Assiut university	Final exam	Industrial chemistry
Faculty of science	Time: 2 hours	Fourth level
Chemistry department	Unit process in fertilizer industry	(400 Eng)

First question

(20 degrees)

A burning furnace in fertilizer factory consumes 25 ton per day sulfur. Temperature of exhausted gases is 1000°C.

- Calculate the air consumption per day.
- Calculate the excess air ratio.
- Calculate the final composition of exhausted gases.

If,
$$S_{(s)} + O_{2(g)} = SO_{2(g)}$$

$$\Delta G^{\circ} = -300 + 0.005 T$$

kJ/mole

Second question

(15 degrees)

For producing MAP fertilizer needs to react ammonia with phosphoric acid (85 %) at 100°C.

- The amount of water content in the final product.

If,
$$NH_{3(g)} + H_3PO_{4(1)} = NH_4H_2PO_4$$

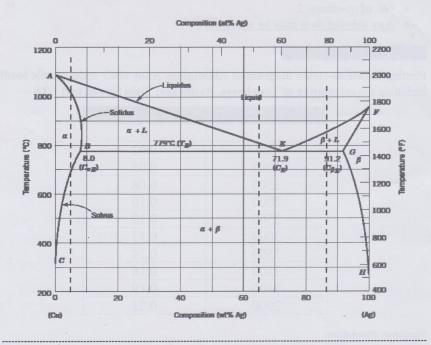
$$\Delta G^{o} = -105 + 0.15T$$

kJ/mole

Third question

(15 degrees)

A heat exchanger used for cooling sulfur dioxide with rate 100 m³/hour from 600 to 450°C. The water charges at room temperature and outlet at 99°C.


- Calculate the flow rate of water per second.

Note,
$$C_{p_{N_2}} = 7 \text{ Cal/mole.K}$$
, $C_{p_{O_2}} = 7.12 \text{ Cal/mole.K}$
 $C_{p_{H_2O_1}} = 45 \text{ Cal/mole.K}$, $C_{p_{SO_{2g}}} = 6.5 \text{ Cal/mole.K}$, $C_{p_{H_2O_g}} = 6.8 \text{ Cal/mole.K}$, $C_{p_{H_2O_g}} = 6.8 \text{ Cal/mole.K}$, $\Delta H_{H_2O_{eva}} = 125 \text{ J/mole}$
 $m_S = 32 \text{ g}$, $m_O = 16 \text{ g}$, $m_N = 14 \text{ g}$, $m_H = 1 \text{ g}$,

Good Luck

Question No. 2 (50 marks)

A) Explain the equilibrium compositions of the following Alloys compositions, for the three dashed lines

With best wishes,

Examiners,
Assoc Prof. Ahmed M. Atia Abdelkader

Assiut University

Thermal and Mechanical Treatment of Material Final – 21-5-2025 Time: 2 Hours

• No. of pages: 1.

• No. of questions: 2.

• Any missing data may be assumed.

Exam is out of 50 Marks.

Ouestion No. 1 (20 points)

Plotting the stress-strain diagram of Aluminium Alloy 6063 under tensile loading, including the calculation of Toughness, Resilience, Yield Stress, and UTS

Load (N)	Extension (mm)
0	0
500	0.02
1000	0.05
1500	0.08
2000	0.10
2500	0.12
3000	0.13
3500	0.14
3300	0.16
3100	0.19
2900	0.22

Specimen dimensions:

- Gauge length = 50 mm
- Diameter = 10 mm

Ouestion No. 1 (20 points)

- A) Describe the elastic and Plastic Deformation mechanism, Show the atomic configurations.
- B) Show Effect of solid solution strengthening on: Mechanical Properties: Cu-Ni System

امتحان نهاية الفصل الدراسي المقرر: أخلاقيات المهنة والسلامة المهنية رقم القرر ورمزه: F300

