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1. Introduction
Rapid increases in urbanization, industrialization, 
mining, and agricultural practices have increased the 
bioaccumulation of heavy metals (HMs) and serious 
attention is needed to tackle this problem (Hassan et 
al., 2019; Haider et al., 2022). Chromium (Cr) is a toxic 
metal present in the environment in two forms, namely 
Cr(III), or chromite, and Cr(VI), or chromate (Ali et 
al., 2023). More than 2000 tons of Cr enter global water 
resources every year via different liquid wastes generated 
by factories. The chromium concentration in waste 
liquids can vary from 2000 to 5000 mg L–1, far beyond the 
maximum allowable limit of 2 mg L–1 (Wei et al., 2022). 
This increasing concentration has harmful impacts on 
humans when Cr enters the food chain (Ahmad et al., 
2020). Chromium causes cancer, skin problems, kidney 
damage, asthma, and eye irritation in humans (Zeng et al., 
2020). Thus, controlling the Cr levels in water resources 

is essential in protecting the environment and human 
health. 

Chromium is not an essential metal and it negatively 
affects plant physiological, chemical, and biochemical 
functioning (Ali et al., 2023). Chromium toxicity reduces 
root growth, disturbs nutrient homeostasis, decreases 
chlorophyll synthesis, and causes membrane damage by 
increasing reactive oxygen species (ROS) production (Ali 
et al., 2023). It negatively affects microbial and enzymatic 
activities and leads to significant reduction in yield and 
quality (Seleiman et al., 2020; AbdElgawad et al., 2023). 
Different nanoparticles (NPs) have been suggested to be 
promising in mitigating Cr toxicity and improving crop 
productivity. 

NPs improve plant functioning due to their beneficial 
properties in promoting oxidation and reduction reactions. 
They improve seed germination, nutrient uptake, 
photosynthesis, and hormonal balance in the presence of 
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drought and HM stress (Subbaiah et al., 2016). Various 
researchers have reported that NPs can increase plant 
growth and reduce HM toxicity (Prakash et al., 2022). 
The exogenous use of zinc-based NPs improved growth 
and nutrition and mitigated Cr accumulation in soybean 
(Basit et al., 2023a). NPs also reduce malondialdehyde 
(MDA) and hydrogen peroxide (H2O2) production and 
increase osmolyte synthesis, which counteracts the 
toxicity of HMs (Basit et al., 2023b). In other studies, 
it was observed that NPs enhanced nutrient uptake 
and antioxidant defense mechanisms and reduced 
Cr uptake (Adrees et al., 2021; Ramzan et al., 2023). 
However, the impact of NPs largely depends on the 
plant species, type of NP, stage of plant growth, and the 
applied NP concentration. There is no comprehensive 
review available describing the use of NPs to mitigate 
the toxic impacts of Cr in plants. Thus, this review 
comprehensively describes the different NP mechanisms 
used to induce Cr tolerance in plants with the aim of 
filling knowledge gaps to benefit researchers working to 
mitigate Cr toxicity and increase crop productivity. 

2. Methodology used in the literature review 
Relevant studies were obtained using Google Scholar, 
Scopus, and Web of Science. Key words and phrases 
including “nano,” “NPs,” “nanomaterials,” “Cr,” “Cr 
toxicity,” “Cr pollution,” “toxic effect of Cr on plants,” “role 
of NPs to alleviate Cr toxicity in plants,” “NPs mitigate 
Cr toxicity in plants,” and “NPs enhance plant resistance 
to Cr” were used to identify relevant studies. Data were 
collected from peer-reviewed papers and the literature 
review was limited to include only studies published 
since the year 2000. Review articles and duplicate studies 
were excluded. Thus, a total of 100 research studies were 
incorporated in the present review. All reviewed studies 
were published in English. 

3. Mechanism of Cr uptake in plants
The concentration of Cr is continuously increasing in the 
environment due to agriculture and industrial activities 
(Schiavon et al., 2008). Chromium has various uses in 
different industries. Therefore, significant quantities 
of Cr are released into the soil and water from cement 
factories, steel plants, electroplating, paints, dyes, timber 
production, and the paper industry (Zayed and Terry, 
2003). The allowable Cr limit in soils is 64 mg kg–1, but 
rapid industrialization has significantly increased soil 
Cr concentrations (Yang et al., 2020). Different natural 
sources including volcanic ash, rocks, soil, and gases 
serve as other important mechanisms for Cr entry 
into the environment (Quantin et al., 2008). Plants 
absorb various forms of Cr but the exact mechanisms 
of absorption are not clear. Plants uptake Cr via ion 

transporters, and the active mechanism of Cr(VI) uptake 
involves the use of sulfate transporters (Cervantes et al., 
2001). Chromium also competes with iron, sulfur, and 
phosphorous for carrier binding in the processes of 
transportation (Figure 1).

Chromium competes with enzymes involved in 
the sulfate assimilation pathway. This reduces both 
cysteine and methionine production, resulting in 
faulty protein translation and subsequently sulfur 
deficiency. For example, the use of metabolic inhibitors 
reduced Cr(VI) absorption, although there was no 
effect on Cr(III) uptake, which indicates that the 
uptake of Cr(VI) is energy-dependent while Cr(III) 
uptake is energy-independent (Shanker et al., 2005). It 
was also documented that sulfur-accumulating plants 
(e.g., Brassica spp.) have higher absorption of Cr, 
which indicates that mechanisms of sulfur uptake and 
translocation are involved in Cr transportation from 
root to shoot (Singh et al., 2020). Iron-accumulating 
plants (e.g., Brassica and spinach) also absorb higher 
levels of Cr, which is transported to aboveground plant 
parts. Excessive Cr in the roots and its immobilization 
in root cell vacuoles are known to be major reasons 
for Cr bioaccumulation in plants. Chromium inhibits 
root length and cell division, which limits nutrient and 
water absorption and thus leads to reduction in shoot 
growth. 

