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Abstract

In the present paper we introduce R0- and R1-separation axioms in fuzzifying topology and study their relations with T1-
and T2-separation axioms, respectively. Furthermore, we introduce and study semi-T0-, semi-R0-, semi-T1-, semi-R1-, semi-
T2(semi-Hausdor3)-, semi-T3(semi-regularity)- and semi-T4(semi-normality)-separation axioms in fuzzifying topology and
give some of their characterizations as well as the relations of these axioms and other separation axioms in fuzzifying topol-
ogy introduced by Shen, Fuzzy Sets and Systems 57 (1993) 111–123. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction and preliminaries

Chang [1], Wong [8], Lowen [5], Hutton [2], Pu and Liu [6], etc., discussed various aspects of fuzzy topol-
ogy with crisp methods. Ying [9,10] introduced fuzzifying topology and elementarily developed fuzzy topology
from a new direction with the semantic method of continuous valued logic. In the framework of fuzzifying
topology, Shen [7] introduced and studied T0-, T1-, T2(Hausdor3)-, T3(regularity)- and T4(normality)-separation
axioms in fuzzifying topology. In [4], the authors introduced and studied the concepts of the family of fuzzi-
fying semi-open sets, fuzzifying semi-neighborhood structure of a point and fuzzifying semi-closure. In the
present paper, we add the R0- and R1-separation axioms and study their relations with the T1- and T2-separation
axioms, respectively. Also, in fuzzifying topology we introduce and study semi-T0-, semi-R0-, semi-T1-, semi-
R1-, semi-T2(semi-Hausdor3)-, semi-T3(semi-regularity)- and semi-T4(semi-normality)-separation axioms in
fuzzifying topology.

The reader is assumed to be familiar with Ying’s papers [9,10].
First, we display the fuzzy logical and corresponding set-theoretical notations used in this paper.
For any formula ’, the symbol [’] means the truth value of ’, where the set of truth values is the unit

interval [0, 1]. A formula ’ is valid, we write |= ’, if and only if [’] = 1 for every interpretation.
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(1) [�] := �(�∈ [0; 1]); [’ ∧  ] := min([’]; [ ]);

[’ →  ] := min(1; 1 − [’] + [ ]):

(2) If Ã∈I(X ), where I(X ) is the family of fuzzy sets of X , then

[x∈ Ã] := Ã(x):

(3) If X is the universe of discourse, then

[∀x’(x)] := inf
x∈X

[’(x)]:

In addition, the following derived formulae are given:
(1) [@’] := [’ → 0] = 1−[’];
(2) [’ ∨  ] := [@(@’ ∨@ )] = max([’]; [ ]);
(3) [’ ↔  ] := [(’ →  ) ∧ ( → ’)];
(4) [’ ∧·  ] := [@(’ →@ )] = max(0; [’] + [ ]− 1);
(5) [’ ∨·  ] := [@’ →  ] = [@(@’ ∧· @ )] = min(1; [’] + [ ]);
(6) [∃x’(x)] := [@∀x@’(x)] = supx∈X [’(x)];
(7) If Ã; B̃∈I(X ); then

(a) [Ã⊆ B̃] := [∀x(x∈ Ã → x∈ B̃)] = inf x∈X min(1; 1− Ã(x) + B̃(x));
(b) Ã ≡ B̃ := [(Ã⊆ B̃) ∧ (B̃⊆ Ã)].

Second, we give some deInitions and results in fuzzifying topology.

De�nition 1.1. Let X be the universe of discourse and let �∈I(P(X )), where P(X ) is the power set of X ,
satisfying the following conditions:

(1) |= X ∈ �;
(2) for any A; B∈P(X ); |= (A∈ �) ∧ (B∈ �) → A∩B∈ �;
(3) for any {A�: �∈�}⊆P(X ); |= ∀�(�∈� → A� ∈ �) → ⋃

�∈� A� ∈ �.
Then � is called a fuzzifying topology and (X; �) is called a fuzzifying topological space. The family of all
fuzzifying closed sets will be denoted by F�, or if there is no confusion by F , and deIned as follows:

A∈F :=X ∼ A∈ �;

where X∼A is the complement of A.

De�nition 1.2. Let (X; �) be a fuzzifying topological space.
(1) The fuzzifying neighborhood system of a point x∈X is denoted by Nx ∈I(P(X )) and deIned as

follows:

Nx(A) = sup
x∈B⊆ A

�(B):

(2) The interior of a set A∈P(X ) is denoted by A◦ ∈I(X ) and deIned as follows:

A◦(x) :=Nx(A):

(3) The closure of a set A∈P(X ) is denoted by JA∈I(X ) and deIned as follows:

JA(x) = 1−Nx(X ∼A):
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(4) �∈I(P(X )) is a base of � if and only if �= �(U ), i.e.,

�(A) = sup
∪

�∈�
B�=A

∧
�∈�

�(B�) (Theorem 4:1 [9]):

(5) ’∈I(P(X )) is a sub base of � if ’∩· is a base of �, i.e.,

�(A) = sup
∪

�∈�
D�=A

inf
�∈�

sup
∩

�i∈l�

D�i =D�

inf
�i∈l�

’(D�i):

Before we recall the deInitions of some separation axioms in fuzzifying topology introduced by Shen [7]
we introduce the following remark.

Remark 1.1. For simplicity we put the following notations:

Kx;y :=∃A((A∈Nx ∧y =∈A) ∨ (A∈Ny ∧ x =∈A));

Hx;y :=∃B ∃C((B∈Nx ∧y =∈B) ∧ (C ∈Ny ∧ x =∈C));

Mx;y :=∃B ∃C(B∈Nx ∧C ∈Ny ∧B∩C = ∅);

Vx;D :=∃A∃B(A∈Nx ∧B∈ �∧D⊆B∧A∩B= ∅);

WA;B :=∃G ∃H (G ∈ �∧H ∈ �∧A⊆G ∧B⊆H∧G ∩H = ∅):

De�nition 1.3. Let  be the class of all fuzzifying topological spaces. The unary fuzzy predicates Ti ∈I( );
i = 0; 1; 2; 3; 4; are deIned as follows:

(X; �)∈T0 := ∀x∀y(x∈X ∧y∈X ∧ x �=y) → Kx;y;

(X; �)∈T1 := ∀x∀y(x∈X ∧y∈X ∧ x �=y) → Hx;y;

(X; �)∈T2 := ∀x∀y(x∈X ∧y∈X ∧ x �=y) → Mx;y;

(X; �)∈T3 := ∀x∀D(x∈X ∧D∈F ∧ x =∈D) → Vx;D;

(X; �)∈T4 := ∀A∀B(A∈F ∧B∈F ∧A∩B= ∅) → WA;B:

For any fuzzifying topological space (X; �),

|= T1(X; �) ↔ ∀x({x}∈F):

Finally, we recall some deInitions and results from [4] which are useful in the sequel.

