Chemistry Department

Faculty of Science

Assiut University

May 2025

Time: 3h 2

Final exam of course 453C (industrial chemistry)

for 4th level Biotechnology program students

Part

(33 marks)

Answer the following questions

- 1.Complete the following (4 Marks)
 - A) Calcination of phosphatic rock used for phosphatic fertilizers is used to remove.......
 - B) During decomposition of phosphoric rock by sulphuric acid, evolved HF reacts with silica present in the rock to form the gaseous products......and......
 - C) Chalk has a rendering it a suitable raw material for wet process of cement manufacture
 - D) $3(Al_2O_3.2SiO_2.2H_2O) \rightarrow + + 6H_2O$ (ceramic reaction)
 - 2. Give reasons for **FOUR** of the following (8 Marks)
 - A) Firing of ceramics is an important process in the manufacture of ceramic products.
 - B) Applying neutralising mixtures in the third stage (ageing) of superphosphate manufacture.
 - C) Importance of C-S-H (calcium silicate hydrate)-hydrogel which results upon cement hydration due to reaction of C_2S or C_3S with H_2O .
 - D) Glass-reinforced plastic(GRP) resists compressive and tensile forces very well.
 - D) Firing too hot and too long of glass melt causes devit .

4. The sugar-phosphate backbone of a nucleic acid is directional.

Q5. Draw the structures of the following species:

(10 Marks)

- 1. (S)-thyroxine (T₄)
- 2. Azidothymine.
- 3. Adrenaline
- 4. Deoxyadenosine 5'-monophosphate.
- 5. Cytidine 5'-monophosphate.
- 6. Liothyronine.
- 7. Cortisol
- 8. Tyrosine
- 9. Tryptophan.
- 10. Melatonin.

Good Luck

Prof. Dr. Hussein El-Kashef & Dr. Ahmed Abdou O. Abeed

Date: June 3, 2025
Time: 3 hours

Chemistry Department

Final Examination in Selected Topics in Organic Chemistry (C-414)

Answer the following TWo sections: (50 Marks)

Section (A): Chemotherapy (17 Marks)

Q1. Answer the following questions:

- 1- How can you estimate the sulfa drugs in biological fluids? (3 points)
- 2- Write on alcohols and phenols as disinfectants. (2 points)
- 3- Structure elucidation of compound B (C₆H₉O₃N₃S) of vitamin B1. (5 points)
- 4- The synthesis of Penicillin.

(3 points)

5- (4 points)

- A- What are the two types of anti-ulcer drugs?
 - 1.5 points
- B- What is the triple therapy for eradicating the helicobacter pylori? 1.5 points
- C- Write the structure of Omeprazole.

1 point

Section (B): Protein Synthesis and Hormones (33 Marks)

Q2. Define the bond for which of the following roles: (4 Marks)

- (a) The types of RNA and the function of each.
- (b) HIV-1 virus and the types of AIDS treatment.

Q3. Answer the following questions

(15 Marks)

- 1. Discuss the steps of protein synthesis.
- 2. Explain the types of hormones giving an example for each type.
- 3. Define the endocrine glands, the types and the function of each type.

94. Put ($\sqrt{\ }$) for the correct statement and (\times) for the wrong one: (4 Marks)

- 1. A retrovirus is a virus containing RNA.
- 2. A protease inhibitor a substance that prevents the synthesis of viral proteins.
- 3. In the initiation step, the tRNA binds to the AUG codon of the mRNA on the ribosome.

10. Separation of proteins b	e size occurs b	pased on		
a) molecular mass	b) Stokes ra	dius	c) pI	d) a and b
11 is used to separate	molecules in so	olution by th	e use of semiper	meable
membranes.				
a) Ion-exchange chroma	atography	b) affinity	chromatography	
c) salting out		d) Dialysis		
12. Reverse osmosis separa	tes proteins on	the basis of		
a) size b) IP c) solubility	d) denatura	tion temperature	
13 is defined as the i	nigration of ch	arged molec	cules in a solution	n through an
electrical field.				
a) Dialysis b) Osmos	is c) Electro	ophoresis	d) Affinity chro	matography
uestion Two: Give reasons for	or only six of th	ne following		(12 marks)

- 1. It is important to measure both pH and chlorine residual for water samples at the same time.
- 2. Turbidity of water samples should be measured on site.
- 3. Silica with small particle size are used in HPLC columns.
- 4. Ammonium sulfate is used for salting out proteins.
- 5. Proteins aggregate and precipitate at certain pH.
- 6. Chlorine is widely used as a disinfectant for water.
- 7. Solvent fractionation is usually performed at ${\bf 0^{\circ}C}$ or below.

Question Three: Answer only four of the following: (12 marks)

- 1. Explain briefly how you ca determine the concentration of \mathbf{SO}_2 in air.
- 2. Mention the most common methods of protein purification.
- 3. Mention the factors that can precipitate or dissolve a protein.
- 4. Explain briefly the main disadvantage of purifying proteins by salting out.
- 5. Mention the factors that determines how far a protein will migrate in an electrical field.

Good Luck

Dr. Ahmed A. K. Mohammed

c) Salting out

May 2025 Time: 2 hours

Answe	er the following questions:
Quest	ion One: Choose the correct answer: (26 marks
1.	refers to the extent to which a method can be used to determine an analy
	in a mixture without interference from similar components.
	a) Selectivity b) Working range c) Confirmation d) Robustness
2.	requires that the measurement to be performed by more than one
	technique that are based on difference physico-chemical principles.
	a) Selectivity b) Working range c) Confirmation d) Robustness
3.	The results of methods with high don't change by small alterations in the
	experimental parameters.
	a) Selectivity b) Working range c) Confirmation d) Robustness
4.	is the lowest concentration of analyte that be determined with an
	acceptable level of uncertainty.
	a) LOD b) LOQ c) Confirmation d) Precision
5.	should be tested immediately for water samples because it will change
	during storage or transport.
	a) Residual chlorine b) pH c) Turbidity d) All of the preceding
6.	The main contaminant to water in most communities is
	a) faecal b) Pb c) As d) fluorine
7.	Before starting a protein sequence, it is necessary to know the protein's
	a) isoelectric point b) solubility
	c) denaturation temperature d) All of the preceding
8.	Organic solvents the ionization of charged amino acids.
	a) increase b) decrease c) doesn't affect
9.	is the most commonly used protein separation technique
	a) Ion-exchange chromatography b) Affinity chromatography

Please turn the page over

d) Dialysis

Section (II) Electrochemical

(17 marks)

Δn	swer the following:
-	: Complete the following: (5 marks)
1-	Polarization refers to the deviation of from its equilibrium potentia
	when a current passes through it.
2-	VI I POLICIA DE LA CONTRETA DE
3-	polarization is due to the energy barrier that must be overcome for an electron transfer to occur at the electrode surface.
4-	In batteries with poorly conducting electrolytes, significant voltage drops can occur due to polarization.
.5-	In oxygen reduction on a cathode, the polarization increases if oxygen supply to the electrod surface is
6	The internationally accepted primary reference is the standard electrode.
7-	is the rate of forward or backward electrode reaction at equilibrium.
8-	In dispersion of colloidal suspensions, Zeta (ξ) potential is a measure of the magnitude o between particles.
9-	The interphase between metallic electrode and an aqueous solution of an electrolyte behave like
10-	lonic strength is a measure of the in the solution.
Q2	Answer only three from the following (4 marks for each one):
1-	Describe the energy profile of electrode reaction $Ag+(aq)+e-=Ag$ (s) , in absence and in
	application of $\Delta\Phi$ potential to reduction process. Derive the electrochemical rate equation for
	this electrode reaction.
2-	Starting from the Butler-Volmer equation for a one-electron electrode reaction. Drive the
	"linear polarization resistance" and the Tafel's equations.
3-	If the hydrogen overvoltage (ηH2) for zinc in 0.1M acid solution at applied current density
	1x10-5 A cm-2 is 0.15 V, using Tafel equation calculate the exchange current density for
	hydrogen evolution reaction assuming the cathodic Tafel's slope (bc) = 0.135 V .