Many researchers have found that Cr excessively 
accumulates in plant roots and this accumulation 
occurs due to Cr immobilization in root cell vacuoles 
(Oliveira, 2012). For instance, Wu et al. (2013) found 
that increasing Cr concentrations in Brassica  increased 
Cr accumulation in the cells, nuclei, mitochondria, and 
plastids. Increased sequestration of Cr in roots leads to 
the production of insoluble Cr compounds. Different 
metal transporter gene families that can help transport 
metals from plant roots to shoots have been identified. 
However, the roles of different transport families are 
still unclear in the case of Cr despite their appreciable 
influence in the absorption, transport, sequestration, 
and tolerance of metals.

Further research in this field will help in understanding 
the role of Cr in signaling pathways, which will help in 
developing Cr-tolerant crops. Chromium toxicity causes 
detrimental effects for plant functioning and leads to 
stunted growth (Dotaniya et al., 2014). Chromium 
toxicity also decreases photosynthetic pigments and 
inhibits the cell cycle and water and nutrient uptake, 
nitrogen accumulation, and other metabolic processes 
(Ugwu and Agunwamba, 2020) (Figure 2). Furthermore, 
Cr also triggers ROS production, which causes the 
oxidation of cellular structures and leads to cell death 
(Patra et al., 2019).
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Figure 1. Mechanisms of Cr uptake and transport in plant parts. Cr(VI) uses 
sulfate and phosphate transporters while Cr(III) uses Fe transporters from the 
soil for transport. Furthermore, Cr(VI) is reduced to Cr(III), which is then 
transported to aboveground plant parts via xylem and phloem movements. 

 
 1 

   Nutrient
imbalances 

Figure 2. Toxic effects of Cr on plants. Chromium toxicity 
reduces seed germination, diminishes nutrient uptake, causes 
osmotic stress, and damages the photosynthetic apparatus, 
proteins, and DNA, resulting in substantial growth losses. 
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4. Cost of the synthesis of nanoparticles 
NPs are economical and efficient solutions to remediate 
polluted soils. Globally, different techniques including 
chemical and physical methods are being used to produce 
NPs. The physical methods are costly and require more 
energy, while chemical techniques are economical. 
However, chemical methods are time-consuming and 
laborious, and they may also generate hazardous materials 
(Koul et al., 2021). Therefore, biological methods are 
increasingly gaining attention around the world. They have 
many benefits including quick synthesis, low production 
costs, and an environmentally friendly nature (Ingale and 
Chaudhari, 2013). Different microbes, plant extracts, and 
waste materials are used to synthesize NPs. The use of waste 
materials can decrease synthesis costs and dependence on 
the use of chemical substances (Sharma et al., 2019).

5. Nanoparticle uptake and translocation in plants 
Nanotechnology has revolutionized the world as it 
provides effective solutions to manage environmental 
problems. NPs can be divided into different categories 
including metal oxides, polymers, carbonaceous materials, 
and dendrimers based on their structures and chemical 
compositions (Ealia and Saravanakumar, 2017). Distinct 
sizes, crystalline structures, and surface charges facilitate 
their application in diverse fields (Dasgupta et al., 2017). 
NPs can be applied to plants as a soil application, foliage 
spray, or seed treatment, but foliar sprays are more effective 
than the other application methods (Su et al., 2020). 

The uptake of NPs is determined by soil properties, 
NP properties, and NP interactions with plant physiology. 
Plants absorb NPs through their leaves, and the NPs 
are then transferred to aboveground plant parts (Lv et 
al., 2019). With foliar sprays, the leaf stomata, cuticles, 
hydathodes, and trichomes can directly absorb NPs. NPs 
with sizes of 4–100 nm enter the leaves by penetrating 
the leaf cuticle (Larue et al., 2014), while NPs ranging in 
size from a few nanometers to over 100 nm also enter 
the stomata through apoplastic and symplastic pathways 
(Larue et al., 2014). It has been documented that NPs of 
10–50 nm in size are transported symplastically, while NPs 
with sizes of 50–200 nm are transported apoplastically, 
following cell walls and intercellular spaces. After entering 
the leaves, NPs transported together with sugars will flow 
through the sieve tubes of phloem, which allows for the 
bidirectional movement and accumulation of NPs in roots, 
stems, fruits, and grains. Furthermore, the lipophilicity 
and hydrophilicity of NPs can affect the foliar pathways of 
their uptake (Popp et al., 2005). 

In soil applications, different soil properties such as 
soil pH, soil microbes, organic matter, and root exudates 
impact NP uptake and availability. Different mechanisms 
such as pore formation, plasmodesmata, and carrier 

proteins are being used for the internal movement of NPs 
inside plants. The plant anatomy and the surface charge 
of the NPs both affect the dispersion and translocation 
of NPs. NPs are absorbed on the surfaces of roots, and 
apoplastic and symplastic pathways are used for the uptake 
and transportation of NPs (Lv et al., 2019). However, 
the precise mechanisms through which NPs transverse 
physical barriers in plants are still unclear and more 
studies are needed to explore these mechanisms. When 
NPs are applied by soil application, the plant roots absorb 
the NPs, and NPs with sizes of 3–5 nm enter the cells of 
the root epidermis directly through the pores. However, 
NPs can also cross the Casparian strip barrier to enter the 
xylem. They cross that barrier using different mechanisms, 
such as the formation of pores and endocytosis or binding 
to protein carriers. Some NPs may fail to be internalized 
and accumulate on the root surfaces of the Casparian strip, 
which disturbs nutrient absorption (Ali et al., 2019).

Inconsistent results have been obtained by different 
authors regarding the impact of NP size on their uptake 
and translocation. Some authors found that plant roots 
take up small NPs while large NPs remain on the root 
surface. Lv et al. (2019) reported that tobacco roots took 
up gold NPs (Au-NPs) of 3.5 nm in size while Au-NPs 
with a size of 18 nm accumulated on the root surface. 
Larue et al. (2012) demonstrated that  titanium dioxide 
(TiO2) of >140 nm in size was not concentrated in wheat 
roots. Surface charge is an important factor that may 
significantly impact NP uptake by plants. For example, 
NPs with positive charges were shown to be absorbed 
on the mucilage layer while NPs with negative charges 
bypassed the mucilage layer and then translocated to root 
tissues (Sun et al., 2019). 