De�nition 1.4. Let (X; �) be a fuzzifying topological space.
(1) The family of fuzzifying semi-open sets is denoted by S�∈I(P(X )) and deIned as

S�(A) = inf
x∈A

A◦−(x):

(2) The family of fuzzifying semi-closed sets is denoted by SF ∈I(P(X )) and deIned as follows:

SF(A) = S�(X ∼A):
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(3) The semi-neighborhood system of a point x∈X is denoted by SNx ∈I(P(X )) and deIned as follows:

SNx(A) = sup
x∈B⊆A

S�(B):

(4) The semi-closure of a set A∈P(X ) is denoted by semi-cl(A)∈I(X ) and deIned as follows:

semi-cl(A)(x) = 1− SNx(X ∼A):

Theorem 1.1. Let (X; �) be a fuzzifying topological space. Then;
(1) |= �⊆ S�;
(2) |= F ⊆ SF .

Theorem 1.2. The mapping SN :X → IN (P(X )); x �→ SNx; where IN (P(X )) is the set of all normal fuzzy
subsets of P(X ) has the following properties:

(1) |= A∈ SNx → x∈A;
(2) |= A⊆B → (A∈ SNx → B∈ SNx);
(3) |= A∈ SNx → ∃H (H ∈ SNx ∧ H ⊆A ∧ ∀y(y∈H → H ∈ SNy)):

Theorem 1.3.

S�(A) = inf
x∈A

sup
x∈B⊆ A

S�(B):

Corollary 1.3.

S�(A) = inf
x∈A

SNx(A):

2. R0- and R1-separation axioms

De�nition 2.1. Let  be the class of all fuzzifying topological spaces. The unary fuzzy predicates R0; R1 ∈
I( ) are deIned as follows:

(X; �)∈R0 := ∀x∀y(x∈X∧y∈X∧ x �= y) → (Kx;y → Hx;y);

(X; �)∈R1 := ∀x∀y(x∈X∧y∈X∧ x �= y) → (Kx;y → Mx;y):

Lemma 2.1. (1) |= Mx;y → Hx;y;
(2) |= Hx;y → Kx;y;
(3) |= Mx;y → Kx;y.

Proof. (1) Since {B; C ∈P(X ):B∩C =&}⊆{B; C ∈P(X ):y =∈B∧ x =∈C}, then [Mx;y] = supB∩C=& min(Nx(B);
Ny(C))6 supy =∈B; x =∈C min(Nx(B); Ny(C)) = [Hx;y].

(2) [Kx;y] = max(supy =∈A Nx(A); supx =∈A Ny(A))¿ supy =∈A Nx(A)¿ supy =∈A; x =∈B(Nx(A) ∧ Ny(B)) = [Hx;y].
(3) From (1) and (2) it is obvious.

Theorem 2.1.

|= (X; �)∈R1 → (X; �)∈R0:
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Proof. From Lemma 2.1(1) we have,

R0(X; �) = inf
x �=y

min(1; 1− [Kx;y] + [Hx;y])¿ inf
x �=y

min(1; 1− [Kx;y] + [Mx;y]) =R1(X; �):

Lemma 2.2. For any �; �∈ I;

|= � → (� → �):

Proof.

[� → (� → �)] = min(1; 1− � + min(1; 1− � + �)) = 1:

Theorem 2.2. (1) |= (X; �)∈T1 → (X; �)∈R0.
(2) |= (X; �)∈T1 → (X; �)∈R0 ∧ (X; �)∈T0;
(3) If T0(X; �) = 1; then

|= (X; �)∈T1 ↔ (X; �)∈R0 ∧ (X; �)∈T0:

Proof. (1) Applying Lemma 2.2 we have

T1(X; �) = inf
x �=y

[Hx;y]6 inf
x �=y

[Kx;y → Hx;y] =R0(X; �):

(2) It is obtained from (1) and since, |= (X; �)∈T1 → (X; �)∈T0 [7].
(3) Since T0(X; �) = 1, then for every x; y∈X such that x �= y we have [Kx;y] = 1.

Now,

R0(X; �) ∧ T0(X; �) = R0(X; �)

= inf
x �=y

min(1; 1− [Kx;y] + [Hx;y]) = inf
x �=y

[Hx;y] =T1(X; �):

Theorem 2.3. (1) |= (X; �)∈R0 ∧· (X; �)∈T0 → (X; �)∈T1;
(2) If T0(X; �) = 1; then

|= (X; �)∈R0 ∧· (X; �)∈T0 ↔ (X; �)∈T1:

Proof. (1)

[(X; �)∈R0 ∧· (X; �)∈T0]

= max(0; R0(X; �) + T0(X; �)− 1)

= max
(

0; inf
x �=y

min(1; 1− [Kx;y] + [Hx;y]) + inf
x �=y

[Kx;y]− 1
)

6max
(

0; inf
x �=y

(min(1; 1−[Kx;y] + [Hx;y]) + [Kx;y]− 1)
)

= max
(

0; inf
x �=y

(1− [Kx;y] + [Hx;y] + [Kx;y]− 1)
)

= inf
x �=y

[Hx;y] =T1(X; �):
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(2)

[(X; �)∈R0 ∧· (X; �)∈T0] = R0(X; �)

= inf
x �=y

min(1; 1− [Kx;y] + [Hx;y]) = inf
x �=y

[Hx;y] =T1(X; �);

since T0(X; �) = 1; for each x; y∈X such that x �=y we have [Kx;y] = 1.

Theorem 2.4. (1) |= (X; �)∈T0 → ((X; �)∈R0 → (X; �)∈T1);
(2) |= (X; �)∈R0 → ((X; �)∈T0 → (X; �)∈T1).