4- By applying Debye - Huckel Limiting Law, calculate the activity coefficient of 0.01M sulfuric acid aqueous solution at 25° C, where A=0.509?

--- Good Luck ----

Prof. Dr. Abd El-Aziz A. Said , Prof. Dr. Abou El-Hagag Abd El-Aziz Mohamed

Surface chemistry and Electrochemistry Examination for 4th Students (Chem.432)(Chemistry Major)

Time: 3 h Date: 28/5 / 2025

Chemistry Department

Section (I) Surface Chemistry

(33 Marks)

Answer the Following Questions:

I) True (T) or False (F) of the following statement:

(5 Marks)

- 1- Kind of defect introduced by doping is dislocation defect ()
- 2- F-center is a type of stoichiometric defect ()
- 3- Semiconductor oxides can exhibit high electron mobility ()
- 4- Adsorption occurs because of balanced forces acting on the surface of the solid or a liquid ()
- 5- Higher the critical temperature of a gas, greater is its extent of adsorption ()
- 6- Chemisorption involves the formation of compounds on the surface and irreversible ()
- 7- The addition of a catalyst to a reaction shifts the equilibrium to favor the products ()
- 8- Lowering the activation energy of a reaction will decrease the reaction rate ()
- 9- A catalyst works by changing the molecular structure of the reactants and products ()
- 10- When a catalyst is added to a chemical system in equilibrium, a little product will be produced ()

II)- Very short answer questions:

(4 marks)

- 1- Why are adsorbate particles attracted and retained on the surface of adsorbent?
- 2- Why does the electrical conductivity of semiconductors increases with rise of temperature?
- 3- "Adsorbents in finely divided form are more effective " why?
- 4- The effect of temperature on the extent of physical and chemical adsorption.

III)-Short answer on the following questions:

(8 marks)

- 1. What are the effects of promoters and poisons on the catalyst activity?
- 2. Write the steps of reaction on the catalyst surface in heterogeneous catalysis.
- 3. Explain why does conductivity of germanium (Ge⁴⁺) crystals increase with Gallium (Ga³⁺).
- 4. Influence of Li+ dopant on the electrical conductivity of NiO semiconductor.

Vi) Answer four questions only from the following:

(16 Marks)

- 1- Explain the precipitation method used for synthesis of industrial catalysts taking in your consideration all factors affecting their final properties.
- 2- "support or carrier is an important component in heterogeneous catalysis" Explain this statement and what are the important characteristic features of supports.
- 3- Discuss the suggested scheme by Roginskii for choosing or developing of a catalyst.
- 4- Prove the Gibbs adsorption equation, from that calculate the average area occupied by each molecule.
- 5- How are electrons created within n-and P-type semiconductors by doping.

Assiut University

Faculty of Science Chemistry Department

Final Examination in Petroleum & Petrochemicals (451C) for the 4th Level

Date: Sunday, 25-5-2025

Time: 2 hours.

Answer the following questions:

(50 Mark)

Question 1.

- a) Explain the Doctor's sweetening process?
- b) Discuss the Isomerization mechanism (*n*-Alkanes into isoparaffins).
- c) Write short notes on :-Non- Hydrocarbons in crude Petroleum.

Question 2.

- a) What you mean by Octane number & Oxygenate additives.
- b) Explain the Propane deasphalting.
- c) Discuss the Catalytic hydrodesulfurization process.

Question 3.

- a) Discuss the effect of sulfur compounds upon the Gasoline Product?
- b) Describe the Solvent Extraction methods for Sulphur reaction.
- c) Explain the Carbide Theory for origin of the Petroleum and its defects.

Question 4 (Answer Two only):

- a) Discuss the following terms:
 - Aniline Point Additives Freezing Point of Aviation Fuels
- b) Describe in details the thermal conversion processes (Visbreaking & Delayed coking) ?
- c) Starting from the following building blocks , discuss what are the petrochemicals can be produced from it :
 - a) Methane
 - b) Propene.
 - c) Butadiene

Good Luck
Examiner
Prof. Dr. Kamal Ibrahim Aly

48-A cosmetic is considered adulterated if it contains any poisonous or deleterious substance which may render it injurious to users under the conditions prescribed in the labeling.

a. True.

- 49-The conversion of the disulfide bonds into monosulfide cross-links after applying hair straightening preparations is called......
 - a. Halitosis.
 - b. Hyperhidrosis.
 - c. Lanthionization.
 - d. None of the answers.
- 50-Kaolin's use in face powders should not exceed 50 %.

b. False.

a. True.

b. False.

Ouestion	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	1	-													**
Answer			10	10	20	21	22	23	24	25	26	27	28	29	30
Question	16	17	18	19	20	21	22	23	24	43	20	21	20	-/	0.0
Answer												10	10	4.4	4.5
Question	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Answer											2000				
Question	46	47	48	49	50										A
Answer															L

Good Luck

- 39-In Lather shaving creams, because of the inclusion of a greater amount of water and their creamy consistency, they are subjected to stability problems and the problems of viscosity stability and product separation.
- 40-.....are highly volatile essential oils, responsible for the first perceptible odors and freshness of the blend forming the fragrance. They are commonly light scents which fade first, including bergamot, cinnamon or gardenia.
 - a. Top notes.
 - b. Middle notes.
- 41-..... Are most common essential oils that have a role in the stimulation of hair growth and prevention of hair loss.
 - a. Vanilla and jasmine.
 - b. Sandalwood and frankincense.
 - c. Peppermint oil and rosemary oil.
- 42-Palmarosa essential oil containing geraniol at a relative low dose presents a high potential for mitigating the effects of acne, due to a strong antibacterial character, and the inhibition of the tyrosinase activity and the reduction of the cytokines.
- 43-....is very opaque, and used to cover birthmarks, vitiligo, hyperpigmentation and scars.
 - a. Sheer foundation.
 - b. Light foundation.
 - c. Medium coverage foundation.
- 44-The label of cosmetic products should include product name, net quantity, name and address of the manufacturer, and the ingredients.
- 45-Compact powders are not durable and easily smudged by sweat. b. False.
- 46-Too low pressure applied in compressing compact powder will result in a cake that will easily disintegrate.
- 47-Zinc oxide is better as a covering agent than titanium dioxide in face powder formulation.
 - a. True.
- b. False.

