| 38. The solubility of Mg(OH), (K = 18                                                                              | 10 <sup>-11</sup> ) in a buffer solution having pH = 10 is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A) $0.18 \text{ M}$ B) $0.018 \text{ M}$                                                                           | 10 ') in a buffer solution having pH = 10 is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 39. A solution of 0.5 g of ures (M. N.                                                                             | C) $1.8 \times 10^{-3}$ M D) $1.8 \times 10^{-4}$ M  rea = 60 g/mol) in 25 g of water gave a boiling point elevation water ( $\Delta T_b$ ) equals:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| of 0.2°C, the molel cloves                                                                                         | rea = 60 g/mol) in 25 g of water gave a holling point alous!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| of 0.2°C, the molal elevation constant of A) 0.45 M B) 0.50 M                                                      | water ( $\Delta T_b$ ) equals:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 40. The pH of 0.66 M of an aqueous H <sub>2</sub> SO <sub>4</sub> A) 2.81 B) 2.18                                  | solution is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| B) 2.18                                                                                                            | (1) 1 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 41. Le Châtelier principle is not applicable                                                                       | to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (1) 112(g) + 12(g) = 2HI(g)                                                                                        | D/E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (E) SIN (O) - 2   H 2()                                                                                            | D) av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 42. The molar solubility of Ag <sub>2</sub> SO <sub>4</sub> in 1M ag                                               | D) $N_{2(g)} + O_{2(g)} = 2 NO_{(g)}$<br>(ueous $Na_2SO_4$ solution equals: $(K_{sp} = 1.4 \times 10^{-5})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| A) 0.058 M B) 0.0058 M                                                                                             | C) $1.87 \times 10^{-3}$ M D) $1.85 \times 10^{-4}$ M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 43. For the following system: PCI - PC                                                                             | D) 1.65X10 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| reaction at the same temperature equals A) 0.67  R) 1.64                                                           | $K_p = 0.092 \text{ K}_p = 0.04 \text{ at } 450 \text{ °C}$ . $K_p = 0.092 \text{ K}_p = 0.092$ |
| A) 0.67 B) 1.64                                                                                                    | 6. (K = 0.082 L atm mol K - 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 44. The pH of a solution containing 0.2 M of $(K_b \text{ for NH}_4\text{OH} = 1.8 \times 10^{-5})$                | C) 2.37 D) $6.7 \times 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $(K_b \text{ for NH}_4\text{OH} = 1.8 \times 10^{-5})$                                                             | Doth NH4OH and NH4Cl is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| A) 7.47 P) 4.74                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 45. The freezing point of sucrose colution (                                                                       | C) 9.26 D) 10.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 45. The freezing point of sucrose solution that (M. Wt. of sucrose = 342.3 and K <sub>f</sub> = 1.8 °C             | t has 34.23 gm sucrose per 100 gm H <sub>2</sub> O is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| A) 1.8 B) -1.8                                                                                                     | ~ / III ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                    | C) -1.36 D) -1.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 46. In which of the following aqueous solution $(K_{sp} = 1.3 \times 10^{-33})$ be greatest? (K. of NH.            | s will the molar solubility of Al(OH),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $(K_{sp} = 1.3 \times 10^{-33})$ be greatest? $(K_b \text{ of NH}_4\text{A}) \text{ 1M NH}_4\text{OH}$ B) 1M NH OH | $OH = 1.8 \times 10^{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| a) p                                                                                                               | in reaction will change if changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| A) Pressure B) Concentration                                                                                       | C) Volume D) Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 48. The freezing point depression $\Delta T_f$ in dilute concentration of the solute.                              | solution is directly proportional to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                    | Transfer to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A) molar B) molal                                                                                                  | C) normal D) gm/I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| position to the ideal reaction and determ                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| position to the right? $4NH_{3(g)} + 5O_{2(g)} = 4N$ A) Increasing the temperature                                 | $O_{(g)} + 6H_2O_{(g)} + Heat$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                    | B) Increasing NO concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C) Increasing the volume                                                                                           | D) None of the above is correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A. C. C. arration of the Ag <sup>+</sup> ions in a satu                                                            | D) None of the above is correct rated solution of Ag <sub>2</sub> C <sub>2</sub> O <sub>4</sub> is 2×10 <sup>-4</sup> M, the K <sub>sp</sub> of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                    | of Ag2C2O4 is 2×10 M, the K <sub>sp</sub> of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A) $5.3 \times 10^{-12}$ B) $4.5 \times 10^{-12}$                                                                  | C) $4 \times 10^{-12}$ D) None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                    | C) $4 \times 10^{-12}$ D) None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14. When a non-votable a case is dissolve                                                                          | at man liquid and emit the resulting solution has a vapor present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

# GOOG LUCK

Prof. Ahmed Abdou Omar & Dr. Soliman Abdel Fadeel

## Q2: Choose the correct answer A, B, C, or D:

(25 Marks, one Mark for each)

The reaction:

CH<sub>4</sub>

$$Cl_2$$
 Mixture

- 26. The reaction is: A) Nucleophilic substitution. B) Electrophilic substitution. C) Free Radical. D) None.
- 27. The mixture contains: A) Ethane B) Propane C) Methyl chloride D) None of these.
- 28. Methane can react with H<sub>2</sub>SO<sub>4</sub> to give: A. Ethane. B. Alcohol C. Does not react D. Methyl group.