الزمن: ساعتـان ۲۸ مایو ۲۰۲۵ الإجابة في ورقة البابل

الخاطنة نا يأتي: (٣٠ درجة)	السؤال الاول: في ورقة البابل ظلل (T) للعبارة الصحيحة أو ظلل (F) للعبارة
المنافعة لله لي المنافق من المهارات المنابة المحتسبة للمقرر ١١ تطبيق عمل ميثاق اخلاقي من المهارات المنابة الاراء والانتكاد	السوال الاول: في ورقه البايل عمل ()
٢٠ ـ يؤدي تطبيق قوادين الملكية الفكرية الى دفع عجلة الابداع والابتكار ٢٠ ـ يؤدي تطبيق قوادين الملكية الفكرية الى دفع عجلة الابداع والابتكار	1. من اخلاطات المهنة المصيم المسالة المبيئة وجودة الحياة ٢- تدوير المخلفات ثروة ضغمة و لحماية البيئة وجودة الحياة
 ١٢. تعتبر الاخلاقيات متطلب أساسي لتنظيم المجتمع واستقراره. ١٤. يجب وضع إناء مملوء بالرمل تحت أوعيد حفظ المواد الكيميائية لامتصاص المياة 	٣ التدريب هم نشاط منظم لتحسين الأداء الوظيفي
مديدا تانخاط تقدم بقياس الخاط وتفييمها والعمل عني تصويرها.	> التخلص من مخلفات العامل بكون بالحرق الأمن ودفن الرماد في مدفق أمن
 ١٥ ادارة المعاطر تسوم بسيس من المساح عن الامراض التي قد تتوفر في احد الطرفين يعتبر مبرد 	٥-التقرير هو عرض كتابي او شفوي مركز لموضوع معين يقدمه قرد او مبسوعة
البديد بالحديث في مداول العلامات الأرشادية بعني ممنوع	٦ السلامة والامانة والصدق من أخلاقيات البحث العلمي وعيره.
١٨ تع ف الكوارث بأنها حوادت غير مفاجله لقوى الطبيعة أو المسدن	٧ اتبع تعليمات السلامة في مكان العمل والشارع والبيت
مد بنه مده مدة العما وقالة عند حدوث رلزال	A. يعد سوقة علمية استخدم افكار من موقع على الانترنت والاشارة اليه
١٠ الفاجاة و الاضطراب والارتباك ليست من سمات الطوارئ والازمات	 ٩. الشانعات جريمة قد تدمر الاوطان ١٠. رقم ٦ المكتوبة اسفل الزجاجات البلاستكية يعني أمنة الاستخدام المتكرر
الاستيك أمن الخطس ١٣٩ مغاطر الفعاعية الغطس الغطس الغطس الغطام الغطس الغطس الغطس الغطام الغطس الغطام الغطام الغطام الغطام الغلام الغطام الغطام الغلام الغلام الغطام الغلام	الإحريق القد كين ع. شباك (٢٠ انجه يمين القد كين

(۲۰ درجات) السؤال الثاني: في ورقة البابل طلل حرف A او B او D او D للإجابة الصعيعة: الله مقرر اخلاقيات المهنة Scientific Ethics يتناول اخلاقيات مهنة (A-العلميين -Bالاطباء-C-الهندسين -C-كل ما سبق) ٢٢.من اساسيات تجهيز مختبرات الكيمياء (A. وجود شفاطات هواء ـ B. وجود كراسي ـ C. وجود سلالم ـ D. كل ما سبق) ٣٣.....هو تركيز المادة التي تؤدي لوفاة نصف مستخدميها اذا تم تناولها دفعة واحدة (LD50 .D _ LEL .C _ LOL-B -LC50.A) ٣٤ من الأداب العامة نزاولة مهنه المختبرات الطبية (Aالخبرة عالزهو عالدعاية الشخصية ع صحل ما سبق) - احضر - C -٣٦ـمن الأساليب التي يمكن اللجوء إليها في إدارة الأزمة (Aللثناورة والالتفافاط. الضغوط الاقتصادية CL الدبلوماسية. D. كل ما سبق) ٢٧. من طرق علاج الشانعات (A. المنطقية في التعامل . B. نشر الحقائق . C. التوعية . D. كل ما سبق) ٨٤. من الأهداف العامة التي تسعي السلامة والصحة المهنية لتحقيقها (A. حماية الممتلكات B. حماية الافراد ـ C ـ العمل بأمان ـ D ـ كل ما سبق) MSDS.۳۹ لأي مادة أو جهازهامة لسلامة (A- الجهاز ـ B- المستخدم ـ C- المادة ـ Dـ كل ما سبق) ٤٠ مجموعه من الوظائف المتشابهة التي يمكن أن يقوم بها فرد واحد عند اللزوم. (المهنة _ العمل _ السرقة العلمية _ الوظيفة) ا كمن اخلاقيات مهنة التحاليل الطبية التبليغ فورا في حالة نتائج ايجابية لمرض (١٨ الجرب - ١٥ شلل الأطفال - ٢٠ الكوليرا - ١٥ حكل ما سبق) ٢٤. المسافة النموزجية استخدمي الممل (٢٠. متر مربع لكل ـ ١٦. ومتر مربع لكل - ١٦. متر مربع - ٢٠. متر) 72. يجب ان تحتوى شنطة الاسعافات الأولية على (A. ملينات . B. مقلصات . C. قطن طبي وشاش . D. كل ما سبق)