The plant species and the growth stage also affect the 
uptake and transportation of NPs (Wang et al., 2023). 
For example, anatomical differences between monocot 
and dicot plants result in differences in NP absorption 
and transportation within plants (Sun et al., 2019). Dicot 
plants have higher cuticle permeability specific stomata 
shapes and cell wall architectures which affects the 
absorption and translocation of NPs in these plants (Sun et 
al., 2019). NPs also undergo different reactions including 
aggregation, dissolution, redox reactions, and interactions 
with macromolecules, and all of these processes affect the 
uptake and transportation of NPs (Lowry et al., 2012). 
Therefore, it is essential to have an understanding of NP 
uptake and transport in order to optimize their use in 
agriculture and the environment. This will allow for the 
development of appropriate measures to obtain the full 
benefits of NPs while reducing their risks. The uptake of 
NPs is very complex. Thus, future research must be aimed 
at exploring the impacts of different factors on the uptake 
of NPs. 
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6. Methods of NP application 
NPs can be applied by soil application, foliar spray, 
hydroponics, or seed soaking. They can be applied to plants 
from sowing to harvesting, but their application is more 
effective at the germination and seedling growth stages 
(Fincheira et al., 2021). Seed treatment with NPs improves 
germination and seedling growth (Abbasi et al., 2021). 
Different authors have found that soil-applied copper oxide 
NPs (CuO-NPs) enhanced lettuce growth while ZnO-NPs 
improved the biomass and grain yield of wheat (Du et al., 
2019). Other researchers found that a foliar spray of chitosan 
NPs improved antioxidant activity, protein synthesis, and 
photosynthesis in tomato plants (Faizan et al., 2021a). 
Cerium oxide NPs (CeO2-NPs) mitigated the adverse impacts 
of Cd in hydroponic soybean plants (Rossi et al., 2018). 
Nanomaterials can also be used as carriers of fertilizers and 
pesticides; they have significant specific area, allowing them 
to deliver nutrients more effectively for improved solubility 
and bioavailability of nutrients and reduction in nutrient 
losses (Fincheira et al., 2021). Similarly, nanopesticides can 
ensure better release of drugs, resulting in better stability, 
solubility, and efficiency of pesticides (Bala et al., 2023).

7. Mechanisms of nanoparticles in mitigating chromium 
toxicity in plants 
Many studies have explored the effects of NPs in mitigating 
Cr toxicity in plants. This section addresses the different 
mechanisms by which NPs mitigate Cr toxicity in plants. 
7.1. Nanoparticles reduce Cr uptake by plants
Chromium toxicity is linked to its excessive 
accumulation in plants. However, NPs have been 
reported to decrease Cr uptake and transport in plants 
(Table 1). Different authors have reported that NPs 
can improve Cr resistance by decreasing Cr uptake 
and its subsequent transportation in plants. Zeng et al. 
(2010) showed that Cr in growth medium increased Cr 
accumulation in root apoplasts. The potential of ZnO-
NPs was tested in rice plants grown under Cr stress (100 
µM) and ZnO-NPs at 100 mg L–1 were found to reduce 
the mobility of Cr in the root–shoot direction, therefore 
reducing its absorption and subsequent accumulation 
(Basit et al., 2022a). Basit et al. (2023b) also found that 
rice seedlings supplemented with ZnO-NPs at 25 mg L–1 
had reductions of 7.2% and 13.9%, respectively, in root 
and shoot Cr. 

Plant species NPs Mode of NPs Cr concentration Major effects References

Wheat Se-NPs (50 
µmol) Foliar spray 300 mM kg–1 Se-NPs reduced Cr uptake in roots (–30%) and 

shoots (–23%) of wheat plants.
Shah et al., 
(2024)

Maize ZnO-NPs (50 
mg kg–1) Soil application 50, 100 mg kg–1 ZnO-NPs reduced Cr concentrations in roots by 

68.21% and in shoots by 71.30% under Cr-50. 
Mehmood 
et al. (2023)

Wheat, pak 
choi, beet

Fe-NPs (1%, 
10%) Soil application 747 mg kg–1

Application of nanoiron effectively reduced soil Cr 
concentration and decreased Cr availability and 
accumulation in all crops.

Li et al., 
(2023)

Barley Ag-NPs (0, 15, 
30 mM) Foliar spray 0, 50, 100 mg kg–1

Exogenous Ag-NP spray reduced Cr concentrations 
in roots and shoots of barley compared with control 
plants. 

Zhu et al. 
(2023)

Rice
Fe-NPs (0, 
0.001%, 0.1% 
W/W)

Soil application 553 mg kg–1
Fe-NPs promoted Cr transport from roots to aerial 
parts. Cr accretion in roots and shoots increased after 
nanoiron application as compared to control. 

Liu et al. 
(2023)

Sunflower TiO-NPs (15 
mg L–1) Foliar spray 0, 15, 30, 60 mg 

kg–1

TiO-NP treatment reduced the Cr(VI) accumulation 
in roots and shoots. Furthermore, TiO-NPs reduced 
the bioaccumulation concentration and translocation 
factor compared to the control. 

Kumar et al. 
(2023)

Barley Fe-NPs (1%) Soil application 6.26 mg kg–1
The use of nano-Fe decreased extractable Cr 
concentration and bioconcentration of Cr in barley 
plants. 

Rodríguez-
Seijo et al. 
(2022)

Wheat
ZnO-NPs (0, 
50, 100 mg 
L–1)

Foliar spray 0, 50, 100, 200 mg 
kg–1

ZnO-NP (100 mg L–1) supplementation decreased the 
root and shoot Cr concentrations by 8.1% and 76.5%, 
respectively. 

Ahmad et 
al. (2022)

Rice Si-NPs (10 
µM)

Nutrient 
medium 100 µM

The rice seedlings treated with Si-NPs showed a 
marked reduction in Cr concentration in both roots 
and shoots and reduced the negative effects of Cr 
toxicity. 

Sharma et 
al. (2022)

Table 1. Potential of NPs to mitigate Cr uptake and its accumulation in different plants.
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Chickpea plants supplied with ZnO-NPs (25 
µM) showed remarkable reduction in Cr uptake and 
accumulation in Cr-polluted soil (120 µM) (Singh et 
al., 2024). Furthermore, the NPs reduced Cr uptake and 
transport by negatively regulating organic acid exudates. 
However, more research is required to explore this 
mechanism. ZnO-NPs form a barrier that prevents Cr 
uptake, thereby reducing Cr absorption and subsequently 
its uptake (Singh et al., 2024). 