Proof. (1) From Theorems 2.2(1) and 2.3(1) we have,

[(X; �)∈T0 → ((X; �)∈R0 → (X; �)∈T1)]

= min(1; 1− [(X; �)∈T0] + min(1; 1− [(X; �)∈R0] + [(X; �)∈T1]))

= min(1; 1− [(X; �)∈T0] + 1− [(X; �)∈R0] + [(X; �)∈T1])

= min(1; 1− ([(X; �)∈R0] + [(X; �)∈T0]− 1) + [(X; �)∈T1]) = 1:

(2)

[(X; �)∈R0 → ((X; �)∈T0 → (X; �)∈T1)]

= min(1; 1− [(X; �)∈R0] + min(1; 1− [(X; �)∈T0] + [(X; �)∈T1]))

= min(1; 1− [(X; �)∈R0] + 1− [(X; �)∈T0] + [(X; �)∈T1])

= min(1; 1− ([(X; �)∈R0] + [(X; �)∈T0]− 1) + [(X; �)∈T1]) = 1:

Theorem 2.5. (1) |= (X; �)∈T2 → (X; �)∈R1;
(2) |= (X; �)∈T2 → (X; �)∈R1 ∧ (X; �)∈T0;
(3) If T0(X; �) = 1; then

|= (X; �)∈T2 ↔ (X; �)∈R1 ∧ (X; �)∈T0:

Proof. (1) Applying Lemma 2.2 we have,

T2(X; �) = inf
x �=y

[Mx;y]6 inf
x �=y

[Kx;y → Mx;y] =R1(X; �):

(2) It is obtained from (1) and since, |= (X; �)∈T2 → (X; �)∈T0 [7].
(3) Since T0(X; �) = 1; then for each x; y∈X such that x �=y we have [Kx;y] = 1. Now,

R1(X; �) ∧ T0(X; �) = R1(X; �)

= inf
x �=y

min(1; 1−[Kx;y] + [Mx;y])

= inf
x �=y

[Mx;y] = T2(X; �):

Remark 2.1. In the crisp setting, i.e., if the underlying fuzzifying topology is the ordinary topology one can
have that

(1) |= (X; �)∈R0 ∧ (X; �)∈T0 ↔ (X; �)∈T1;
(2) |= (X; �)∈R1 ∧ (X; �)∈T0 ↔ (X; �)∈T2;
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but these statements may not be true in general in fuzzifying topology as illustrated by the following counter-
example.

Counterexample 2.1. Let X = {x; y} and let � be a fuzzifying topology on X deIned as follows:
�(X ) = �(&) = 1; �({x}) = 1

4 and �({y}) = 1
5 . One can have that T0(X; �) = 1

4 ; R0(X; �) =R1(X; �) = 19
20 and

T1(X; �) =T2(X; �) = 1
5 . Hence,

R0(X; �) ∧ T0(X; �) = 19
20 ∧ 1

4 = 1
4 �= 1

5 =T1(X; �); R1(X; �) ∧ T0(X; �) = 19
20 ∧ 1

4 = 1
4 �= 1

5 =T2(X; �):

Theorem 2.6. (1) |= (X; �)∈R1 ∧· (X; �)∈T0 → (X; �)∈T2;
(2) If T0(X; �) = 1; then

|= (X; �)∈R1 ∧· (X; �)∈T0 ↔ (X; �)∈T2:

Proof. (1)

[(X; �)∈R1 ∧· (X; �)∈T0] = max(0; R1(X; �) + T0(X; �) − 1)

= max
(

0; inf
x �=y

min(1; 1 − [Kx;y] + [Mx;y]) + inf
x �=y

[Kx;y] − 1
)

6max
(

0; inf
x �=y

(min(1; 1 − [Kx;y] + [Mx;y]) + [Kx;y] − 1)
)

= inf
x �=y

[Mx;y] =T2(X; �):

(2)

[(X; �)∈R1 ∧· (X; �)∈T0] = R1(X; �)

= inf
x �=y

min(1; 1 − [Kx;y] + [Mx;y]) = inf
x �=y

[Mx;y] =T2(X; �);

because T0(X; �) = 1; we have for each x; y∈X such that x �= y that [Kx;y] = 1.

Theorem 2.7. (1) |= (X; �)∈T0 → ((X; �)∈R1 → (X; �)∈T2);
(2) |= (X; �)∈R1 → ((X; �)∈T0 → (X; �)∈T2).

Proof. (1) From Theorems 2.5(1) and 2.6(1) we have,

[(X; �)∈T0 → ((X; �)∈R1 → (X; �)∈T2)]

= min(1; 1 − [(X; �)∈T0] + min(1; 1 − [(X; �)∈R1] + [(X; �)∈T2]))

= min(1; 1 − [(X; �)∈T0] + 1 − [(X; �)∈R1] + [(X; �)∈T2])

= min(1; 1 − [(X; �)∈T0] + [(X; �)∈R1] − 1) + [(X; �)∈T2]) = 1:

(2)

[(X; �)∈R1 → ((X; �)∈T0 → (X; �)∈T2)]

= min(1; 1 − [(X; �)∈R1] + min(1; 1 − [(X; �)∈T0] + [(X; �)∈T2]))
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= min(1; 1 − [(X; �)∈R1] + 1 − [(X; �)∈T0] + [(X; �)∈T2])

= min(1; 1 − ([(X; �)∈R1] + [(X; �)∈T0] − 1) + [(X; �)∈T2]) = 1;

because |= (X; �)∈T0 → (X; �)∈T2 [7] and applying Theorem 2.6(1).

3. Fuzzifying semi-separation axioms

Remark 3.1. For simplicity we put the following notations:

SKx;y := ∃A((A∈ SNx ∧ y =∈A) ∨ (A∈ SNy ∧ x =∈A));

SHx;y := ∃B ∃C((B∈ SNx ∧ y =∈B) ∧ (C ∈ SNy ∧ x =∈C));

SMx;y := ∃B ∃C(B∈ SNx ∧ C ∈ SNy ∧ B∩C = ∅);

SVx;D := ∃A∃B(A∈ SNx ∧ B∈ S� ∧ D⊆B ∧ A∩B= ∅);

SWA;B := ∃G ∃H (G ∈ S� ∧ H ∈ S� ∧ A⊆G ∧ B⊆H ∧ G ∩H = ∅):

De�nition 3.1. Let  be the class of all fuzzifying topological spaces. The unary fuzzy predicates semi-Ti

∈I( ); i = 0; 1; 2; 3; 4 and semi-Ri ∈I( ); i = 0; 1 are deIned as follows:

(X; �)∈ semi-T0 := ∀x ∀y (x∈X ∧ y∈X ∧ x �=y)→ SKx;y;