عد الرعاف هو (A-صدمة عصبية B- رعشة الجسم- C- نزيف دموي من الانف − D كل ما سبق) 20 من الغطوات الرئيسية عند تنفيذ عملية مواجهة الكوارث (A-الاندار والتعدير — Bالاخلاء- C-الايواء-D-كل ماسبق) 52 ترويض التلوث الصناعي يتم ب (Aالصناعة الغضراء - Bالتدوير - C - التوازن البيئي - D ـ كل ما سبق) ٧٤ من مجالات الاخلاقيات البيولوجية (A تاجير الارحام B القرصنة البيولوجية - C سرقة الجينات - D كل ما سبق)

A. الجبس الموجود بالاسواق مادة كيميانية تسمى (A. كبريتات الكالسيوم – B – كربونات الصوديوم ـ C. كل ما سبق)

94. Plagiarism يعني (A)لانتحال_Bالاقتباس-Cالبحث - D_كل ما سبق)

.0- من فن ادارة الوقت (A. كتابة قائمة بالمهام - B. البدأ باصعب مهمة C استخدم الادوات المتاحة - D. كل ما سبق)

- Q3) Put the sign ($\sqrt{}$) in the front of correct statement and (X) in the front of wrong statement . (10 Marks) (Correct the wrong statement)
 - a) a-Hydroxy acids reacts with LTA to give alkenes.
 - b) DIBAL is used to Amides to Aldehydes at high temperature.
 - Diels-Alder reaction is a type of regioselectivity. c)
 - Zaitsev enamine requires a bulky sec. amines. d)
 - Benzyl alcohol could be oxidized to benzaldehyde using MnO_2 and methanol as solvent. e)
 - The Thioketals could be reduced to alkanes, using H₂/Raney Ni f)
 - Baeyer-villger is a reaction to convert ketones to amides. g)
 - The reaction of chiral aldehyde with achiral enolate gaves mainly anti-aldol product.
 - In Swern oxidation, DMSO is activated by DCC. i)
 - Oxidative cleavage of Acetone by Ozone gaves Acetaldehyde anf Formic acid.

Good Luck

Prof. Tr. Shawkat

Final Exam of advanced synthetic Organic Chemistry for 3rd chemistry students (314 C)

Answer the following questions:

Q1) Complete the following equations (draw the major products if found) (20 Marks)

Q2) Write by equations on (Five-Only) the following:

(20 Marks)

- a- Wolf-Koshner reaction and mechanism of propanaldehyde
- b- DMP oxidation and mechanism of isopropanol
- e- Birch reduction and mechanism of Anisole
- d- Homogenous catalytic hydrogenation and gave an example
- e- (i) Using Felkin-anh model to explore the major product of the following reaction (ii) Calculate the selectivity ratios if de= 65%

f- Using of LTA to prepare tetrahydrofuran.