31-Brushless shaving creams are water-in-oi	l emulsions of the vanishing cream type.
	Cinuisions of the
a. True. b. False. 32is oil soluble skin whitening age	ent that inhibits tyrosinase by chelating the
copper contained within the tyrosinase en	azymo resulting in a deactivated enzyme.
	Zyme resulting in a dealer was 1—3
a. Kojic Acid.	
b. Kojic Acid Dipalmitate.	
c. Hexylresorcinol.	
d. None of the answers.	and the same because it will often discolar with
33- Triethanolamine is usually avoided in lath	ler creams because it will often discolor with
age, and upon hydrolysis can produce am	imonia.
a. True. b. False.	the the terrorings natural substrate
34 is an amphiphilic compound that	mimics the tyrosinase natural substrate,
tyrosine. It acts as a skin lightening as	gent via binding to tyrosinase directly by
	yrosine, and blocking its enzymatic activity.
a. Hexylresorcinol.	
b. Glycolic acid.	
c. Lactic acid.	
d. None of the answers.	
35-For moderate oily skins, should apply lig	ht powder with large amount of tale.
a. True. b. False.	
36- Emulsion binders such as triethanolami	ne stearate allow for a uniform distribution
of both the oil and water phase in the pre	paration of compact powder.
a. True. b. False.	
37-Shaving soap must lather quickly, which	ch is a property of the coconut oil soaps.
However, the lather must be thick and le	ong-lasting, which is more characteristic of
the fatty acid soaps of palm oil. So, con	mbination between them will give a better
product.	
a. True. b. False.	
38-Shaving sticks are composed mainly of st	earic acid and contain larger percentages
of potassium stearate than the bar soaps	with small amounts of glycerol.
a. True. b. False.	
4	
1 40 .	

29-.... is a skin whitening agent that acts post melanin synthesis.

a. kojic acid.

c. Glycolic Acid.

epidermal keratinocytes. a. Niacinamide.

b. Licorice Extract (glabridin). c. Ethyl Ascorbic Acid. d. None of the answers.

b. Hydroquinone.

d. Arbutin.

30-..... is a skin whitening agent that suppresses the transfer of melanosomes to the

	rum sunscreen, prov vavelength.	b. UVB wavelength.
c. UVC wavel		d. Both UVA and UVB wavelengths.
more than 25	FDA, a Water-resis % of its effectivene	tant sunscreen product is a product that does not lose ss after a 40-minute swim. b. False.
a. True.		
	sunscreen produc	t retains its protective capabilities after of
swimming.		b. 80 minutes.
a. 40 mir		d. 20 minutes.
c. 120 mir.	iutes.	
		reaching the skin by reflecting and dispersing them.
	cal sunscreens.	b. Chemical sunscreens.
c. None of	f the answers.	. I Down-hamana Ayahanzana n
22-Common ing	redients of physical	sunscreens include: Benzophenones, Avobenzone, p-
aminobenzoi	c acid.	
a. True.		b. False.
23 is a s	sunscreen chemical	that offers broad-range protection against UVA rays.
	yl methoxy cinnamat	te.
b. Digalloyl	trioleate.	
c. Benzyl sa	licylate.	
d. Avobenzo	ne.	250/
24-Zinc oxide is	an FDA-approved s	sunscreen and is allowed in concentrations up to 25%.
a. True.		o. False.
25- The protection	on measures when t	he UV-index is from 6-7 require
a. To cover l	head and eyes.	
b. To cover l	head and eyes, use st	rong SPF sunscreen.
c. To cover l	head and eyes, use lo	w SPF sunscreen.
d None of th	he answers.	
26- A sunscreen	with SPF protection	1 +50, provide % UVB protection of
a. 100%.		b. 99%.
c. 98%.		d. 93%.
27- A sunscreen	is not recommended	d to be used for children
a. Below 6 y		
b. Below 10		
c. Below 6 r		
d None of th	he answers.	f in the second
28V	When applied to the	skin, imparts a brownish color similar to a suntan.
	nobenzoic acid.	b. Dihydroxyacetone.
c. Tretino		d. All of the answers.

- 9- Wet hair can increase the length up to 30% and return to original length when it is dried, due to break of disulfide bonds. b. False.
- 10-.....Characterized by hair that takes a long time to dry, can be resistant to coloring and other chemical processes.
 - a. Low porosity hair.
 - b. Medium Porosity Hair.
 - c. High porosity hair.
 - d. None of the answers.
- 11-Aerosol OT is an example of anionic surfactant that is less irritating to skin and eye so used in formulating baby shampoo.
 - b. False.
- 12-Combining cationic surfactants with anionic surfactants in the same formulation, results in shampoos with increased cleansing ability.
 - a. True.
- b. False.
- 13-..... are used as thickeners in shampoo preparations, however the temperature variation largely affects their solubility.
 - a. Alkanolamides.
 - b. PEG-6000 distearate and PEG-55 propylene glycol oleate.
 - c. Natural Gum and HPMC.
 - d. Sodium chloride and ammonium chloride.
- 14-Ethylene glycol mono and distearate are the most often used pearlescent agents in shampoo formulations.
- b. False.
- 15-..... used as pH regulators, Adjust the shampoo pH-values to the natural hair and scalp pH (5.5 - 6.0).
 - a. Glycolic acid or citric acid.
 - b. Selenium sulfide or zinc pyrithone.
 - c. EDTA.
 - d. Styrene/acrylate copolymers.
- 16-.....are shampoo formulations comprising from 4 to 35% of baking soda and from 65 to 96% of starch, proposed for a quick cleansing of children's hair.
 - a. Jelly Shampoos.
- b. Two Layer Shampoos.
- d. Aerosol Shampoos.
- 17-..... test is used to evaluate the detergency and cleaning action of shampoos.
 - a. Barnet and Powers.
- b. Brookfield.
- c. Canvas disk.
- d. Ross-Miles.

Date: May 26, 2025

Instructors: Dr. Nermin Eleraky

Assiut University Faculty of Pharmacy Pharmaceutics Dept.

Time Allowed: Two hours

c. Cleansing creams.

a. Restoration.

a. Telogen phase.

c. Anagen phase.

c. Toning.

Final Cosmetics and perfumes industries Exam (Chem 414).

6 pages

	Answer the following que	stions: Total marks = 50
		llowing statements and put your answer in the
ansv	vor cheet.	
	n i mont dues contain 6	% hydrogen peroxide and low levels of ammonia.
	a. True.	ations depend on the breakage of disulfide bonds
2	2- Temporary hair styling prepara	tions depend on the standard shape
	between keratin filaments and th	eir rearrangement into the desired shape.
	Torro	b. False.
	Is a condition of excessive	sweating, leads to unpleasant body odor that can
	s Is a condition of excessive	ity to attain a normal and healthy life.
		1. Herealideasis
	a. Lanthionization.	b. Hyperhidrosis.
	c. Halitosis.	d. None of the answers.
	4 "deadarant" is not an antiners	pirant, but an "antiperspirant" can be a "deodorant
		h False.
	a. True.	Lither (Triclosan) is the main component o
	5- 2,4,4' trichloro-2-hydroxydipne	nylether (Triclosan) is the main component o
	antiperspirant formulation.	
	T.	b. False.
	a. Her slear to translucent	aqueous or hydroalcoholic solutions, used as pl
	6Are clear to transfucent	
	balancers.	
	a. Toners.	b. Moisturizers.

d. None of the answers. 7- is the reduction of the rate of trans-epidermal water loss through damaged skin

or protecting healthy skin from the effects of severely drying environment via

b. Occlusion.

d. None of the answers. 8-is the growing phase that determines hair length and can last for 1-10 years.

b. Catagen phase.

d. None of the answers.

applying quaternary ammonium complexes, mineral oils, or albumin.

7. The following data were obtained by liquid-chromatography on a 20-m capillary column (5 points) and 0.293 mL/min flow rate.

e igrobia to do	$t_R(min)$	W, (min)
Nonretained	1.19	_
A	8.04	0.15
В	8.26	0.15
C	8.43	0.16

- Calculate and comment on the results when necessary.

 a) The number of theoretical plates for each compound.

 b) The average number of theoretical plates for the column.

 c) The average plate height for the column.

 d) The resolution, R_s.