(X; �)∈ semi-T1 := ∀x ∀y (x∈X ∧ y∈X ∧ x �=y)→ SHx;y;

(X; �)∈ semi-T2 := ∀x ∀y (x∈X ∧ y∈X ∧ x �=y)→ SMx;y;

(X; �)∈ semi-T3 := ∀x ∀D (x∈X ∧ D∈F ∧ x =∈ D)→ SVx;D;

(X; �)∈ semi-T4 := ∀A∀B (A∈F ∧ B∈F ∧ A∩B= ∅)→ SWA;B;

(X; �)∈ semi-R0 := ∀x ∀y (x∈X ∧ y∈X ∧ x �=y)→ (SKx;y → SHx;y);

(X; �)∈ semi-R1 := ∀x ∀y (x∈X ∧ y∈X ∧ x �=y)→ (SKx;y → SMx;y):

Lemma 3.1. (1) |= Kx;y → SKx;y;
(2) |= Hx;y → SHx;y;
(3) |= Mx;y → SMx;y;
(4) |= Vx;D → SVx;D;
(5) |= WA;B → SWA;B:

Proof. From Theorem 1.1(1), |= �⊆ S� and so one can deduce that Nx(A)6SNx(A) for any A∈P(X ), the
proof is immediate.

Theorem 3.1.

|= (X; �)∈Ti → (X; �)∈ semi-Ti;

where i = 0; 1; 2; 3; 4.

Proof. It is obtained from Lemma 3.1.
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Theorem 3.2. If T0(X; �) = 1; then (1) |= (X; �)∈R0 → (X; �)∈ semi-R0;
(2) |= (X; �)∈R1 → (X; �)∈ semi-R1.

Proof. Since T0(X; �) = 1 then for each x; y∈X and x �=y we have, [Kx;y] = 1 and so, [SKx;y] = 1.
(1) R0(X; �) = inf x �=y [Kx;y →Hx;y]6 inf x �=y [Kx;y → SHx;y] = inf x �=y [SKx;y → SHx;y] = semi-R0(X; �).
(2) R1(X; �) = inf x �=y [Kx;y →Mx;y]6 inf x �=y [Kx;y → SMx;y] = inf x �=y [SKx;y → SMx;y] = semi-R1(X; �).

Lemma 3.2. (1) |= SMx;y → SHx;y;
(2) |= SHx;y → SKx;y;
(3) |= SMx;y → SKx;y:

Proof. The proof is similar to the proof of Lemma 2.1.

Theorem 3.3. (1) |= (X; �)∈ semi-T1 → (X; �)∈ semi-T0;
(2) |= (X; �)∈ semi-T2 → (X; �)∈ semi-T1.

Proof. The proof of (1) and (2) are obtained from Lemma 3.2(2) and (1), respectively.

Corollary 3.1.

|= (X; �)∈ semi-T2 → (X; �)∈ semi-T0:

Theorem 3.4.

|= (X; �) ∈ semi-T0 ↔ ( ∀x ∀y (x∈X ∧ y∈X ∧ x �=y→ (@(x∈ semi-cl({y})))

∨@(y∈ semi-cl({x})))):

Proof.

[(X; �)∈ semi-T0] = inf
x �=y

max

(
sup
y =∈A

SNx(A); sup
x =∈ A

SNy(A)

)

= inf
x �=y

max(SNx(X∼{y}); SNy(X∼{x}))

= inf
x �=y

max(1 − semi-cl({y})(x); 1 − semi-cl({x})(y))

= inf
x �=y

(@(semi-cl({y})(x) ∨@(semi-cl({x})(y))

= [∀x ∀y (x∈X ∧ y∈X ∧ x �=y→ (@(x∈ semi-cl({y})))

∨@(y∈ semi-cl({x}))))]:

Theorem 3.5. For any fuzzifying topological space (X; �);

|= (X; �)∈ semi-T1 ↔ ∀x ({x}∈ SF):

Proof. For any x1; x2; x1 �= x2;

[∀x ({x}∈ SF)] = inf
x∈X

SF({x}) = inf
x∈X

S�(X∼{x})
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= inf
x∈X

inf
y∈X∼{x}

SNy(X∼{x})6 inf
y∈X∼{x2}

SNy(X∼{x2})

6 SNx1 (X∼{x2}) = sup
x2 =∈A

SNx1 (A):

Similarly, we have, [∀x ({x}∈ SF)]6 supx1 =∈B SNx2 (B). Then,

[∀x ({x}∈ SF)]6 inf
x1 �=x2

min

(
sup
x2 =∈A

SNx1 (A); sup
x1 =∈B

SNx2 (B)

)

= inf
x1 �=x2

sup
x1 =∈B; x2 =∈A

min(SNx1 (A); SNx2 (B)) = [(X; �)∈ semi-T1]:

On the other hand,

[(X; �)∈ semi-T1] = inf
x1 �=x2

min

(
sup
x2 =∈A

SNx1 (A); sup
x1 =∈B

SNx2 (B)

)

= inf
x1 �=x2

min(SNx1 (X∼{x2}); SNx2 (X∼{x1}))

6 inf
x1 �=x2

SNx1 (X∼{x2}) = inf
x2∈X

inf
x1∈X∼{x2}

SNx1 (X∼{x2})

= inf
x2∈X

S�(X∼{x2}) = inf
x∈X

S�(X∼{x})

= [∀x ({x}∈ SF)]:

Thus, [(X; �)∈ semi-T1] = [∀x ({x}∈ SF)].

De�nition 3.2. The semi-local base S�x of x is a function from P(X ) into I such that the following conditions
are satisIed:

(1) |= S�x ⊆ SNx;
(2) |= A∈ SNx →∃B(B∈ S�x ∧ x∈B⊆A).

Lemma 3.2.

|= A∈ SNx ↔ ∃B(B∈ S�x ∧ x∈B⊆A):

Proof. From condition (1) in DeInition 3.2 and Theorem 1.2(2) we have SNx(A)¿SNx(B)¿S�x(B) for
each B∈P(X ) such that x∈B⊆A. So, SNx(A)¿ supx∈B⊆ A S�x(B). From condition (2) in DeInition 3.2,
SNx(A)6 supx∈B⊆ A S�x(B). Hence, SNx(A) = supx∈B⊆ A S�x(B).

Theorem 3.6. If S�x is a semi-local basis of x; then

|= (X; �)∈ semi-T2 ↔ ∀x ∀y (x∈X ∧ y∈X ∧ x �=y→∃B(B∈ S�x ∧ y∈@(semi-cl(B)))):

Proof.