29. The IUPAC name of Compound 1:

A) 2,4,5,5-Tetramethyl hexane.

B) 2,2,3,5-Tetramethyl hexane.

C) 2,2,3,5-Tetramethyl heptane

D) 2,4,5,5-Tetramethyl heptane.

30. The IUPAC name of Compound 2:

A) 5,6-Dimethyl-1-heptene.

C) 2,3-Dimethyl-6-heptene.

B) 5,6-Dimethyl heptene. D) 2,3-Dimethyl heptene.

31. The IUPAC name of Compound 3:

A) 2-Methyl-5-hexene.

B) 2-Methyl-5-hexyne.

C) 5-Methyl-1-hexyne.

D) 5-Methyl hexyne.

32. Which compound is more reactive: A) Compound 1.

C) Compound 3.

B) Compound 2. D) All are reactive.




33. Compound A is: A) Symmetrical.

B) Unsymmetrical.

C) Identical.

D) None.

34. The product of the reaction is:



35. This reaction is: A) Substitution. B) Oxidation. C) Reduction. D) Addition.

36. Consider the reaction  $2H_{2(g)} + O_{2(g)} = 2H_2O_{(g)}$ . Which of the following correctly states the expression for the equilibrium constant (Kc) for this reaction?

A) 2[H<sub>2</sub>O]/2[H<sub>2</sub>][O<sub>2</sub>]

B) 2[H<sub>2</sub>][O<sub>2</sub>]/2[H<sub>2</sub>O]

C)  $[H_2O]^2/[H_2]^2[O_2]$ 

D)  $1/[H_2]^2[O_2]$ 

37. Which of the following solutions has the highest pH value?

A) 0.1 M HNO<sub>3</sub>

B) 0.1 M CH<sub>3</sub>COOH ( $K_a$  of CH<sub>3</sub>COOH =  $1.8 \times 10^{-5}$ )

D) 0.1 M CH<sub>3</sub>COONa

C) 0.1 M NaNO<sub>3</sub>

2

Assiut University
Faculty of Science
Chemistry Department





3 Sept. 2025 Time: 2'hours

# Final Examination of General Chemistry II (105 C)

## Answer the following questions:

(50 Marks)

## Q1: Put (T) for the true sentence and (F) for the false one:

(25 Marks, one Mark for each)

- 1. The bond in sodium chloride molecule is covalent.
- 2. The reduction of ethane gives propane.
- 3. The primary carbocation is more stable than the secondary one.
- 4. The reduction of 2-butene gives 2-butane.
- 5. The electrophiles are electron lovers, which are electron poor reagent.
- 6. Alkene is a hydrocarbon that contains one or more carbon-carbon triple bonds.
- 7. The nucleophiles are electron rich.
- 8. The compound; CH<sub>2</sub>=CH<sub>2</sub> is named ethene or ethylene.
- 9. Pentadiene is compound of alkene contain one double bond.
- 10. Addition of water to ethene gives ethanol.
- 11. The compound; CH<sub>2</sub>=CH<sub>2</sub> has two identical group cis and trance.
- 12. Methane reacts with sodium hydroxide to give sodium salt of methane.
- 13. The tertiary carbon is a carbon bonded to three carbons.
- 14. The butyl group is obtained when hydrogen atom added to butane.
- 15. Propylene is a symmetrical alkene.
- 16. For a reaction at equilibrium, removal of one of the reactants will shift the equilibrium in the backward direction.
- 17. Colligative properties of solutions are properties that depend on the chemical nature of the solute but not on the concentration of solute in solution.
- 18. The pH of 0.0001 M of an aqueous solution of H2SO4 equals 4
- 19. The solubility of calcium oxalate,  $CaC_2O_4$ , decreases as the pH is lowered.
- 20. The reaction:  $H_{2(g)} + I_{2(g)} = 2HI_{(g)}$  ( $\Delta H = +53 \text{ kJmol}^{-1}$ ) is not affected by a change in pressure because it is an endothermic reaction.
- 21. Henry's law stated that the mass of a gas that dissolves in a given amount of liquid at a given temperature is inversely proportional to the pressure of the gas above the liquid.
- 22. At constant pressure, adding helium gas will shift the following equilibrium:
  - $2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)}$ , to the forward direction.
- 23. Large K<sub>sp</sub> value and low initial ion concentrations favor the completeness of precipitation.
- 24. When a non-volatile solute is dissolved in a liquid solvent, the resulting solution has a vapor pressure that is higher than that of the pure solvent at the same temperature.
- 25. The ionization of a weak base increases in the presence of a common ion from a strong electrolyte.

الامتحان في ثلاث صفحات

1