6	The selectivity factor, α , for the pairs of A , B and B , C .
	is a sample containing for and Corns analyzed to a cell with a particle and of 1,000

unkn	own sample.	, part and the con	ttion of 0.30 µM CPZ was sp centration of chlorpromazin (3 point	a peal piked t ne in t ts)
he co	ncentrations exacyanorus	s of Fe^{3+} and Cu^{2+} in a mixture can thenate (II), $Ru(CN)e^{4-}$ which f	n be determined following the	heir re
lmax =	= 550 nm)	and a discount of which I	orms a purple-blue comple	ex wit
may =	= 550 nm)	and a discount of which I	orms a purple-blue comple	ex wit
may =	= 550 nm) tivities (L m following tab	and a pale-green complex with or complex with the complexes of the metal complexes of the c	orms a purple-blue complete $(\lambda_{max} = 396 \text{ nm})$. at the two wavelengths are s	The summ
lmax =	= 550 nm) tivities (L m following tab Fe ³⁺	and a discount of which I	orms a purple-blue comple	The summ
bsorp the f	= 550 nm) tivities (L m following tab Fe ³⁺ Cu ²⁺	and a pale-green complex with or cm ⁻¹) for the metal complexes ble. E at 550 nm (L mol ⁻¹ cm ⁻¹) 9970 0.0	orms a purple-blue complete L	The summ:
bsorp the f	Fe ³⁺ Cu ²⁺ sample con	and a pale-green complex with or cm ⁻¹) for the metal complexes ole. E at 550 nm (L mol ⁻¹ cm ⁻¹) 9970	orms a purple-blue complete L	The summ:
bsorp the f	Fe ³⁺ Cu ²⁺ sample con	and a pale-green complex with the state of t	orms a purple-blue complete L	The summ:
bsorp the f	Fe ³⁺ Cu ²⁺ sample con	and a pale-green complex with the state of t	orms a purple-blue complete L	The summ:
bsorp the f	Fe ³⁺ Cu ²⁺ sample con	and a pale-green complex with the state of t	orms a purple-blue complete L	The summ:
bsorp the f	Fe ³⁺ Cu ²⁺ sample con	and a pale-green complex with the state of t	orms a purple-blue complete L	The summ:
bsorp the f	Fe ³⁺ Cu ²⁺ sample con	and a pale-green complex with the state of t	orms a purple-blue complete L	The summ:
bsorp the f	Fe ³⁺ Cu ²⁺ sample con	and a pale-green complex with the state of t	orms a purple-blue complete L	The summ:
bsorp the f	Fe ³⁺ Cu ²⁺ sample con	and a pale-green complex with the state of t	orms a purple-blue complete L	The summ:

	1 O stions		bla bolow	(25 points) (4 points)
I: Problems and	d Questions	issing values	in the table below.	Pathlength
Apply Beer's La Analyte] (M)	d Questions we to determine the m Absorbance (A)	%T	Molar absorptivity (L mol ⁻¹ cm ⁻¹)	(cm)
	Absorbance		1120	1.00
1.40 × 10 ⁻⁴		250/	750	1.00
	lisadvantages of the F	27.35%	to di Te esia gerring si	(2 points)
				(b) Chemically (ii)
What factor examples.	s influence the selection	on of a workir	ng electrode in voltamm	etry? Provide (2 points)
examples		on of a workir		(4 points)
examples	following terms:	on of a workin	ng electrode in voltamme	(4 points)
examples		on of a workin		(4 points)
4. Define the	following terms:	on of a working		(4 points)
4. Define the	following terms:			(4 points)

d) Hypochromic effect

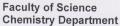
	(a) Dre	opping aphite e	mercur	у.	av an p		wpm,	(b) Me (d) Pla	ercury		natwada	mates ini 2708		
	(d) No The auxil (a) Dro (c) Gra	on-compiary (coopping applies of the coopping)	plexing ounter) mercur	, ensuri electro y.	ing it d	oes not	form c	complex s(b) Me	ercury		nat wa da	ni eros		
21.	Which of (a) Hi (b) Cl (c) Re	the foll ghly so nemical edox-ac	owing luble to ly inert	is <u>NOT</u> increa i, mean it parti	se ioni ing it d icipate	c streng loes not s in red	tic of a gth. react v	good swith other	upport	ing elec		?		
			? fficienc	y.	ele size	of the s	(b) No e	ffect on	et the ef	ncy.	ey of sep	aration	in
19.	(c) Ref What doe (a) Ti (b) Di (c) De	king faction is retended to the stance of the control of the contr	time. tion tine en for s moved respons	ample i	injectio		he anal	(d) Re	pacity solutio	n.	tor.			

 9. What are the reasons leading to chemical deviations in UV-Vis molecular spectroscopy? (a) Instrumental errors in wavelength calibration. (b) Chemical phenomena involving analyte molecules such as association, dissociation, and interaction with the solvent. (c) Variation in the intensity of the light source. (d) All of these. 10. Wavelength Selector is a device used in the spectrophotometer to function as (a) a light source. (b) a detector. (d) a monochromator. 	
(c) a nebulizer. (d) a monochromator. (d) a monochromator. (e) a nebulizer. 11. The diagram below shows a Hollow Cathode Lamp. Identify its components.	
11. The diagram below shows a Honow Cambue Damp. Identity	
(a) (i) Quartz window (ii) Anode (iii) Cathode (iv) Ne (b) (i) Cathode (ii) Anode (iii) Ne (iv) Quartz window (c) (i) Anode (ii) Cathode (iii) Quartz window (iv) Ne (d) (i) Anode (ii) Cathode (iii) Ne (iv) Quartz window	
12. What is the primary purpose of Zeeman background correction in Atomic Absorption Spectrosc (a) To enhance the atomization process. (b) To correct the spectral interferences caused by background molecular absorption. (c) To increase the resolution of the absorption peaks. (d) All of these. 13. In size exclusion chromatography, solute molecules are separated based on (a) Molecular phase. (b) Molecular composition. (c) Molecular geometry and size. (d) Molecular formula. 14. Ion exchange chromatography achieves separation based on (a) Electrical mobility of ionic species. (b) Electrochemical process. (c) Partition chromatography. (d) Adsorption chromatography. 15. Column efficiency is measured in terms of the number of theoretical plates (N), which is: (a) Inversely proportional to square root of plate height (H). (b) Directly proportional to plate height (H). (c) Directly proportional to plate height (H). (d) Inversely proportional to plate height (H).	ору
16. The basis of the chromatography technique for separating components of a mixture is (a) the differing movement of particles of different mass in an electrical field. (b) the interaction of the components with stationery and mobile phases. (c) the absorption of infrared radiation by the components. (d) the deflection of charged particles in a magnetic field.	
 17. Retention factor, k, describe (a) The distribution of an analyte between stationery and mobile phases. (b) The migration rate of an analyte through a column. (c) The velocity of the mobile phase. (d) Both (a) and (c). 	