Ma et al. (2022) tested the potential benefits of CeO2-NPs 
(0, 25, and 50 mg L–1) for sunflower plants grown under Cr 
toxicity (0, 25, and 50 mg kg–1). Chromium accumulation 
was increased in various plant parts, but the NPs decreased 
the Cr accumulation (Ma et al., 2022). However, it is still 
unclear how CeO2-NPs regulate Cr transporters to restrict 
Cr uptake and accumulation in plants. More studies must 
be conducted to discover the mechanisms behind the 
reduction in Cr uptake following CeO2-NP applications. 
Zeng et al. (2020) tested the impact of combined bacteria 
and NPs to mitigate Cr toxicity in wheat. The application 
of bacteria converted Cr(VI) to Cr(III) and reduced Cr 
bioavailability and its accumulation in roots and shoots. 
NPs can improve bacterial growth; therefore, combined 
applications of NPs and bacteria can provide better results 
for mitigating Cr uptake and improve plant performance 
(Timmusk et al., 2018).

A recent study determined the impacts of silicon 
NPs (50, 100, and 150 µM) on rapeseed plants grown 
hydroponically under Cr stress conditions (50 and 100 µM). 
Si-NPs (100 µM) increased leaf Si concentrations by 169% 
and decreased Cr accumulation in roots and leaves by 92% 
and 76%, respectively. Silicon in the leaf cells restricted Cr 
uptake and transportation, which reduced its accumulation. 
Furthermore, the Si-mediated increase in the expression of 
Cr transporter genes (ST1 and MT) decreased Cr uptake and 
accumulation (Huang et al., 2024). It was also found that 
Si-NPs changed the activity of ABC and MT genes, which 
decreased Cr absorption (Nie et al., 2021). Park et al. (2012) 
studied different knockouts of AtABCC1 in Arabidopsis and 
found that an increase in ABC gene expression decreased 
Cr uptake in plants. These findings indicated that NPs 
can reduce the absorption and accumulation of Cr. Foliar 
spray appeared to be an effective method for mitigating 
absorption and accumulation. Moreover, the concentration 
of the NPs is also crucial as it significantly affects Cr uptake 
and accumulation in plants. The aforementioned findings 
indicate that NPs reduce Cr uptake and accumulation, 
leading to improved plant performance. These outcomes 
provide guidance for mitigating Cr toxicity in crops while 
producing safer food. Nonetheless, more research is needed 
to understand the relationships between NPs and methods 
of NP application while considering differences in plant 
growth stages and plant species.

7.2. Nanoparticles improve nutrient homeostasis under 
Cr stress
Chromium interferes with different nutrients and decreases 
their uptake by inhibiting plasma membrane H+-ATPase 
(Kharbech et al., 2020; Zaheer et al., 2020). For instance, 
ZnO-NPs (100 mg L–1) increased the concentration of Fe 
and Zn in rice plants under Cr stress (Basit et al., 2022). The 
increase in nutrient influx due to NP application substantially 
mitigated the adverse impacts of Cr (Table 2). Likewise, 
other researchers reported that an exogenous supply of NPs 
improved nutrient uptake and plant growth (Azimi et al., 
2021). Recently, Singh et al. (2024) reported that applying 
ZnO-NPs to chickpea plants improved Ca, Fe, Mg, Zn, and 
K uptake. Ahmad et al. (2022) tested the impacts of ZnO-
NPs (100 mg L–1) and S. aureus K1 bacteria on wheat plants 
grown under Cr toxicity. Chromium toxicity (200 mg kg–1) 
decreased the root, shoot, and grain Zn contents by 75.1%, 
70.8%, and 87.3%, while ZnO-NPs (100 mg L–1) enhanced 
the root, shoot, and grain Zn contents by 61.3%, 58.3%, 
and 79.9%, respectively. Basit et al. (2023a) also found that 
Cr administration reduced the Fe, Mn, and Zn uptake of 
soybean plants while ZnO-NPs (50, 75, and 100 mg L–1) 
increased the uptake and accumulation. A particularly 
significant increase in the uptake of those nutrients was 
seen with 100 mg L–1 ZnO-NPs. These findings demonstrate 
the potential of NPs to increase nutrient uptake in plants 
growing in Cr-polluted soils. However, mechanistic studies 
are needed to explore how NPs affect nutrient uptake and 
transport in plants under Cr stress. 
7.3. Nanoparticles improve photosynthetic efficiency 
under Cr stress
Chromium toxicity negatively affects photosynthesis by 
decreasing chlorophyll synthesis (Figure 3) and disturbing 
leaf gas-exchange characteristics (Table 2). However, the 
application of NPs improves photosynthesis, transpiration 
rates, and stomata conductance under Cr toxicity (Huang 
et al., 2024). Silicon improves the flexibility and plasticity 
of the cell wall, which affects the opening and closing of 
stomata (Vaculík et al., 2015). Therefore, nano-Si-mediated 
improvement in CO2 uptake and O2 exchange between 
leaves and the environment was shown to improve the 
photosynthetic rate under Cr toxicity. NPs can also 
improve chlorophyll synthesis; for example, CeO2-NPs 
enhanced the synthesis of chlorophyll and carotenoids, 
ensuring better photosynthesis (Etesami et al., 2021). 
Chromium toxicity disrupts the chloroplasts and ribulose 
bisphosphate carboxylase (RuBisCO) activity, and it 
inhibits electron transport (Salam et al., 2022). However, 
exogenous applications to protect the chloroplasts 
maintain electron transport and nutrient acquisition and 
reduce ROS production, which enhances chlorophyll 
synthesis and the overall photosynthetic efficiency of 
plants (Basit et al., 2022).
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Plant species NPs Mode of NPs Cr 
concentration Major effects References

Rice CuO-NPs (0, 5, 
10, 20 mg kg–1) Soil application 0, 5, 10, 20 mg 

kg–1

CuO-NPs improved the root and 
shoot growth, photosynthetic pigment 
synthesis, and antioxidant activities, 
while reducing MDA and ROS 
production. 