[∀x ∀y (x∈X ∧ y∈X ∧ x �=y→∃B(B∈ S�x ∧ y∈@(semi-cl(B))))]

= inf
x �=y

sup
B∈P(X )

min(S�x(B); SNy(X∼B))
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= inf
x �=y

sup
B∈P(X )

sup
y∈C ⊆ X∼B

min(S�x(B); S�y(C))

= inf
x �=y

sup
B∩C = ∅

sup
x∈D⊆ B; y∈E ⊆C

min(S�x(D); S�y(E))

= inf
x �=y

sup
B∩C = ∅

min

(
sup

x∈D⊆ B
S�x(D); sup

y∈E ⊆C
S�y(E)

)

= inf
x �=y

sup
B∩C=∅

min(SNx(B); SNy(C)) = [(X; �)∈ semi-T2]:

Theorem 3.7.

|= (X; �)∈ semi-R1 → (X; �)∈ semi-R0:

Proof. From Lemma 3.2(1) the proof is immediate.

Theorem 3.8. (1) |= (X; �)∈ semi-T1 → (X; �)∈ semi-R0;
(2) |= (X; �)∈ semi-T1 → (X; �)∈ semi-R0 ∧ (x; �)∈ semi-T0;
(3) If semi-T0(X; �) = 1; then

|= (X; �)∈ semi-T1 ↔ (X; �)∈ semi-R0 ∧ (X; �)∈ semi-T0:

Proof. (1) Applying Lemma 2.2 we have,

semi-T1(X; �) = inf
x �=y

[SHx;y]6 inf
x �=y

[SKx;y → SHx;y] = semi-R0(X; �):

(2) It is obtained from (1) and from Theorem 3.3(1).
(3) Since semi-T0(X; �) = 1; for every x; y∈X such that x �= y we have [SKx;y] = 1.

Now,

[(X; �)∈ semi-R0 ∧ (X; �)∈ semi-T0]

= [(X; �)∈ semi-R0] = inf
x �=y

min(1; 1 − [SKx;y] + [SHx;y])

= inf
x �=y

[SHx;y] = semi-T1(X; �):

Theorem 3.9. (1) |= (X; �)∈ semi-R0 ∧· (X; �)∈ semi-T0 → (X; �)∈ semi-T1;
(2) If semi-T0(X; �) = 1; then

|= (X; �)∈ semi-R0 ∧· (X; �)∈ semi-T0 ↔ (X; �)∈ semi-T1:

Proof. (1)

[(X; �)∈ semi-R0 ∧· (X; �)∈ semi-T0]

= max(0; semi-R0(X; �) + semi-T0(X; �) − 1)

= max
(

0; inf
x �=y

min(1; 1 − [SKx;y] + [SHx;y]) + inf
x �=y

[SKx;y] − 1
)
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6max
(

0; inf
x �=y

(min(1; 1 − [SKx;y] + [SHx;y]) + [SKx;y] − 1)
)

= inf
x �=y

[SHx;y] = semi-T1(X; �):

(2)

[(X; �)]∈ semi-R0 ∧· [(X; �)∈ semi-T0]

= [(X; �)∈ semi-R0] = inf
x �=y

min(1; 1 − [SKx;y] + [SHx;y])

= inf
x �=y

[SHx;y] = semi-T1(X; �);

because semi-T0(X; �) = 1; we have for each x; y∈X such that x �= y; [SKx;y] = 1.

Theorem 3.10. (1) |= (X; �)∈ semi-T0 → ((X; �)∈ semi-R0 → (X; �)∈ semi-T1);
(2) |= (X; �)∈ semi-R0 → ((X; �)∈ semi-T0 → (X; �)∈ semi-T1):

Proof. From Theorems 3.8(1) and 3.9(1), we have
(1)

[(X; �)∈ semi-T0 → ((X; �)∈ semi-R0 → (X; �)∈ semi-T1)]

= min(1; 1 − [(X; �)∈ semi-T0] + min(1; 1 − [(X; �)∈ semi-R0] + [(X; �)∈ semi-T1]))

= min(1; 1 − [(X; �)∈ semi-T0] + 1 − [(X; �)∈ semi-R0] + [(X; �)∈ semi-T1])

= min(1; 1 − ([(X; �)∈ semi-T0] + [(X; �)∈ semi-R0] − 1) + [(X; �)∈ semi-T1])

= 1:

(2)

[(X; �)∈ semi-R0 → ((X; �)∈ semi-T0 → (X; �)∈ semi-T1)]

= min(1; 1 − ([(X; �)∈ semi-T0] + [(X; �)∈ semi-R0] − 1) + [(X; �)∈ semi-T1])

= 1:

Theorem 3.11. (1) |= (X; �)∈ semi-T2 → (X; �)∈ semi-R1;
(2) |= (X; �)∈ semi-T2 → (X; �)∈ semi-R1 ∧ (X; �)∈ semi-T0;
(3) If semi-T0(X; �) = 1; then

|= (X; �)∈ semi-T2 ↔ (X; �)∈ semi-R1 ∧ (X; �)∈ semi-T0:

Proof. (1) Applying Lemma 2.2 we have

semi-T2(X; �) = inf
x �=y

[SMx;y]6 inf
x �=y

[SKx;y → SMx;y] = semi-R1(X; �):

(2) It is obtained from (1) and Corollary 3.1.
(3) Since semi-T0(X; �) = 1; then for each x; y∈X such that x �=y we have [SKx;y] = 1.
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Now,

[(X; �)∈ semi-R1 ∧ (X; �)∈ semi-T0]

= [(X; �)∈ semi-R1] = inf
x �=y

min(1; 1 − [SKx;y] + [SMx;y])

= inf
x �=y

[SMx;y] = semi-T2(X; �):

Theorem 3.12. (1) |= (X; �)∈ semi-R1 ∧· (X; �)∈ semi-T0 → (X; �)∈ semi-T2;
(2) If semi-T0(X; �) = 1; then

|= (X; �)∈ semi-R1 ∧· (X; �)∈ semi-T0 ↔ (X; �)∈ semi-T2:

Proof. (1)

[(X; �)∈ semi-R1 ∧· (X; �)∈ semi-T0]

= max(0; semi-R1(X; �) + semi-T0(X; �) − 1)

= max
(

0; inf
x �=y

min(1; 1 − [SKx;y] + [SMx;y]) + inf
x �=y

[SKx;y] − 1
)

