erties, order, type, matrix differential equations and transformation of the hypergeometric
matrix function ,F3. Furthermore, we have derived matrix recurrence relations, differential
equations and integral representations for the Lommel matrix polynomials (LMPs) R g (z).
Moreover, we have established and proved some properties for modified Lommel matrix
polynomials (MLMPs) h g(z) and fa g(z). Therefore, the results of this work are variant,
unique, noteworthy and so it is intriguing and capable to develop its study in the future.
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