Ali et al., (2023)

Black cumin
SiO2 (200 mg 
L–1) and TiO2 
(60 mg L–1)

Foliar spray 10 mg L–1

Combined SiO-NPs and Ti-NPs 
increased root biomass (26%), shoot 
biomass (25%), seed yield (36%), 
and chlorophyll concentration, while 
decreasing MDA (22%), EL (14%), CAT 
(32%), and SOD (33%) activities.  

Chen and Kattab 
(2024)

Lemon balm TiO2-NPs (15 
mg L–1) Foliar spray 50, 100 mg 

kg–1

TiO2-NP foliar spray reduced Cr toxicity 
and improved plant height, chlorophyll 
synthesis, total phenolic content, 
flavonoids, and rosmarinic acid, while 
reducing MDA and antioxidant activity.  

Soliman et al. (2024)

Rice Se-NPs (20 mg 
L–1) Foliar spray 100  µM

Se-NP supplementation increases 
morphophysiological growth, leaf gas 
exchange traits, proline synthesis, and the 
expression of antioxidant genes, while 
reducing MDA and H2O2 production. 

Basit et al. (2023b)

Wheat ZnO-NPs (10, 
20, 30 mg kg–1) Soil application 10 mg kg–1

ZnO-NPs improved leaf area, water 
use efficiency, chlorophyll and 
carotenoid synthesis, leaf gas-exchange 
characteristics. 

Iqbal and Bhatti 
(2022)

Wheat FeO-NPs (350, 
450 mg L–1) Foliar spray 350, 450 mg 

kg–1

FeO-NOs increased shoot length by 8% 
and 12%, shoot weight by 19% and 30%, 
and enhanced APX, CAT, POD, and SOD 
activities.

Zafar et al. (2024)

Rice FeO-NPs (0, 10, 
20 mg L–1) Foliar spray 0, 50, 100 mg 

kg–1

FeO-NPs decreased oxidative 
damage and increased enzymatic and 
nonenzymatic activities, helping plants 
mitigate Cr toxicity.

Alharby and Ali 
(2022)

Rice
ZnO-NPs (5, 10, 
15, 20, 25 mg 
L–1)

Seed priming  5 mg L–1

Seed primed with ZnO-NPs significantly 
improved in root and shoot growth, and 
reduction in bioaccumulation index of 
Cr. 

Akhtar et al. (2021)

Lettuce 
ZnO-NPs and 
FeO-NPs (0, 25, 
50, 100 mg L–1)

Foliar spray DNA

Foliar spray of combined Zn-NPs and 
Fe-NPs increased growth, photosynthetic 
performance, antioxidant activities, 
improved nutrient uptake, and reduced 
oxidative damage by activating 
antioxidant defense system. 

Sameer et al. (2023)

Mungbean Fe-NPs (0, 100, 
1000 mg kg–1) Soil application 50 mg kg–1

Addition of Fe-NPs to the growth 
medium increased plant fresh and dry 
biomass, total chlorophyll concentration, 
Fe uptake, and reduced Cr concentration.

Sun et al. (2020)

Table 2. Effects of different NPs on plant growth, physiological activities, antioxidant defense, and nutrient homeostasis in the presence 
of Cr stress.
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Table 2. (Continued.)

Wheat CuO-NPs (25, 
50, 100 mg kg−1) Soil application 3.5 mg kg–1

Application of 25 and 50 mg kg–1 
CuO-NPs promoted growth, biomass 
production, and decreased ROS and Cr 
translocation from roots to shoots by 
relieving the oxidative stress.  

Noman et al. (2020)

Sunflower Fe-NPs (0, 1%, 
2%) Soil application 0, 75, 150 mg 

kg–1

Treatment with Fe-NPs reduced Cr 
bioaccumulation, while enhancing 
growth and photosynthetic performance 
by increasing APX, CAT, POD, and SOD 
activities. 

Mohammadi et al. 
(2020)

Chiekpea ZnO-NPs 
(25 µM)

Nutrient 
medium 0, 120 µM

ZnO-NPs increased plant growth, 
proline, soluble sugars, leaf gas-exchange 
characteristics, antioxidant activities, 
nutrient uptake, cell viability, and 
reduced MDA and ROS production.  

Singh et al. (2024)

Mungbean ZnO-NPs (2 
ppm)

Nutrient 
medium 10 ppm

ZnO-NPs remarkably mitigated the 
adverse impacts of Cr,  improved 
root and shoot growth, dry weight, 
antioxidant activity, and prevented the 
ultrastructural alterations. 

Bhuyan et al. (2024)

Aloe Vera Fe-NPs (DNA) Soil application 15 mg kg−1 

Application of Fe-NPs, in combination 
with Cr-tolerant bacteria, enhanced 
plant height, root area, leaf size, and 
gel concentration by 51%, 137%, 67%, 
and 49%, respectively. It also boosted 
CAT (125%), SOD (87%), POD (89%) 
activities, and proline synthesis (34%). . 

Komal et al. (2024)

DNA: Data not available.

It was found that supplementation of FeO-NPs (500 
and 1000 mg L–1) significantly increased chlorophyll 
synthesis and photosynthetic efficiency while mitigating 
the toxic effects of Cr (Brasili et al., 2020). Tripathi et al. 
(2015) tested the impact of Si-NPs (0 and 10 µM) on pea 
plants grown under Cr toxicity (100 µM). They found that 
Si-NPs ameliorated Cr toxicity and improved chlorophyll 
synthesis, photosynthesis, and nutrient uptake. Recently, 
Prakash et al. (2022) demonstrated that ZnO-NPs (25 
µM) minimized Cr toxicity and improved the levels of 
photosynthetic pigments and subsequently photosynthetic 
efficiency by protecting the photosynthetic apparatus. They 
also reported that NPs reversed the inhibitory impacts 
of Cr and improved chlorophyll synthesis and quantum 
efficiency.