Assiut University Date: 24/5/2025 Faculty of Science Time: 2 hours **Chemistry Department** Instructor: Prof. Dr. M. S. Ibrahim Instrumental Analysis (C-445) (Final Exam., Second Semester 2024-2025) Answer the following questions: : (50 points) Part I: Choose the correct answer: (25 points) 1. Using woodward-Fieser rule, rank each of the following molecules from highest to lowest λ_{max} (nm). a) II>III>I (II) b) I>II>III c) III > II > I

- 2. Which of the following techniques allow for the direct analysis of solid metal samples?
 - a) Flame atomic absorption spectroscopy. b) Graphite furnace absorption spectroscopy.
 - c) Both (a) and (b). d) None of these.
- 3. The interference caused by phosphate (PO43-) or sulfate (SO42-) in the atomic absorption spectroscopy (AAS) determination of calcium (Ca2+) can be eliminated by
- (b) The presence of releasing agent (Sr²⁺ or La³⁺) (a) Addition of excess concentration of NO₃.
 - (c) Addition of excess concentration of Ba2+. (d) All of these.
- 4. Which of the following atomization methods is used for mercury determination?

 - a) Flame method. b) Hydride generation method. d) Cold-Vapor method.
- c) Electrothermal method. 5. The principal use of the hollow cathode lamp in AAS is that:
 - (a) It generates atomic emission lines using laser source.
 - (b) It generates atomic emission lines using the element which is being analysed.
 - (c) It generates atomic emission lines using any element.
 - (d) All of these.


d) III > I > II

6. Ionization of analyte atoms in flame AAS can be eliminated by:

Analyte ↔ Analyte⁺ + ē

- (a) Increasing the temperature of flame. (b) Using oxygen or nitrous oxide as an oxidant.
- (c) Addition of complexing agent (EDTA). (d) Addition of potassium salt.
- 7. Which of the following is a source of UV radiation?
 - a) Tungsten lamp. b) Deuterium lamp.
 - c) Both (a) and (b) d) None of these.
- 8. What is the main function of a double-beam spectrophotometer compared to a single-beam spectrophotometer?
 - (a) It enhances the absorption of a single sample.
 - (b) It enhances the resolution of the monochromator.
 - (c) It split the light into two beams for simultaneous measurement of sample and reference.
 - (d) All of these.

Assiut University

Final Examination for B.Sc. (Chemistry major)
Applied Organic Chemistry (412 C): (Polymers & Fibers)

Date: Friday, 30/05/2025 Time: 2 hours + 15 min. Oral

Answer Seven Only the following questions: (50 points)

- 1) "Carbon Fibers...... the wonder polymer...... stronger than the steel". Show by equations the steps of production of this polymer.
- 2) Explain by (equations or structures): Types of copolymers- Backbiting- Dianion, Self initiator.
- 3) In the living polymerization, show by equations how can we put an ending for the living chain (Carbanion).
- 4) Is it possible to make polyethylene from cyclohexane? If not, say why? then show examples of ring opening polymerization?
- 5) Mention the : Advantages, Disadvantages, Uses and Care for:
 - i) Cotton ii) Wool iv) Acrylic v) Polyesters
- 6) Why would a hole appear when a dilute alkali is spilt on a fabric made of polyester? then, define the peptide linkage and Illustrate your answer with 2-aminopropanoic acid?
- 7) Explain the term "vulcanization of rubber". What are the differences between natural rubber and vulcanized rubber?
- 8) What are the three main types of degradable plastics? Why are they degradable?

Oral	(اجباري):	(10 Mark

Complete the following table:

Polymer	Abbreviation	Structural formula of monomer	Structural formula of polymer
Polymethylmetha- acrylate	(i)	(ii)	(iii)
Polyvinyl chloride	(iv)	(v)	(vi)
Polypropylene	(vii)	(viii)	(ix)

Good Luck
Examiner:

Prof. Dr. Kamal Ibrahim Aly

III]- Mark Right (√) or Wrong (X) on the following statements, and		
Justify your answer: $(2 \times 10 = 20 \text{ M})$	arks))
1- Natural gas and light oil fractions are best feed stocks for synthesis gas.2- Hard coal contains higher amount of water and carbon.	()
3- The production of synthesis gas from natural gas and oxygen involves	()
4- Autothermal process is only involved in synthesis gas production from	()
5- Carbon monoxide can be applied with H ₂ for production of methanol	()
6- Yeast can synthesize protein from methanol but not from ethanol. 7- Cyanuric chloride is a Dimer of cyanogen chloride.	()
8- Ag catalysts are not preferred for oxidative dehydrogenation of CH ₃ OH to HCHO	()
9- Methanol has low octane number with clean combustion.	()
10- The Code number of CHFCl is 12	()

Good Luck

Prof. Dr. Aboel Magd A. Abdel Wahab

May 18, 2025 Time: 2 hrs

Petrochemical Industries (409C) Final Exam. for the 4th level Students (Industrial Chemistry)

Answer on the following Questions:

(50 Marks)

Note: Support your answer with chemical equations whenever possible.

I]- Write on the following:

 $(3 \times 5 = 15 \text{ Marks})$

- 1- The different energy sources for chemical industries.
- 2-The different applications of Hydrogen gas in Refinary and Petrochemical Industries.
- 3 Preparation and Application of Single cell proteins.
- 4 -The present and future applications of Methanol.
- 5 The principal industrial synthesis based on propylene
- II]- Complete the following equations:

 $(3 \times 5 = 15 \text{ Marks})$

1- CH4 + O2 + H2O	Catalyst	
2- 6 Urea molecules	Catalyst	?
3- CH2 = CH2 + Cl2	Catalyst	?
4- HCOOCH3 + HCHO	Catalyst	?
5- Toluene + Ethyl Chloride	Catalys	?

ملحوظة هامة: الأسئلة صفحتان

Assiut University
Faculty of Science
Chemistry Department

May: 2025 Time: 2 hours

Second Semester Examination for Plant and Microbial Biotechnology Program Students Subject: Analytical Chemistry (C- 460)

Answer the following questions:		(50 Marks)
Q1) Answer two only from the following	ing:	(12.5 Marks)
a) Write on the following:		
i- The limitation of volumetric p	precipitation titration react	ion.
ii- Half wave potential (E _{1/2}) and	factors affected on it.	
b) Complete:		
i- The oxidizing agent is	and the reducir	ng agent is
ii- The indicator in Mohr metho	od is while in Vo	olhard method and in Fajan
method are		
c) Give the reason for:		
i- Oxygen must be removed from	n the cell before recording	g the polarogram in polarographic technique.
ii- Mohr method is applicable in	neutral solution.	
Q2) Answer two only from the following	ing:	(12.5 Marks)
a) Write on:		
i- Determination of the equivale	ent point in potentiometric	c titration and its advantages.
ii- Standard hydrogen electrode.		0
b) During the titration of 100ml 0.1	N HCl using 0.1N NaOF	I . Calculate the pH value:
	ii- after the addition of 50	
iii- at the end point	iv- after the end point.	
c) Define the following:		
i- Ilkovic equation	ii- Buffer solution.	
Q3) Answer two only from the following	ing:	(12.5 Marks)
a) Write on the following:		
i- Interferences and limitation of		
ii- Types of polarographic current	nt.	
b) Show how you can prevent chlor	ide ions from the interacti	on with silver thiocyanate in Volhard method.
Q4) Answer two only from the following	ing:	(12.5 Marks)
a) Write on the following:		
	ii- Advantages of droppin	
b) Drive the pH for the titration of 100ml (1N) CH ₃ COOH using (1N) NaOH. (k _a =1.86x10 ⁻⁵)		
	ii- During the titration.	
iii-At the end point.	iv- after the end point.	
c) Define:		
i- Molar conductivity, equivale	nt conductivity and specif	ic conductivity.
ii- Nernst equation.	Good Luck	-
	: Prof. Dr. Azza M.M.Ali	
Examiner	I IOI. DI. AZZa IVI.IVI.AII	