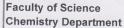
(De's

Chemistry Department C-342 Analytical Chemistry (I) Final Exam

Time Allowed: 2 hrs

1. Define the following: (10 marks)

June 2025 Time Allowed: 2 hrs


Answer The Following Questions: (50 marks)

	Conductometry- FIR- interfering material- Chromatography.
2.	Complete the following sentences: (10 marks) a- Spectroscopy is the study of the interaction between and
	b- In UV/VIS spectroscopy, two sources are required to scan the entire UV/VIS bands: lamp that covers the UV from nm and the lamp that covers the VIS region from nm. c- In UV/VIS spectrometer, the function of the monochromator is to
	separate band to a cell containing
	d- The Beer-Lambert Law equation is: Where:,,
	<u></u> .
3.	a- Draw a graphical representation for the different electronic transitions that
	may be occurred in UV spectroscopy. (5 marks)
	b- State the different parameters that affect the electrical conductivity of an electrolyte. (5 marks)
4.	a- State the principles for conductometric titration. (5 marks)
	b- State the applications of ion-exchange methods. (5 marks)
	r
5.	a- State the principles of amperometric titrations . (5 marks)
	b- Discuss how you can precipitate proteins from a solution. (5 marks)

Good Luck

Prof Nagwa Abo El-Maali

Assiut University

Final examination of the "Introduction to Polymer Technology" (Code 306 Chem.) for (Nanotechnology Program), 3rd level students.

Date: Wednesday, 4/6/2025

Time: 2 hours

Answer Five Only from the following questions:

(50 Mark)

- 1) Discuss with examples the types of Initiators, and what you mean by HIPS ?
- 2) Is it possible to make polyethylene from cyclohexane? If not, say why? then show examples of ring opening polymerization?
- Compare between the step- and chain- growth polymerization, and also compare, giving reason, between the time needed in polymerization of theses monomers: (Vinyl Chloride, Styrene, MMA)
- 4) In the living polymerization, show by equations how can we put an ending for the living chain (Carbanion).
- 5) " Carbon Fibers...... the wonder polymer...... stronger than the steel". Show by equations the steps of production of this polymer.
- 6) Explain by (equations or structures): Types of copolymers- Backbiting- Dianion, Self initiator.

Good Luck

Examiner: Prof. Dr. Kamal Ibrahim Aly

Page 1 of 1

Assiut University

Final Examination for 3rd (General Division)
Photochemistry and Active Intermediates (313 C)

Date: Wednesday, 04/06/2025

Time: 3 hours

Answer Nine Only from the following:

(50 points)

- 1) Discuss the storage of Solar Energy in Inorganic Compounds
- 2) Compare between Phosphorescence and Slow Fluorescence.
- 3) Compare between the properties of Excited state and Ground state.
- 4) What differences are between Luminescence and Slow Fluorescence.
- 5) Describe briefly the physical fate of Photoexcited molecules.
- 6) Explain briefly the photosensitization process on the light of the photodimerization of 1,3-butadiene.
- 7) Compare between the electronic configuration of singlet and triplet carbenes.
- 8) Methyl carbocation is less stable than tert-butyl carbocation. Explain this statement.
- A carbon radical has seven electrons in its valence shell, while carbocation has only six. (Explain this statement).
- 10) The trifluromethyl and cyclopropyl radicals are σ radicals, while the ethyl and cyclohexyl radicals are π radicals. (Explain this statement).

Ora|------/10 Mark)

1) Explain the difference between Photo- reactions and Thermal reactions.

Good Luck
Examiner:

Prof. Dr. Kamal Ibrahim Aly

III- Put (T) for the true statements and (F) for the false ones.

(10 Mark)

No.	Statement	T/F
1	Smaller quantum dots emit light of lower energy compared to larger ones.	
2	A red shift in LSPR peak typically indicates an increase in particle size.	
3	At the nanoscale, gravitational forces become negligible, and electromagnetic forces dominate.	
4	Miniaturization in chips improve performance and reduce power consumption.	
6	Nanoparticles have a significantly lower melting point compared to bulk materials	
7	Gold nanoparticles, which are chemically inert in bulk form, become highly reactive catalysts at the nanoscale	
8	Graphene is a Two-dimensional material	
9	Higher S/V ratio for nanomaterials means faster diffusion of atoms	
10	Localized surface plasmon resonance (LSPR) is a result of the collective oscillation of free electrons in nonmetal nanoparticles	