Basit et al. (2023a) noted a considerable reduction in 
Cr toxicity with ZnO-NPs and an improvement in the 
photosynthetic performance of soybean plants. They also 
found that the improved photosynthetic efficiency was 
linked to reduced oxidative damage with the administration 
of NPs (Basit et al., 2022). Ulhassan et al. (2023) found 
that Si-NPs markedly improved chlorophyll synthesis 
and electron transport efficiency. They also reported that 

Cr stress upregulated the expression of BnSAG12 by 2.7-
fold, while Si-NPs downregulated the expression of that 
gene by 1.6-fold. The downregulation of BnSAG12 by Si-
NPs indicates that Si improved the chlorophyll levels and 
helped the plants overcome leaf senescence (Ulhassan et 
al., 2023). The findings of these studies suggest that NPs 
improve photosynthetic efficiency by reducing Cr toxicity, 
ROS production, and oxidative damage, leading to better 
assimilation and plant growth. 
7.4. Nanoparticles improve antioxidant activities to 
counter the toxic effects of Cr
HMs increase the production of ROS, which damage 
cellular structures, plant metabolism, and physiological 
functioning, possibly even leading to cell death (Faizan 
et al., 2021b). Chromium toxicity significantly increases 
MDA and H2O2 production, which causes cell damage 
and lowers the cell viability of roots (Singh et al., 2024). 
However, ZnO-NPs (25 µM) reduced MDA and H2O2 
production, which improved the cell viability (Singh et al., 
2024). Furthermore, NPs can also alleviate ROS-induced 
damage by decreasing Cr uptake, and this phenomenon has 
been documented in rice, soybeans, and chickpeas (Basit 
et al., 2022; Singh et al., 2024). Alterations in antioxidant 
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activities and the ascorbate–glutathione (AsA–GSH) 
cycle in conjunction with Cr toxicity have been reported 
for many plants (Zeng et al., 2012). Prakash et al. (2022) 
reported that applying ZnO-NPs reduced catalase (CAT) 
and superoxide dismutase (SOD) activities in rice plants 
grown under Cr stress and that those reductions were 
linked to a reduction in oxidative stress. This indicates 
that lower antioxidant activities are associated with less 
production of oxidants following the application of ZnO-
NPs. These authors also found that ZnO-NPs upregulated 
the AsA–GSH cycle by upregulating the dehydroascorbate 
reductase (DHAR), monodehydroascorbate reductase 
(MDHAR), and glutathione reductase (GR) enzymes. 
Ma et al. (2022) stated that CeO2-NPs reduced MDA and 
H2O2 production as well as EL by upregulating ascorbate 
peroxidase (APX) and SOD activity, which increased ROS 
scavenging and thus mitigated the deleterious effects of Cr 
as evidenced by lower rates of MDA and H2O2 production. 

The potential benefits of zero-valent iron NPs (Fe0-
NPs; 0%, 1%, and 2%) were studied in sunflower plants 
grown under Cr toxicity (0, 75, and 150 mg kg–1). Fe0-
NPs decreased Cr uptake and translocation and improved 
APX, CAT, and SOD activities (Mohammadi et al., 2020). 
In another study, a foliar spray of iron oxide NPs (Fe0-NPs; 
0, 10, and 20 mg L–1) mitigated the toxic impacts of Cr by 

improving enzymatic and nonenzymatic activities linked 
with reduced MDA and H2O2 production and EL. In 
tomato plants, the application of biochar-doped Fe0-NPs 
(0%, 0.5%, 1%, and 1.5%) minimized Cr accumulation 
and reduced H2O2 and MDA production. The possible 
mechanism of doped Fe0-NPs in reducing Cr accumulation 
was thought to be related to the absorption of Cr on the 
biochar surface (Naeem et al., 2022). Earlier studies found 
that Si-NPs (0 and 10 µM) protected pea seedlings from 
Cr toxicity (100 µM) by increasing nutrient uptake (Ca, 
K, Mg, S, and P) and APX and SOD activities (Tripathi 
et al., 2015). Noman et al. (2020) used green synthesized 
CuO-NPs (0–15 mM) against Cr toxicity (0–100 mg kg–1 
soil) in wheat. They reported that CuO-NPs decreased the 
Cr-induced oxidative damage by increasing the uptake of 
essential nutrients and antioxidant activities (CAT, POD, 
and SOD).

The potential benefits of Si-NPs in mitigating Cr 
toxicity were tested in Brassica and the application of 
Si-NPs was found to increase SOD, CAT, APX, and GR 
activity in the roots and leaves. This indicated that the 
Si-NPs participated in the antioxidant defense system 
to ameliorate oxidative damage. Furthermore, the 
authors suggested that higher levels of antioxidants in 
the presence of Cr toxicity with Si-NPs would lead to 

Figure 3. Mechanisms of NPs for improving plant growth and development under Cr stress. 
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significant improvement in Cr tolerance (Ulhassan et al., 
2023). Overall, NPs reduce ROS production by increasing 
antioxidant activities, but the effectiveness of NPs can vary 
depending on their concentration and type.
7.5. Nanoparticles cause ultrastructural changes and 
improve gene expression to mitigate Cr toxicity
Chromium toxicity damages the ultrastructure of plants, 
but exogenous application of NPs can cause favorable 
changes in plants to counteract Cr toxicity (Figure 3). 
For example, Basit et al. (2022) found that exogenous 
ZnO-NPs at 25 and 50 mg L–1 slightly damaged the 
nucleolus structure, impaired thylakoid function, and 
caused chloroplast injury. However, ZnO-NPs at 100 mg 
L–1 led to better chloroplast development, less damaged 
thylakoid granules, and better-developed nucleoli. 
These authors demonstrated that ZnO-NPs reduced 
cellular distortion by reducing ROS production and 
mitigating ultrastructural damage. This indicates that 
the concentration of NPs is an important variable in 
mitigating the adverse impacts of Cr.

Ulhassan et al. (2023) studied the impact of Si-NPs 
on thin sections of Brassica root tips. The tips of the 
roots showed well-developed cell walls, cell membranes, 
mitochondria, and chloroplasts with dense thylakoid 
granules under control conditions. However, Cr toxicity 
resulted in the swelling of the cell wall and cell membrane, 
with disrupted mitochondria and chloroplasts with 
abnormal shapes (Ulhassan et al., 2023). The application 
of Si-NPs resulted in thicker cell walls and cell membranes, 
better mitochondria, and well-shaped chloroplasts. Such 
benefits were attributed to Si-NPs reducing Cr-induced 
ROS production and maintaining cellular integrity, cell 
structure, and membrane stability (Manzoor et al., 2022). 
Singh et al. (2024) investigated the response of ZnO-NPs 
in chickpea plants grown under Cr toxicity and found 
that ZnO-NPs maintained the cell viability of the root 
tips. Manzoor et al. (2022) also reported that Si-NPs 
mitigated the deleterious impacts of Cr and resulted in 
better cellular ultrastructure, well-shaped chloroplasts 
with thylakoid granules, and distinct cell walls and cell 
membranes. 

