
What is the electric field <u>inside</u> a uniformly charged sphere? What happens when we calculate the electric field at a large distance outside the sphere? (7 marks)

Discuss the effect of distance on the electric field in a graph of $\it E$ vs $\it r$.

Two circular electrodes of diameter 5 cm are placed 2 mm apart to form a parallel plate capacitor. What charge must be placed on each electrode to create a uniform electric field of strength 2.0×10^6 N/C? How many electrons must be moved from one electrode to the other to accomplish this? If the plates are replaced by 2.0×3.0 rectangular plates calculate the electric field inside and outside the capacitor. (7 marks)

Question 3: answer the following (22 marks)

Two positively charged particles q_1 and q_2 = $5q_1$ are placed as in the figure. Where (other than at infinity) could a third charge q_3 be placed so as to experience no net force? (5 marks)

The water molecule H_2O has a permanent dipole moment of magnitude 6.2×10^{-30} C.m. A water molecule is located 8 nm from a positive ion Z^* in a solution. Calculate the electric force the ion exerts on the water molecule? (3 marks)

Page 4 of 6

Flecti	ric field of an				
infini	tely long line of charge				
	(4)	by 2.0 × ;	i.O testanj	alst piate	
	- 42				
Ga	auss's law				
	ric field of an etric dipole				
i 13. noi	Trom a positive				
March					
2	1 1.66		+		
	tial difference een two points	,			

	NEW PROPERTY AND ALL	The same	-	-
10	The area vector \vec{A} is always perpendicular on the surface and points inside the area.	[]
11	Charges that enetering between the plates of a capacitor, move in a straigth line.	[
12	Neutral objects cannot exert any attractive or repulsive reaction when they interact with a charged object.			
13	The gravitational acceleration depends on the direction of the electric field acceleration.			
14	The electric flux through a closed surface may equal zero even if $Q_{enclosed} \neq 0$.]
15	The electric potential increases in the direction of the electric field.	E]
16	The direction of the Coulomb's force is determined from the distance between any two charges.]
17	In a uniform electric field, there are no net force acting on an electric dipole.]
18	A neutral object cannot produce an electric field.	language de la constante de la]
19	An ideal gaussian surface can provide sufficient screening for some sensitive applications.			
20	Materials on or in which the charges are not moving freely, are not sensitive to applied electric field.]
			-	

Assiut University
Faculty of Science
Department of Physics

Date: August 24th 2025. Duration: 2 hr. Course: Physics 105p

(20 marks)

If needed use the foll			Lone
$e = 1.6 \times 10^{-19} C$,	$\epsilon_0 = 8.85 \times 10^{-12} C^2 / Nm^2$	$K = 9 \times 10^9$	Nm^2/C^2 .

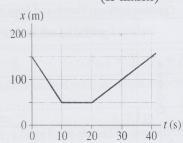
Question I: Justify the correct answer with corrections if found.

1 Neutral objects cannot be charged. Two charges of equal magnitudes and opposite signs, in order to determine their values a gaussian surface must contain both charges at the same time. The direction of dipole moment vector \vec{p} is directed from 3 positive to negative ends of the dipole. When an electric charge is placed in a uniform electric field. 4 The electric field exerts a constant force on the charge in the opposite direction of motion. 5 Electric dipoles can occur in conductors and insulators. The electric field is zero inside any hole within a conductor 6 unless there is a charge in the hole. In an ideal battery, the electromotive force (emf) is slightly 7 larger than the potential difference ($\Delta V_{battery}$) in the battery. 8 Electric field of a dipole is directly proportional to r^3 . The law of conservation of charges states that the net charge is not 9 equal to zero, there are always some positive or negative charge.

iv- Fred is driving his car with a steady speed of 45 m/s when he passes Betty sitting at rest. Betty instantly begins accelerating at 15.0 m/s². How far does Betty have to drive to overtake Fred? (4 marks) Page 6 of 6 ii A robe inclined upward at a 45° angle pulls a suitcase for 6500 cm through the airport. The tension in the robe is 30 N. How much work does the tension force do on the suitcase? (3 marks)

iii- How much energy is consumed by (a) a 2.2 kW hair dryer used for 5.0 min and (b) a 6.0 W LED bulb left on for 24 h? (4 marks)

• Compare between Projectile and circular motions.