6max
(

0; inf
x �=y

(min(1; 1 − [SKx;y] + [SMx;y]) + [SKx;y] − 1)
)

= inf
x �=y

[SMx;y] = semi-T2(X; �):

(2)

[(X; �)∈ semi-R1 ∧· (X; �)∈ semi-T0]

= [(X; �)∈ semi-R1] = inf
x �=y

min(1; 1 − [SKx;y] + [SMx;y])

= inf
x �=y

[SMx;y] = semi-T2(X; �);

since semi-T0(X; �) = 1, then for each x; y∈X such that x �= y; [SKx;y] = 1:

Theorem 3.13. (1) |= (X; �)∈ semi-T0 → ((X; �)∈ semi-R1 → (X; �)∈ semi-T2);
(2) |= (X; �)∈ semi-R1 → ((X; �)∈ semi-T0 → (X; �)∈ semi-T2):

Proof. (1) From Theorems 3.11(1), 3.12(1) we have

[(X; �)∈ semi-T0 → ((X; �)∈ semi-R1 → (X; �)∈ semi-T2)]

= min(1; 1 − [(X; �)∈ semi-T0] + min(1; 1 − [(X; �)∈ semi-R1] + [(X; �)∈ semi-T2]))

= min(1; 1 − [(X; �)∈ semi-T0] + 1 − [(X; �)∈ semi-R1] + [(X; �)∈ semi-T2])

= min(1; 1 − ([(X; �)∈ semi-T0] + [(X; �)∈ semi-R1] − 1) + [(X; �)∈ semi-T2]) = 1:
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(2)

[(X; �)∈ semi-R1 → ((X; �)∈ semi-T0 → (X; �)∈ semi-T2)]

= min(1; 1 − [(X; �)∈ semi-R1] + min(1; 1 − [(X; �)∈ semi − T0] + [(X; �)∈ semi-T2]))

= min(1; 1 − [(X; �)∈ semi-R1] + 1 − [(X; �)∈ semi-T0] + [(X; �)∈ semi-T2])

= min(1; 1 − ([(X; �)∈ semi-R1] + [(X; �)∈ semi-T0] − 1) + [(X; �)∈ semi-T2]) = 1:

Theorem 3.14. If semi-T0(X; �) = 1; then

(1) |= ((X; �)∈ semi-T0 → ((X; �)∈ semi-R0 → (X; �)∈ semi-T1))

∧ ((X; �)∈ semi-T1 →@((X; �)∈ semi-T0 →@((X; �)∈ semi-R0)));

(2) |= ((X; �)∈ semi-R0 → ((X; �)∈ semi-T0 → (X; �)∈ semi-T1))

∧ ((X; �)∈ semi-T1 →@((X; �)∈ semi-T0 →@((X; �)∈ semi-R0)));

(3) |= ((X; �)∈ semi-T0 → ((X; �)∈ semi-R0 → (X; �)∈ semi-T1))

∧ ((X; �)∈ semi-T1 →@((X; �)∈ semi-R0 →@((X; �)∈ semi-T0)));

(4) |= ((X; �)∈ semi-R0 → ((X; �)∈ semi-T0 → (X; �)∈ semi-T1))

∧ ((X; �)∈ semi-T1 →@((X; �)∈ semi-R0 →@((X; �)∈ semi-T0))):

Proof. For simplicity we put, semi-T0(X; �) = �; semi-R0(X; �) = � and semi-T1(X; �) = ): Now, applying
Theorem 3.9(2), the proof is obtained with some relations in fuzzy logic as follows:

(1)

1 = (� ∧· � ↔ )) = (� ∧· � → )) ∧ () → � ∧· �)

=@(� ∧· � ∧· @)) ∧@() ∧@(� ∧· �)) =@(� ∧· @(@(� ∧· @)))) ∧@() ∧· (� →@�))

= (� →@(� ∧· @))) ∧ () →@(� →@�) = (� → (� → )) ∧ () →@(� →@�));

since ∧· is commutative one can have the proof of statements (2)–(4) in a similar way as (1).

By a similar procedure to Theorem 3.13 one can have the following theorem.

Theorem 3.15.

(1) |= ((X; �)∈ semi-T0 → ((X; �)∈ semi-R1 → (X; �)∈ semi-T2))

∧ ((X; �)∈ semi-T2 →@((X; �)∈ semi-T0 →@((X; �)∈ semi-R1)));

(2) |= ((X; �)∈ semi-R1 → ((X; �)∈ semi-T0 → (X; �)∈ semi-T2))

∧((X; �)∈ semi-T2 →@((X; �)∈ semi-T0 →@((X; �)∈ semi-R1)));

(3) |= ((X; �)∈ semi-T0 → ((X; �)∈ semi-R1 → (X; �)∈ semi-T2))

∧((X; �)∈ semi-T2 →@((X; �)∈ semi-R1 →@((X; �)∈ semi-T0)));

(4) |= ((X; �)∈ semi-R1 → ((X; �)∈ semi-T0 → (X; �)∈ semi-T2))

∧((X; �)∈ semi-T2 →@((X; �)∈ semi-R1 →@((X; �)∈ semi-T0))):
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Lemma 3.4. (1) If D⊆B; then supA∩B=∅ SNx(A) = supA∩B=∅; D⊆ B SNx(A);
(2) supA∩B=∅ infy∈D SNy(X ∼A) = supA∩B=∅; D⊆ B S�(B):

Proof. (1) Since D⊆B,

sup
A∩B=∅

SNx(A) = sup
A∩B=∅

SNx(A) ∧ [D⊆B] = sup
A∩B=∅; D⊆ B

SNx(A)

(2) Let y∈D and A ∩ B= ∅.
Then,

sup
A∩B=∅; D⊆ B

S�(B) = sup
A∩B=∅; D⊆ B

S�(B) ∧ [y∈D]

= sup
y∈D⊆ B⊆ X∼A

S�(B) = sup
y∈B⊆ X∼A

S�(B)

= SNy(X ∼A) = inf
y∈D

SNy(X ∼A)

= sup
A∩B=∅

inf
y∈D

SNy(X ∼A):

De�nition 3.4.

semi-T (1)
3 (X; �) :=∀x ∀D(x∈X ∧ D∈F ∧ x =∈ D → ∃A(A∈ SNx ∧ (D⊆X ∼ semi-cl(A)))):

Theorem 3.16.