NPs have a significant ability to regulate gene 
expression. For instance, Prakash et al. (2022) found 
that Cr(VI) reduced the expression of OsAPX, OsDHAR, 
OsMDHAR, and OsGR by 29.11% 32.5%, 25.5%, and 
21.5%. However, exogenic ZnO-NPs increased the 
expression of those genes by 275%, 375%, 485%, and 
205% under Cr stress. It was also observed that Si-NPs 
improved the expression of BnSOD, BnCAT, BnAPX, 
and BnGR, which improved Cr toxicity in Brassica plants 
(Ulhassan et al., 2023). In summary, NPs protect plant 
structures from the damaging impacts of Cr and improve 
gene expression to counteract Cr-induced damages.

7.6. Nanoparticles maintain hormonal balance and 
osmolyte accumulation to counter Cr stress 
Osmolytes and phytohormones play crucial roles in 
plant adaptation to abiotic stresses (Banerjee and 
Roychoudhury, 2022). Limited research has been 
conducted to determine the crosstalk of hormones and 
NPs under Cr toxicity. In a recent study, the synergistic 
impact of indole acetic acid (IAA) and silicon NPs (Si-
NPs) was evaluated in rice. The integrated use of Si-NPs 
and IAA enhanced biomass productivity and antioxidant 
activities, which mitigated ROS production (Sharma et 
al., 2022). This confirmed the protective role of Si-NPs 
and IAA in mitigating Cr toxicity, but it is still unclear 
whether Si-NPs can induce IAA biosynthesis genes for 
synergistic impacts with IAA in mitigating Cr toxicity. 
The interaction between Si-NPs and IAA should be 
studied in more detail at the molecular level. Moreover, 
additional studies are needed to explore the protective 
role of key hormones and signaling molecules together 
with NPs in mitigating Cr toxicity. 

Mohammadi et al. (2018) investigated the effects of 
ethylenediaminetetraacetic acid  (EDTA), Fe0-NPs, and 
iron sulfate (Fe2+) on sunflower growth and physiological 
functions. They discovered that using Fe0-NPs and Fe2+ 
produced marked reduction in Cr accumulation and 
oxidative damage together with an increase in chlorophyll 
synthesis. Furthermore, exogenously supplied EDTA 
exacerbated the negative effects of Cr by increasing MDA 
and H2O2 production. In general, chelating materials are 
used to enhance the mobility of HMs, resulting in better 
phytoextraction. However, in the study by Mohammadi 
et al. (2018), the increase in Cr uptake due to the use of 
EDTA and the positive correlation between Fe0-NPs and 
Fe2+ revealed the increased phytoextraction capacity of 
sunflower plants. Another study found that combining 
Bacillus strains and an inorganic chelate (citric acid) 
mitigated the toxic impacts of Cr and ensured better wheat 
growth (Ilyas et al., 2022). The combined use of Bacillus 
and citric acid improved antioxidant activities and reduced 
Cr accumulation and excessive ROS production. However, 
it is still necessary to explore the crosstalk of Bacillus and 
citric acid with NPs under Cr stress.

Basit et al. (2022) found that ZnO-NPs increased the 
synthesis of brassinosteroids (BRs), which mitigated Cr 
stress by increasing the photosynthetic efficiency and 
decreasing ROS production. BR application improved 
the stomata regulation, photosynthesis, and growth of 
tomatoes under Cr stress (Jan et al., 2020). These findings 
indicate a positive relationship between ZnO-NPs and BRs 
for the mitigation of Cr toxicity. Another study found that 
ZnO-NPs improved the phytochelatin levels of soybean 
plants under Cr stress, which increased Cr tolerance 
(Diwan et al., 2010). 
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ABA plays crucial roles in seed development, leaf 
abscission, and vegetative growth (Vishwakarma et 
al., 2017). However, at higher concentrations it has 
antagonistic impacts on plants. Increased ABA in 
the presence of Cr toxicity is associated with reduced 
photosynthesis and plant biomass (Basit et al., 2022). ZnO-
NPs (20, 50, and 100 mg L–1) significantly reduced ABA 
synthesis, which was linked with improved Cr tolerance 
and better photosynthetic efficiency (Vishwakarma et al., 
2017). Proline is a significant signaling molecule that plays 
a crucial role in stress tolerance. It has been documented 
that NPs increase proline synthesis, which helps plants 
counter Cr toxicity (Ramzan et al., 2023; Singh et al., 
2024). However, there are few studies in the literature 
describing the impacts of NPs on signaling molecules 
and hormones under Cr stress. More detailed research is 
needed to explore the use of NPs and signaling molecules 
and hormones under Cr toxicity. This will help researchers 
develop strategies to improve plant resilience against Cr 
stress. 
7.7. Nanoparticles interact with soil microbes to alleviate 
Cr toxicity
Soil microbes play important roles in maintaining soil 
fertility, nutrient cycling, and soil carbon sequestration 
(Bahram et al., 2018) as well as nutrient homeostasis 
and resistance to stress conditions (Vogel et al., 2021). 
Chromium toxicity has negative effects on microbial 
diversity and it also impairs the relationship between soil 
microbes and plants (Ao et al., 2022). NPs are an effective 
way to supply nutrients and activate soil microbial 
functions (Mishra et al., 2020). For example, silver NPs 
(Ag-NPs) enhanced the growth of nitrifiers, denitrifiers, 
and phosphorous-mobilizing bacteria (Mishra et al., 
2020). In soil, microbes can reduce Cr(VI) to Cr(III) 
by different mechanisms such as biosorption and 
bioaccumulation, thereby remediating Cr toxicity (Ao 
et al., 2022). Ahmad et al. (2022) found that Cr-resistant 
Staphylococcus aureus applied together with ZnO-NPs 
decreased Cr accumulation while increasing chlorophyll 
synthesis, antioxidant activity, and nutrient uptake in 
wheat plants. However, the mechanism by which S. 
aureus and ZnO-NPs reduce Cr(VI) to Cr(III) remains 
unknown and more metabolic and molecular studies 
are needed. In another study, Alharby and Ali (2022) 
investigated the potential of S. aureus and FeO-NPs to 
reduce Cr toxicity in rice. Exogenous FeO-NPs increased 
growth, biomass production, and antioxidant activity 
and decreased Cr accumulation. These authors reported 
that the combination of S. aureus and FeO-NPs mitigated 
Cr toxicity in rice plants more effectively. Nevertheless, 
the efficacy of Cr-resistant microbes and NPs should be 
studied in different plants to explore the mechanisms 
used by microbes and NPs in addressing Cr toxicity. 