Good Luck

Dr. Mahmoud Kamal

1	2
	Continued on ne
	1 2 3 4 5 6 7 8 9 10
	* Please fill in your selected answers in the table below:
	D) The melting point decreases due to decreased surface-to-volume ratio.
	C) The melting point increases due to large cohesive energy.
	B) The melting point decreases due to large cohesive energy.
	A) The melting point decreases due to increased surface-to-volume ratio.
	their bulk form?
	10. How does the melting point of metals change when their size is reduced to the nanoscale compare
	C) Fewer interband transitions in the visible spectrum D) Larger atomic radius
	A) Higher density B) Stronger interband transitions
	9. What is the reason silver exhibits stronger plasmonic behavior than copper in the visible range?
	C) Bind target molecules and generate visible color changes D) Catalyze hormone breakdown
	A) Act as fluorescent probes B) Generate electric signals
	8. Which statement best describes the role of AuNPs in pregnancy tests?
	D) A blue shift in optical absorption and an increased band gap.
	C) A red shift in optical absorption and a decreased band gap.
	B) A red shift in optical absorption and an increased band gap.
4	A) A blue shift in optical absorption and a decreased band gap.
	7. Smaller semiconductor particles exhibit
	D) Discrete energy levels emerge.
	C) Band gap remains constant; emission becomes sharper.
	B) Band gap decreases; emission becomes less size-dependent.
	A) Band gap increases; emission shifts to blue.
	properties?
	6. In the transition from quantum dots to bulk materials, what happens to the energy gap and emissi
	C) It does not change D) It turns ultraviolet
	A) Blue shift B) Red shift
	5. What happens to the emission wavelength of QDs as their size increases?
	D) Individual Atom > Bulk Semiconductor > Quantum Dots
	C) Bulk Semiconductor > Individual Atom > Quantum Dots
	B) Quantum Dots > Bulk Semiconductor > Individual Atom
	A) Individual Atom > Quantum Dots > Bulk Semiconductor

Assiut University Faculty of Science Chemistry Department Final Exam in Basics of Nanotechnology (Chem 304) May 2025, Time: 2 hours