2. The reference electrode that is thermally a) Calomel electrode	b) Silver-silver chloride electrode d) Both are unstable
c) Both are equally stable3. Mercury covered by a layer of mercuror solution is a description of which of the	us chloride in contact with saturated potassium chloride
a) Sodium	b) Calcium d) Calomel
c) Silver/silver chloride	
4. A very common interference for the glass	b) F
a) CO ₂	d) EDTA
c) Na ⁺	a) EDIA
5. Indicator electrodes that respond directly	b) Inert metal electrodes
a) Electrodes of first kind	d) Electrodes of second kind
c) Reference electrodes	d) Electrodes of second kind
6. Electrodes made of pH sensitive glass n	hay be used in the analysis of
a) pCO ₂	b) pO ₂
c) pH	d) (a) and (c) are correct
7. In potentiometry, how many electrodes a) Three electrodes (indicator, auxiliar)	y, reference)
b) Two electrodes (indicator, reference c) Four electrodes (indicator, auxiliary	, counter, reference)
d) Vou don't need electrodes to make t	he measurements.
8. The EMF of the sample cell is determin	ed by the following formulas
a) $E_{cell} = E_{ind.} - E_{ref.} + E_j$	
b) $E_{cell} = E_{ref.} - E_{ind.} - E_{j}$	
c) E _{cell} = E _{ind.} - E _{ref} - E _j	
DE FEE	d) What is the inolecular weight of a compound it is has a r
9. The reaction that occurs in the electroly a) $CO_2 + H_2O \rightarrow H_2CO_3 \rightarrow H^+ + HCO$	te solution of the pCO ₂ electrode resulting in a change in pH is O_3^-
b) $2H^+ + CO_3^{-2} \rightarrow H_2CO_3$	
c) $H_2CO_3 \rightarrow H_2O + CO_2$	
1) CO + II O . 211+ + CO.2	ohove on on in
10. The suitable reference electrode for thea) Calomel electrode	electrochemical analysis at temperatures above 80 °C is b) Silver/ Silver Chloride electrode
c) a and b	d) Mercury electrode

Good Luck,,,,

Examiners: Prof.Dr. Hassan Sedaira
Prof.Dr. Elham Y. Hashem
Dr. Mohamed Koth

Department of Chemistry

Date: 22/5/2025

Time: 3 hours

Faculty of Science

Final Examination of Selected Topics in Analytical Chemistry (C-444) for 4th level Students

Answer Five Questions Only:

(50 Mark)

- I. a) What is the distribution coefficient and the distribution ratio?
 - b) Discuss the effect of pH on the extraction of benzoic acid from aqueous solution into ether.
 - c) Two extractions with 25 ml portions of an organic solvent removed 89% of a solute from 100 ml of an aqueous solution. Calculate the K_D of the solute.
 - d) The distribution coefficient of I₂ between an organic solvent and water is 6.0 (org / aq). If 200 ml of 0.001 M aqueous I₂ is shaken with 100 ml of organic solvent until equilibrium is reached, how many milliliters of 0.06 M Na₂S₂O₃ is required to titrate the I₂ in a 25 ml aliquot of the organic solvent?
- II. a) How can you make metal ions to be soluble in organic solvents?
 - b) Give an example for the extraction of metal ions as their ion association complexes.
 - c) Describe the equilibrium steps involved in the solvent extraction of metal chelates.
 - d) Ninety percent of a metal chelate is extracted when equal volumes of aqueous and organic phases are used. What will be the percent extracted if the volume of the organic phase is doubled?
- III. a) Deduce Lambert-Beer's Law and clearly define each term used.
 - b) Write short notes on Yoe's method of molar ratio.
 - c) What types of electrons in molecules are generally involved in the absorption of UV/Vis radiation?
 - d) What is the molecular weight of a compound if it has a molar absorptivity of 850, and 0.052 gm/40 ml of the compound yield 17% transmittance in a cell with 1 cm pathlength.
- IV. a) Write short notes on internal conversion and stock shift.
 - b) Describe the principles of fluorescence techniques, why is fluorescence more sensitive than molecular absorption?
 - c) Write on photometric titration of mixture of Bi³⁺ and Cu²⁺ with standard EDTA solution and skech the graph.
 - d) A simultaneous determination of Co²⁺ and Ni²⁺ can be based upon the UV/Vis absorption of their 8-hydroxyquinolinal complexes. The molar absorptivities of Co-complex are 3529 and 428.9 while those of Ni-complex are 3228 and 10.2 L mol⁻¹ cm⁻¹ at 365 and 700 nm respectively. Calculate the molar concentration of Co and Ni in a solution mixture, its quinolinal complex has an absorbance of 0.598 and 0.039 at the wave length 365 and 700 nm respectively.
- V. a) What are the different types of ion selective electrodes (ISE)? Explain only one of them.
 - b) Why is an internal reference electrode needed inside a glass electrode?
 - c) Discuss the principals of potentiometric titration and explain how the end point is determined using it.
 - d) What is the source of the junction potential and how does it affect the measured potential?

VI. Choose the correct answer for the following:

- 1. In Daniel cell Zn/ZnSO₄ acts as
 - a) Cathode
 - c) Both a and b

- a) Anode
- d) Reference electrode

See next page,,,,

1

(15 x 1=15 marks)

Q3: Choose the correct answer. Note: Indicate your answer in a table (Table 2).

1- Lactose is a disaccharide, formed from
a) 2 Glucose units b)2 Fructose units c)Glucose, Galactose units d)All of above
2 are reducing sugars because they contain an aldehyde group in their open-
chain form.
a) Acetic acid b) Aldoses c) Ketoses d) Carbonyl
3- Reaction of glucose with Fehling solutions produces
a) Glyconic acid b)Acetic acid c)formic acid d)Not react
4- Fructose is an optically active compound which containschiral carbon
atoms.
a) 3 b) 4 c) 5 d) 6
5 is a polysaccharide formed from poly glucose monomers.
a) Ammonia b) Lactose c) Starch d) Fructose
6- Maltose is a Sugar.
a) Reducing b) Oxidizing c) Basic d) All of above.
7- Glucose has isomers.
a)17 b) 16 c) 12 d) 10
3- Monosaccharide can be oxidized by
a) Fehling solutions b) Tolen's reagent c) HNO ₃ d) All of above
9- Sucrose is a disaccharide produces from binding glucose and fructose monomer by
bond.
a) Ionic b) Covalent c) Glycosidic d) Chelating
10-Monosaccharaides have as a general formula.
a) $C_nH_{2n}-2$ b) $C_nH_{2n}O_n$ c) C_nH_{2n} d) $C_nH_{2n}N_2$
11-Alanine is a amino acid.
a) Neutral b) Acidic c) strong acidic d) Basic
12-Amino acids have as function groups.
a) Carboxylic and Amino b) Only Amino
b) Carboxylic and Amide d) Only Carboxylic
13-Glycine is a simple one of acids.
a) Halogen b)Carboxyl c) Amino d)Hydroxyl
14-Simple lipids are esters of fatty acids with
a) Fatty alcohol b) Acetic acid c) Methanol d) H ₂ O
15 are complex biological molecules composed of long chains of amino acids.
a) Fats b) Oils, Waxes c) Terpenoids, Phosphatides d) Proteins
انتهت الاسئلة بالتو فيق
الممتحن / د. أماني عبدالرحمن عثمان

Assuit University
Faculty of Science
Chemistry Department

Time: 2 hrs Course Code: C-413

Final Examination of Biochemistry (413 C) For 4th Year Students

Answer on the following questions:

(50 Marks)