|= (X; �)∈ semi-T3 ↔ (X; �)∈ semi-T (1)
3 :

Proof. Now,

semi-T (1)
3 (X; �) = inf

x =∈D
min

(
1; 1 − �(X ∼D) + sup

A∈P(X )
min
(
SNx(A); inf

y∈D
(1 − semi-cl(A)(y))

))
;

= inf
x =∈D

min

(
1; 1 − �(X ∼D) + sup

A∈P(X )
min
(
SNx(A); inf

y∈D
SNy(X ∼A)

))
;

and

semi-T3(X; �) = inf
x =∈D

min

(
1; 1 − �(X ∼D) + sup

A∩B=∅; D⊆ B
min(SNx(A); S�(B))

)
:

So, the result holds if we prove that

sup
A∈P(X )

min
(
SNx(A); inf

y∈D
SNy(X ∼A)

)
= sup

A∩B=∅; D⊆ B
min(SNx(A); S�(B)): (∗)

It is clear that, on the left-hand side of (∗) when A ∩ D �= ∅ then there exists y∈X such that y∈D and
y =∈ X ∼A. So, inf y∈D SNy(X ∼A) = 0 and thus (∗) becomes

sup
A∈P(X ); A∩B=∅

min
(
SNx(A); inf

y∈D
SNy(X ∼A)

)
= sup

A∩B=∅; D⊆ B
min(SNx(A); S�(B));

which is obtained from Lemma 3.4.
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De�nition 3.5.

semi-T (2)
3 (X; �) :=∀x ∀B(x∈B ∧ B∈ � → ∃A(A∈ SNx ∧ semi-cl(A)⊆B)):

Theorem 3.17.

|= (X; �)∈ semi-T3 ↔ (X; �)∈ semi-T (2)
3 :

Proof. From Theorem 3.16, we have

semi-T3(X; �) = inf
x =∈D

min

(
1; 1 − �(X ∼D) + sup

A∈P(X )
min
(
SNx(A); inf

y∈D
SNy(X ∼A)

))
:

Now, if we put B=X∼D, then

semi-T (2)
3 (X; �) = inf

x∈B
min

(
1; 1 − �(B) + sup

A∈P(X )
min
(
SNx(A); inf

y∈X∼B
SNy(X ∼A)

))

= inf
x =∈D

min

(
1; 1 − �(X ∼D) + sup

A∈P(X )
min
(
SNx(A); inf

y∈D
SNy(X ∼A)

))

= semi-T3(X; �):

De�nition 3.6. Let ’ be a subbase of � then,

semi-T (3)
3 (X; �) :=∀x ∀D(x∈D ∧ D∈’ → ∃B(B∈ SNx ∧ semi-cl(B)⊆D):

Theorem 3.18.

|= (X; �)∈ semi-T3 ↔ (X; �)∈ semi-T (3)
3 :

Proof. Since [’⊆ �] = 1; and with regard to Theorems 3.16 and 3.17 semi-T (3)
3 (X; �)¿semi-T (2)

3 (X; �) =
semi-T3(X; �): So, it remains to prove that semi-T (3)

3 (X; �)6semi-T (2)
3 (X; �) and this is obtained if we prove

for any x∈A,

min

(
1; 1 − �(A) + sup

B∈P(X )
min
(
SNx(B); inf

y∈X∼A
SNy(X∼B)

))
¿semi-T (3)

3 (X; �):

Set semi-T (3)
3 (X; �) = *. Then, for any x∈X and any D�i ∈P(X ); �i ∈ I� (I� denotes a Inite index set), �∈�;⋃

�∈�

⋂
�i ∈ I�

D�i =A we have,

1 − ’(D�i) + sup
B∈P(X )

min
(
SNx(B); inf

y∈X ∼D�i

SNy(X ∼B)
)
¿* ¿ *− ,;

where , is any positive number. Thus,

sup
B∈P(X )

min
(
SNx(B); inf

y∈X ∼D�i

SNy(X ∼B)
)

¿’(D�i) − 1 + *− ,:
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Set )�i = {B: B⊆D�i}. Then,

inf
�i∈I�

sup
B∈P(X )

min
(
SNx(B); inf

y∈X∼D�i

SNy(X ∼B)
)

= sup
f∈.{)�i : �i∈I�}

inf
�i∈I�

min
(
SNx(f(�i)); inf

y∈X∼D�i

SNy(X ∼f(�i))
)

= sup
f∈.{)�i : �i∈I�}

min
(

inf
�i∈I�

SNx(f(�i)); inf
�i∈I�

inf
y∈X∼D�i

SNy(X ∼f(�i))
)

= sup
f∈.{)�i : �i∈I�}

min


 inf

�i∈I�
SNx(f(�i)); inf

y∈ ∪
�i∈I�

X∼D�i

SNy(X ∼ f(�i))




= sup
B∈P(X )

min


 inf

�i ∈ I�
SNx(B); inf

y∈ ∪
�i ∈ I�

X ∼D�i

SNy(X ∼B)




= sup
B∈P(X )

min


SNx(B); inf

y∈ ∪
�i∈I�

X ∼D�i

SNy(X ∼B)


;

where B=f(�i).
Similarly, we can prove

inf
�∈�

sup
B∈P(X )

min


SNx(B); inf

y∈ ∪
�i∈I�

X ∼D�i

SNy(X ∼B)




= sup
B∈P(X )

min


SNx(B); inf

y∈ ∪
�∈�

∪
�i∈I�

X∼D�i

SNy(X ∼B)




6 sup
B∈P(X )

min


SNx(B); inf

y∈ ∩
�∈�

∪
�i∈I�

X ∼D�i

SNy(X ∼B)




6 sup
B∈P(X )

min
(
SNx(B); inf

y∈X∼A
SNy(X ∼B)

)
;

so we have

sup
B∈P(X )

min
(
SNx(B); inf

y∈X∼A
SNy(X ∼B)

)
¿ inf

�∈�
inf
�i∈I�

sup
B∈P(X )

min
(
SNx(B); inf

y∈X∼D�i

SNy(X ∼B)
)

¿ inf
�∈�

inf
�i∈I�

’(D�i) − 1 + *− ,:

For any I� and � that satisfy
⋃

�∈�

⋂
�i∈I�

D�i =A the above inequality is true.
So,

sup
B∈P(X )

min
(
SNx(B); inf

y∈X∼A
SNy(X∼B)