NPs have attracted considerable attention in agriculture, 
but little is known about how NPs interact with microbial 
assemblages or homeostasis during Cr detoxification. 
Recently, the impact of NPs and microbes in regulating Cr 
toxicity was evaluated (Ahmad et al., 2022), but mechanistic 
genetic insights for the mitigation of Cr toxicity were not 
revealed. Such findings are vital to optimize the potential 
of NPs and microbes for bioremediation of Cr and the 
regulation of plant growth. For example, it is essential to 
discover whether plants recruit special microbial consortia 
when NPs are applied to mitigate Cr toxicity. Moreover, 
it is also necessary to determine whether NPs activate Cr 
detoxification genes in particular soil microbes to convert 
Cr(VI) to Cr(III). Such efforts will help achieve greater 
benefits for the remediation of Cr-polluted soils with the 
combined use of NPs and microbes.
7.8. Nanoparticles enhance plant growth under Cr stress
Chromium stress significantly reduces plant growth by 
inducing excessive production and disturbing nutrient 
uptake, photosynthesis, and plant–water relations (Xu et 
al., 2018). NPs work as slow fertilizers and are important 
sources of nutrients for plants, enhancing plant growth 
and development in polluted soils (Figure 3). For instance, 
a foliar spray of ZnO-NPs mitigated Cr toxicity and 
substantially increased the growth of soybean by mitigating 
Cr-induced oxidative damage and maintaining plant 
physiological activities and nutrient homeostasis (Basit et 
al., 2023a). Exogenic ZnO-NPs (50 mg L–1) improved shoot 
weight (21%–77%), root weight (22%–45%), shoot length 
(3%–35%), root length (24%–154%), soluble sugars (19%–
52%), and antioxidant activities in Cr-polluted soil (10, 
15, and 20 mg kg–1) (Ramzan et al., 2023). Furthermore, 
Si-NPs accelerated growth and germination by influencing 
antioxidant activities, physiological functioning, nutrient 
uptake, and the reduction of Cr accumulation (Ulhassan 
et al., 2023). Si-NPs form physical barriers in plant tissues 
that conserve water and allow for better root growth, 
thus resulting in better nutrient and water uptake and 
subsequent plant performance in the presence of stressors 
(Li et al., 2023). Tripathi et al. (2015) found that Si-NPs 
substantially reversed Cr toxicity and improved pea 
growth and development. They noted that soil-applied 
Si-NPs enhanced growth and photosynthetic activity 
and decreased Cr uptake and its translocation into plant 
parts. Sharma et al. (2021) reported that Si-NPs reduced 
Cr-induced oxidative damage and stimulated the growth 
of rice in Cr-polluted soils. Mohammadi et al. (2020) 
stated that Fe-NPs enhanced the antioxidant activities, 
growth, and development of sunflower plants grown in Cr-
polluted soil. All of these studies indicated the potential of 
NPs to improve plant growth, but the effectiveness of NPs 
is significantly affected by their concentration and type, as 
well as the plant species. 
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8. Conclusion and future prospects
Chromium concentrations are soaring in the 
environment, which poses a serious threat to both 
plants and humans. NPs can decrease Cr uptake and 
Cr-induced oxidative damage and improve antioxidant 
activities and osmolyte accumulation, helping to 
maintain membrane stability, proteins, and lipids and 
safeguard the photosynthetic apparatus. These effects 
lead to better plant performance. The effects of NPs 
in mitigating Cr toxicity depend on the size, type, and 
concentration of the NPs and the growth stage and 
species of the plant. Despite recent achievements, future 
research is needed in this field to fill important gaps in 
the literature:

•	 The role of NPs in seed germination has not 
yet been fully explored; consequently, it is essential to 
explore the mechanisms underlying improvement in seed 
germination with NPs. 

•	 Limited research has been conducted on the 
impacts of NPs on nutrient uptake under Cr stress. 
Therefore, understanding the effect of NPs on nutrient 
channels and nutrient signaling remains an important area 
of exploration.

•	 The effect of NPs on signaling molecules and 
plant hormones is poorly investigated. Understanding the 
impact of NPs on signaling molecules and plant hormones 
under Cr stress would open new avenues for the control of 
Cr toxicity.

•	  Efforts are needed to determine how NPs can 
downregulate different genes to reduce Cr accumulation 
in plants.

•	 It is still unclear how NPs regulate the 
compartmentalization of Cr in cell vacuoles by xylem 
or phloem loading and then transport the Cr into 
aboveground plant parts. 

•	 The effect of NPs on soil properties is poorly 
studied; thus, more research is required to investigate 
these effects. 

•	 NPs and microbes constitute a green and 
sustainable method for remediating polluted soils. More 
research is needed to discover Cr-resistant bacteria and the 
mechanisms of combined NPs and microbes in mitigating 
Cr toxicity. 

•	 The use of NPs in combination with different 
osmolytes and hormones could be a viable approach for 
counteracting Cr toxicity. 

•	 Generally, soils are contaminated by multiple 
toxic metals, and research should be aimed at determining 
the impact of NPs in soils with multiple types of 
contamination. Biosynthesized NPs could be a new and 
promising tool providing efficient results to counter Cr 
toxicity. Detailed studies are required before applying NPs 
in the environment to minimize possible damage to the 
ecological balance.
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