Q1: Show the difference between the following pairs: (4 x 5=20 marks)

1- Simple lipids and Derived lipids. 2- DNA and RNA. 3- Neutral fats and Waxes. 4- Phospholipids and Lipoproteins. Q2: Write True ($\sqrt{ }$) or False (x) for the following statements: (15 x 1=15 marks) Note: Indicate your answer in a table (Table 1). 1- All carbohydrates are polyhydroxy aldehydes or ketones or compounds that hydrolyze to produce them. 2- Glucose provides energy for the brain and ½ of energy for muscles and tissues.() 3- Monosaccharides contain chiral carbon atoms. () 4- A reducing sugar is a sugar with an aldehyde group that reduces a metallic oxidizing agent. () 5- A strong oxidizing agent such as HNO₃ can oxidize the aldehyde and the alcohol 6- Cellulose is a polymer of glucose that forms plant cell walls. () 7- Maltose is a disaccharide with an a(1, 4) glycosidic link between (C1, C4) OH of () 2 glucoses. 8- Lipids are compounds of biological origin that dissolve in non-polar solvents. () 9- Lipids include fats, oils, terpenoids, phosphatides, waxes and starch. 10-Lipoproteins are important cellular constituents that are present both in the cellular and subcellular membranes. 11-Cholesterol enters in membrane structure and is used for synthesis of adrenal cortical hormones, sex hormones vitamin D3 and bile acids. 12-Diasteriomers are stereoisomers that are not enantiomers. 13-Epimers, two sugars that different only in the configuration around one carbon atom. 14-Chiral centers are carbon atoms which have 5 different atoms bonded to it. ()

15-Amino acids bind with each other by glycosidic bond to produce proteins. ()

Concrete Technology (407 Chem.) Final Exam

Date: 22/5/2025
Time Allowed: 2 hours

b. Differentiate between:

- 1. Shotcrete & Lightweight concretes.
- 2. Segregation & Bleeding in concrete

Question No. 4: Problem solving (5 marks)

Design the concrete mix by weight & volume using absolute volume method, considering the below information:

- o The fresh concrete consistency is Plastic
- o Consider water cement ratio = 50%
- o The compressive strength after 28 days should= 300kg/cm²
- o The passed percentage of aggregate through sieve 3/16 = 35%
- o Specific weight of cement = 3.15
- o Specific weight of aggregate (sand & gravel) = 2.65
- o Volumetric weight of aggregate (sand & gravel) = 1700 Kg/cm²

With my best wishes

Concrete Technology (407 Chem.) Final Exam

Date: 22/5/2025
Time Allowed: 2 hours

16. Pick up the incorrect statement from the following:

- A. Water cement paste hardens due to hydration
- B. During hardening cement binds the aggregates together
- C. Cement provides strength, durability and water tightness to the concrete
- D. Water cement ratio has no impact on concrete compressive strength
- E. All the above.

17. Factors that affect consistency:

- A. Materials: mainly water percentage & Cement Fineness
- B. Aggregate size
- C. Weather
- D. Admixtures
- E. All the above

18. Factors affect compressive strength:

- a. Materials, design mix
- b. Manufacturing of concrete (mixing, transportation, casting & compacting)
- c. Curing
- B. Concrete age & tests circumstances
- C. All the above

19. The maximum content of cement in concrete is

- A. 450 Kg/m³
- B. 350 Kg
- C. 250 Kg/m³
- D. 550 Kg/m³
- E. 700 Kg

20. Concrete is a commonly used structural material because of its

- A. Strength and Durability
- B. Fire resistance
- C. Sound Insulation
- D. Cost effectiveness
- E. All the above

Question no. 3: Essay (20 mark)

a. Write notes about

- 1. Two Types of Concrete Admixtures (including definitions & functions)
- 2. Two examples of Non-Destructive testing of concrete (including testing steps)
- 3. Creep (Illustrative drawings are necessary)

Date: 22/5/2025

Time Allowed: 2 hours

10. High strength concrete may has grade = kg/cm²

- A.200
- B.225
- C.275
- D.350
- E.700

11. Permissible compressive strength of concrete grade 300 is

- A. 100 kg/cm²
- B. 150 kg/cm²
- C. 200 kg/cm²
- D. 250 kg/cm²
- E. 300 kg/cm²

12. The factor/s which affects workability, is

- A. water content and its temperature
- B. shape and size of the aggregates
- C. grading and surface textures of the aggregates
- D. air entraining agents
- E. all the above.

13. Pick up the correct statement from the following:

- A. An increase in water content must be accompanied by an increase in cement content
- B. Angular and rough aggregates reduce the workability of the concrete
- C. Large size aggregates increase the workability due to lesser surface area
- D. The slump of the concrete mix decreases due to an increase in temperature
- E. All the above.

14. Shrinkage:

- A. Occurs in Concrete when it got hardened in air
- B. It causes problems in concrete in all causes
- C. Drying shrinkage is not affected by concrete mix components
- D. All of the above
- E. None of these

15. Durability:

- A. is concrete resistance against deterioration
- B. includes concrete resistance for absorption and permeability
- C. is affected by cement type
- D. All of the above
- E. None of these

Concrete Technology (407 Chem.) Final Exam

Date: 22/5/2025
Time Allowed: 2 hours

4. Slump shape may be:

- A. Flow
- B. Shear
- C. True
- D. All the above
- E. None of these

5. Concrete with required compressive strength = 350 Kg/cm² includes around of cement:

- A 350 kg
- B. 150 kg
- C. 350 g
- D. 3 bags
- E. 450 kg

6. Pick up the incorrect statement from the following:

- A. Tricalcium silicate (C₃S) hydrates rapidly
- B. Tricalcium silicate (C₃S) generates more heat of hydration
- C. Tricalcium silicate (C₃S) develops early strength
- D. Tricalcium silicate (C₃S) has more resistance to sulphate attack
- E. None of these.

7. The heat of hydration of cement is dependent on:

- A. Composition of cement
- B. Fineness of cement
- C. Temperature
- D. All of the above
- E. None of these

8. Water cement ratio is

- A. volume of water to that of cement
- B. volume of concrete to that of water
- C. weight of concrete to that of water
- D. weight of water to that of cement
- E. both (A) and (D) of the above.

9. Pick up the correct statement from the following:

- A. Water enables chemical reaction to take place with cement
- B. Aggregate is not required for the hydration of cement
- C. Water is not required for hydration of cement
- D. Strength of concrete structure doesn't depend upon cement
- E. Both (A) and (B) of the above.

Date: 22/5/2025
Time Allowed: 2 hours

- 21. The hardened concrete ended by the final setting time.
- 22. Consistency refers to the degree of wetness, it refers to Relative Fluidity which means the percentage between water quantity and the dry material volume, so it can't be dry.
- 23. Slump test can be used to measure fresh concrete properties.
- 24. Size of aggregate is one of the Factors that affect workability.
- 25. Compacting factor test can be used to determine Concrete workability.
- 26. Compressive strength of concrete is one of the green concrete properties.
- 27. Mechanical Concrete mixing is done only in ready-mix plants.
- 28. Using clean aggregate is an important factor while mixing concrete.
- 29. If cement/aggregate ratio is 1:6 it is rich concrete mix, while if the ratio reaches 1:4 the mix becomes so poor.
- 30.5C approach decarbonization levers are clinker, cement, concrete, construction, and (re)carbonation.