(5 marks)

	Projectile motion	Circular motion
Motion diagram with the direction of \vec{v} and \vec{a}	a Second	of the large state was exected on it, clear in the season of the season
Equations used for vand a	a. 8 < 50 b The control of the cont	90 90 90 90 90 90 90 90 90 90 90 90 90 9

Question 4: Answer the following

i- The following graph is the position-versus-time graph of a bicycle. What is the bicycle's velocity at (a) t = 5 s, and (b) t = 30 s? Does this bicycle move with an acceleration? (4 marks)

(15 marks)

	70.27
Ouestion	7.
I miestion	3
UUCGCIOII	

(15 marks) (5 marks)

_		4	*	alacities
	Compare between	Average and	Instantaneous v	elocities.
	Compare Detween	Tive age all		

	Average velocity	Instantaneous velocity
Definition	ore. The reasion in the rote is 30 force do on the autores!	A Common 1
Equation		
Calculation from		

Compare between Elastic and Inelastic collisions. (5 marks)

Con	pare	between Elastic and Inelastic collisions.	
		Elastic collision	Inelastic collision
Definition		ele cacrativas sonos lacid brountente LAV	hair dayer Uncourage 200 ms daw
resentation	Before	06 00 01 0	
Graphical representation	After		

Page 3 of 6

Question 2: Choose the	correct answer from the fo	ollowing: (10 marks)
l. A process that transfer called	s energy to or from a system	n by mechanical means is
a. Work	b. Heat	c. Equilibrium
2. A particle does not hav	e a memory of the forces th	at was exerted on it, that is
inferred in Newton's	law.	of the effected off it, that is
a. Second	b. First	c. Zeroth
3. When energy is trans	ferred into the system and	d the moutial 1
and the velocity vector	I Kinetic energy. The angle	between the force vector
$\theta < 90$	$h \theta = 90$	c. $\theta > 90$
4. In an elastic collision, a	fter collision ball 1 hardly slo	ows down and hall 2 is
knocked forward at v_{f2}	$z \approx 2v_{i1}$ when	W110 PWII 2 10
a. $m_1 \gg m_2$	b. $m_1 = m_2$	c. $m_1 \ll m_2$
5 An angina is de i		
	o operate with 33 hp, this p	ower is equivalent to
a. 3300 W	b. 25 kW	c. 44 mW
	on's laws, the acceleration n	nust be
a. Increasing	b. Constant	c. Decreasing
7. In Newton's third law in	nterpretation, which of the	following is False?
a. $\vec{F}_{1 \ on \ 2} = -\vec{F}_{2 \ on \ 1}$	b. $\vec{a}_1 = -\vec{a}_2$	$c.F_{net} = \sum f_1 + f_2$
8. What is the maximum r of 25 m/s?	ange of a projectile launche	d with an initial velocity
a. 72 m	b. 45 m	c. 64 m
9. To pull an object on a ho	orizontal surface, a large for	ce should be applied to
overcome the for	ce.	ce should be applied to
a. Gravitational	b. Normal	c. Static friction
	wing down, the acceleration	n vector should be
a. Opposite to the velocity vector	b. In the same direction as the velocity	c. Perpendicular to the velocity vector.

If needed use acceleration due to gravity (g=9.8 m/s 2)

Faculty of Science	Date: August 24 th 2025. Duration: 2 hr. Course: Physics 100p
--------------------	--

Que	stion 1: Justify the correct answer with corrections it found. (10 i	nari	(S)
1	The difference between a particle's momentum before and after any collision is termed the impluse.	[]
2	Newton's laws are dependent on the type of the force acting on the particle.	[]
3	The force acting in the opposite direction of motion in a liquid is called the Drag force.	[]
4	Friction force is a conservative force.	[]
5	Increasing the launch angle (θ) for a projectile will always lead to an increase in the projectile range.	[]
6	Inside an isolated system any type of energy does not change, and the total energy is conserved.	[]
7	Newton's laws are only applied in inertial reference frames where $\vec{a} \neq 0$.	[]
8	A particle in uniform circular motion has a net force acting towards the center of the circular path.	[]
9	The conservation of mechanical energy means that the potential energy of the system remains constant.	[]
10	Gravitational force can be attractive or repulsive depending on the masses interacting.	[]

Page 1 of 6