)
¿ sup

∪
�∈�

D� �=A
inf
�∈�

sup
∩

�i∈I�

D�i =D�

inf
�i∈I�

’(D�i) − 1 + *− ,

= �(A) − 1 + *− ,:
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i.e.,

min

(
1; 1 − �(A) + sup

B∈P(X )
min
(
SNx(B); inf

y∈X∼A
SNy(X ∼B)

))
¿*− ,:

Because , is any positive number, when ,→ 0 we have

semi-T (2)
3 (X; �)¿*= semi-T (3)

3 (X; �):

So,

|= (X; �) ∈ semi-T3 ↔ (X; �) ∈ semi-T (3)
3 :

De�nition 3.7. Let (X; �) be any fuzzifying topological space and let

semi-T (1)
4 (X; �) := ∀A∀B(A ∈ � ∧ B ∈ F ∧ A ∩ B ≡ ∅ → ∃G(G ∈ � ∧ A⊆G

∧B⊆X ∼ semi-cl(G)));

semi-T (2)
4 (X; �) :=∀A∀B(A ∈ F ∧ B ∈ � ∧ A⊆B → ∃G(G ∈ � ∧ A⊆G ∧ semi-cl(G)⊆B)):

Theorem 3.19.

|= (X; �) ∈ semi-T4 ↔ (X; �) ∈ semi-T (i)
4 ;

where i = 1; 2:

Proof. The proof is similar to that of Theorems 3.16 and 3.17.

4. Relation among separation axioms

Lemma 4.1. For every �; ) ∈ I we have;

(1 ∧ (1 − � + ))) + �61 + ):

Theorem 4.1.

|= (X; �) ∈ semi-T3 ∧· (X; �) ∈ T1 → (X; �) ∈ semi-T2:

Proof. From Theorem 2.2 [7] we have; T1(X; �) = infy∈X �(X ∼{y}) and applying Lemma 4.1 we have,

semi-T3(X; �) + T1(X; �)

= inf
x =∈D

min

(
1; 1 − �(X ∼D)+ sup

A∩B=∅; D⊆ B
min(SNx(A); S�(B))

)
+ inf

y∈X
�(X ∼{y})

6 inf
x∈X; x �=y

inf
y∈X

min
(

1; 1 − �(X ∼{y}) + sup
A∩B=∅

min(SNx(A); SNy(B))
)

+ inf
y∈X

�(X ∼{y})

= inf
x∈X; x �=y

(
inf
y∈X

min
(

1; 1 − �(X ∼{y}) + sup
A∩B=∅

min(SNx(A); SNy(B))
)

+ inf
y∈X

�(X ∼{y})
)
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6 inf
x∈X; x �=y

inf
y∈X

(
min
(

1; 1 − �(X ∼{y}) + sup
A∩B = ∅

min(SNx(A); SNy(B))
)

+ �(X ∼{y})
)

6 inf
x �=y

(
1 + sup

A∩B = ∅
min(SNx(A); SNy(B))

)
= 1 + inf

x �=y
sup

A∩B = ∅
min(SNx(A); SNy(B))

= 1 + semi-T2(X; �);

namely, semi-T2(X; �)¿semi-T3(X; �) +T1(X; �)−1: Thus, semi-T2(X; �)¿max(0; semi-T3(X; �)+T1(X; �) − 1):

Theorem 4.2.

|= (X; �) ∈ semi-T4 ∧· (X; �)∈T1 → (X; �)∈ semi-T3:

Proof. It is equivalent to prove that semi-T3(X; �)¿semi-T4(X; �) + T1(X; �) − 1: In fact,

semi-T4(X; �) + T1(X; �)

= inf
E∩D = ∅

min

(
1; 1 − min(�(X ∼E); �(X ∼D))

+ sup
A∩B=∅; E ⊆ A;D⊆ B

min(S�(A); S�(B))

)
+ inf

z∈X
�(X ∼{z})

6 inf
x =∈D

min

(
1; 1 − min(�(X ∼{x}); �(X ∼D))

+ sup
A∩B=∅; D⊆ B

min(SNx(A); S�(B))

)
+ inf

z∈X
�(X ∼{z})

6 inf
x =∈D

min

(
1;max

(
1 − �(X ∼D) + sup

A∩B=∅; D⊆ B
min(SNx(A); S�(B)); 1 − �(X ∼{x})

+ sup
A∩B=∅; D⊆ B

min(SNx(A); S�(B))

))
+ inf

z∈X
�(X ∼{z})

= inf
x =∈D

max

(
min

(
1; 1 − �(X ∼D) + sup

A∩B=∅; D⊆ B
min(SNx(A); S�(B)); min(1; 1 − �(X ∼{x})

+ sup
A∩B=∅; D⊆ B

min(SNx(A); S�(B))

))
+ inf

z∈X
�(X ∼{z})

6 inf
x =∈D

max

(
min

(
1; 1 − �(X ∼D) + sup

A∩B=∅; D⊆ B
min(SNx(A); S�(B)) + �(X ∼{x});

min

(
1; 1 − �(X ∼{x}) + sup

A∩B=∅; D⊆ B
min(SNx(A); S�(B))

))
+ �(X ∼{x})

)
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6 inf
x =∈D

max

(
min

(
1; 1 − �(X ∼D) + sup

A∩B=∅; D⊆ B
min(SNx(A); S�(B)) + �(X ∼{x});

1 + sup
A∩B=∅; D⊆ B

min(SNx(A); S�(B))

))

6 inf
x =∈D

(
min

(
1; 1 − �(X ∼D) + sup

A∩B=∅; D⊆ B
min(SNx(A); S�(B))

)
+ 1

)

6 inf
x =∈D

min

(
1; 1 − �(X ∼D) + sup

A∩B=∅; D⊆ B
min(SNx(A); S�(B))

)
+ 1

= semi-T3(X; �) + 1:

5. Conclusion

The role or the meaning of each theorem in the present paper is obtained from its generalization to a
corresponding theorem in the crisp setting.

For example: in the crisp setting, a topological space (X; �) is semi-T1 if and only if for each z ∈X; {z}∈F ,
where F is the family of closed sets. This theorem can be rewritten as follows: the truth value of a topological
space (X; �) to be semi-T1 equal the inImum of the truth values of its singletons to be closed sets, where
the set of truth values is {0; 1}. Now, is this theorem still valid in fuzzifying setting, i.e., if the set of truth
values is [0; 1]?. The answer of this question is positive and is given in Theorem 3.5 above. Another example
is given in Remark 2.1 and Counterexample 2.1.
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