Question No. 2: Multiple Choice, choose the appropriate answer (10 mark)

- 1. Mortar is:
 - A. Cement + Gravel
 - B. Cement + water + Gravel
 - C. Fine Aggregate + Gravel + water
 - D. Cement paste + Sand
 - E. None of these.
- 2. Since adding water, the Concrete passes with the following main phases:
 - A. Fresh Concrete + Green Concrete
 - B. Hardened Concrete + Fresh Concrete
 - C. Preparation phase + Green Concrete
 - D. Fresh Concrete + Green Concrete + Hardened Concrete
 - E. None of these
- 3. The main properties for fresh concrete:
 - A. Consistency
 - B. Segregation
 - C. Workability
 - D. Bleeding
 - E. All the above

Date: 22/5/2025 Time Allowed: 2 hours

Notes: Exam consists of 6 pages, Solve all questions

Question No. 1: Indicate whether the sentence or statement is true or false (15marks)

- 1. Concrete is a mixture of cement, water and aggregates and in some cases admixtures.
- 2. Concrete can't be considered as a permeable material by nature.
- 3. The quality control of concrete structures is more guaranteed than steel structures.
- 4. Cementing medium (paste) generally, is the product of reaction between hydraulic cement and water.
- 5. There are only two types of shrinkage Plastic Shrinkage & Autogenous Shrinkage.
- 6. The Passive Protection Layer that is formed by concrete, supports protecting steel reinforcement.
- 7. In case of mixing more than one type of admixture, carefully check the impact on concrete first before usage.
- 8. Self-compacting concrete is also known as Self-consolidating concrete (SCC), is a highly flowable concrete that can spread into place & fill the formwork.
- 9. Shotcrete is applied by either the dry or wet process.
- 10. Self-Healing concrete includes the technique of using healing bacteria.
- 11. C₃A causes many problems in cement, and it can be eliminated.
- 12. In traditional concrete, the failure occurred in the cement paste.
- 13. Creep is defined as the decrease in strain under a sustained constant stress after considering other time-dependent deformations.
- 14. Around 75% of concrete shrinkage occurred during the first year of concrete age.
- 15. Consistency is one of the main properties for hardened concrete.
- 16. Both slump test & Schmidt hammer are non-destructive testing of concrete.
- 17. Concrete is made with several types of cement and may contain pozzolan & admixtures.
- 18. Fresh concrete has the ability to take the form of any desired shape.
- 19. Coarse aggregate means sand + cement while fine aggregate means sand only.
- 20. The start of Fresh concrete phase is by the initial setting time.

Maria Land	*
Assiut University	May: 2025
Faculty of Science	Time: 2 hours
Chemistry Department	
Second Semester Examinat Subject: Analytical	
Answer the following questions:	(50 Marks)
Q1) Answer two only from the following:	(12.5 Marks)
a) Write on the following: i- Acid – Base	
 b) If you are provided with 0.1M NH₄OH (100ml) and i- The beginning of the titration. iii - At the end point and mention the indicator uses) Give the reason for: 	nd is titrated with 0.1 M HCl. Drive the pH value at: ii-After the addition of 50 ml HCl.
i- Supporting electrolyte is used in polarograph ii - Mohr method is applicable in neutral solution	
Q2) Answer two only from the following:	(12.5 Marks)
is used in the titration of weak acid v	d are used as indicator in Volhard
i- Half wave potential and factors affected on it. c) Give the reasons for:	
i- Immiscible liquid nitrobenzene is added in the ii- Pure nitrogen is passed through the polarograph	
Q3) Answer two only from the following:	(12.5 Marks)
 a) Define Ilkovic equation and then calculate the diffusion coefficient D= 0.72x10⁻⁵ cm b) Define the following: 	Efusion current (i _a) for the reduction of 5x10 ⁻⁴ M Zn ⁺² 1 ⁻² sec, m=15mg/sec and t= 4 sec/drop.
i- Molar conductivity, specific conductivity and e ii- Nernst equation.	quivalent conductivity.
c) The equivalent weigh of KMnO ₄ is 1/5 its molec its molecular weight in basic medium. (Comm	ular weight while in basic medium the equivalent is 1/ent).
Q4) Answer two only from the following:	(12.5 Marks)
a) Define the following:	
i- Standard hydrogen electrode.b) Complete:	ii - Buffer solution.
	ve potential E _{1/2} and diffusion current i _d istion is
c) Write on the determination of the equivalent point is advantages.	in potentiometric titration. (two only) and its
Go	ood Luck
Examiner: Prof.	Dr. Azza M.M. Ali

- D)Dry process in cement kilns requires less fuel compared to the wet process .
- E) C₄AF makes cement more resistant to seawater.
- F) When the content of PbO in lead glass is more than 18% then it is named crystal glass.
- G)Oxides, nitrides and borides are not considered ceramics.
- H) C-glass is an aluminosilicate glass with high MgO content.
- 1) Breaking of tempered glass produces the characteristic "spider web" cracking pattern.

Part II: (17 points)

Answer Four Only from the following questions:

- 1) Explain the classification, properties, and applications of the Pigments
- 2) Write on the composition, applications and advantages of water-based printing inks.
- 3) Discuss the types of pulping, and the stages of manufacture of paper?
- 4) Compare between the properties in Dyes and Pigments?
- 5) Write short notes about the following two Theories:
 - i) Witt's Theory
- ii) Armstrong Theory?

Examiners

Prof. Dr. Aref A. M. Aly

Prof. Dr. Kamal Ibrahim

D) Draw the system used in the rolling process in glass shaping and comment.

. 4. Choose the correct answer in the following (4Marks)

A) Which of the following cement components possesses a high late strength (more than 7 days)?

 $-C_3S$ $-C_2S$ $-C_3A$ $-C_4AF$

B) Glass is physically defined as

i) non rigid ii) supercooled liquid

iii) of definite melting point iv) ci

iv) crystalline.

C) E_⊤glass is characterized by its:

i. good electrical properties ii. chemical resistance

iii. high tensile strength iv. all these items

D) Properties of glass-ceramics are:

i) zero porosity ii) toughness iii) translucency

iv) all these properties.

5. Mark the correct sentence with ($\sqrt{\ }$) and the wrong one with(\times)

(9 Marks)

A) Devitrification of glass is more likely on the tin side of the glass manufactured by the float process.

B) Annealing of glass articles is a process performed to reduce the strain in the glass products above a predetermined maximum.

C) Froth floatation of phosphatic rock does not require a deslimed feedstock.

Chemistry Department

Faculty of Science

Time: 3h 2h

May 2025

Assiut University

Final exam of course 453C (industrial chemistry)

for 4th level Biotechnology program students

Part I

(33 marks)

Answer the following questions

- 1. Complete the following (4 Marks)
 - A) Calcination of phosphatic rock used for phosphatic fertilizers is used to remove.......
- B) During decomposition of phosphoric rock by sulphuric acid, evolved HF reacts with silica present in the rock to form the gaseous products......and.......
 - C) Chalk has a rendering it a suitable raw material for wet process of cement manufacture
 - D) $3(Al_2O_3.2SiO_2.2H_2O) \rightarrow + + 6H_2O$ (ceramic reaction)
 - 2. Give reasons for FOUR of the following (8 Marks)
 - A) Firing of ceramics is an important process in the manufacture of ceramic products.
 - B) Applying neutralising mixtures in the third stage (ageing) of superphosphate manufacture.
 - C) Importance of C-S-H (calcium silicate hydrate)-hydrogel which results upon cement hydration due to reaction of C_2S or C_3S with H_2O .
 - D) Glass-reinforced plastic(GRP) resists compressive and tensile forces very well.
 - D) Firing too hot and too long of glass melt causes devit .