Ans	wer the following questions:	(50 Marks
[- C	Complete the Following Statement:	(20 Marks
1.	Materials whose thickness is at nanoscale and length a	and breadth at macro scale are known as
2.	Unlike bulk semiconductors with a fixed band gap, qu	nantum dots exhibitband gap
3.	Like atoms, quantum dots have	energy levels, this is why they are called
4.	The light emitted when an excited electron drops bac	k into the valance band is called
5.	There are many potential applications for photoluminandand	nescent quantum dots such as
6.	In quantum dots, excitons are confined in	dimensions of space.
7.	Optical properties describe how a material interacts w	
	such as	, and
	such as,,,	
8.	Quantum dots (QDs) are semiconductor particles tonm. At the nanoscale, optical properties are not optical properties are not optical properties.	ypically ranging in size fromt mainly influenced by the following for
8.	Quantum dots (QDs) are semiconductor particles tonm. At the nanoscale, optical properties are natural factors,,	ypically ranging in size fromt
8. 9.	Quantum dots (QDs) are semiconductor particles tonm. At the nanoscale, optical properties are not factors,	ppically ranging in size fromt mainly influenced by the following for, and nanotechnology" in 1974 is
8. 9. 10.	Quantum dots (QDs) are semiconductor particles tonm. At the nanoscale, optical properties are not factors, The scientist who is credited with coining the term "to Choose the correct answer	ypically ranging in size fromt mainly influenced by the following fou, and nanotechnology" in 1974 is(20 Marks)
8. 9.	Quantum dots (QDs) are semiconductor particles tonm. At the nanoscale, optical properties are not factors,	ypically ranging in size fromt mainly influenced by the following fou, and nanotechnology" in 1974 is (20 Marks) ots is TRUE?
8. 9. 10.	Quantum dots (QDs) are semiconductor particles tonm. At the nanoscale, optical properties are not factors,	mainly influenced by the following for, and manotechnology" in 1974 is (20 Marks ots is TRUE?
8. 9. 10.	Quantum dots (QDs) are semiconductor particles tonm. At the nanoscale, optical properties are not factors, The scientist who is credited with coining the term "not Choose the correct answer Which of the following statements about quantum dot A) They have a continuous energy band like metals C) Their band gap increases with decreasing size	mainly influenced by the following for, and manotechnology" in 1974 is (20 Marks) ots is TRUE? B) They exhibit a size-independent band gap D) They are macroscale materials
8. 9. 10.	Quantum dots (QDs) are semiconductor particles tonm. At the nanoscale, optical properties are not factors,	mainly influenced by the following for, and manotechnology" in 1974 is (20 Marks ots is TRUE? B) They exhibit a size-independent band gap D) They are macroscale materials yels in quantum dots?
8. 9. 10.	Quantum dots (QDs) are semiconductor particles tonm. At the nanoscale, optical properties are not factors,	mainly influenced by the following for, and manotechnology" in 1974 is (20 Marks ots is TRUE? B) They exhibit a size-independent band gap D) They are macroscale materials wells in quantum dots? B) Similar to bulk semiconductors
8. 9. 10. III- 1. 2.	Quantum dots (QDs) are semiconductor particles tonm. At the nanoscale, optical properties are not factors,	mainly influenced by the following for, and manotechnology" in 1974 is (20 Marks) ots is TRUE? B) They exhibit a size-independent band gap D) They are macroscale materials vels in quantum dots? B) Similar to bulk semiconductors D) Constant, irrespective of size
8. 9. 10. III- 1. 2.	Quantum dots (QDs) are semiconductor particles tonm. At the nanoscale, optical properties are not factors,	mainly influenced by the following for, and manotechnology" in 1974 is (20 Marks) ots is TRUE? B) They exhibit a size-independent band gap D) They are macroscale materials vels in quantum dots? B) Similar to bulk semiconductors D) Constant, irrespective of size

Continued on next page

Assiut university

Academic year: 2024/2025

Faculty of science

time allowed: 2 hours

Chemistry Department

Final exam for course No : C-302 for Nano Technology group

Question No. 1

Identify the crystal system , crystal class and Laue class for the following space groups $P2_1/c$, P622 , P422 , pnma , F432

Discuss in details all the symmetry elements present in space group pnma

Question No: 2

AgCl is known to have NaCl type structure. Which of the following indices are allowed in the x-ray diffraction pattern? 100,010,110,111.200,020,012,210,220,211,122 and 222. Writ the fraction coordinates of both cations and anions in the lattice

Question No .3

When measuring the x-ray diffraction pattern of KCl (NaCl - type structure) sample by CuK α radiation (λ = 1.54 \circ A) the following diffraction lines were obtained with the scattering angles (2 Θ).

 2Θ (degree): 24.48 , 28.35 , 40.50 , 47.92 , 50.18, 58.66, 66.39, 73.54 , 87.68 ,94.58 , 101.51 , and 108.65

Index the pattern and compute the lattice parameters.

Question No.4

With respect to X-ray diffraction from a crystal. Explain the relationship between the incident beam , the scattered beam and the direction of a crystal for detecting the scattering intensity using Ewald sphere

Prove that the reciprocal lattice for BCC cubic lattice is FCC direct lattice

Good Luck

Prof. R.M.mahfouz

5. Complete the following (10 Marks)

- a. Because of it's high density lead oxide glass (crystal glass)
 possesses a high......giving the glassware a brilliant appearance.
 b. Coatings in glass containers industry involve application of a thin layer of......at the hot end while at the cold end a layer of......is
 applied.
- c. Fibrization of glass fibers involves a combination of two processes......and......
- d. The cucibles of pot furnace are made ofor.....
- e. Toughened or tempered glass is a glass processed by controlled......and.....treatments.
- f. Dannar process is used for the shaping of......

Good Euck

Examinar: Prof. Dr. Aref A. M. Aly

.

- e. Which of the following raw materials is the major component in glass industry?
 - i) soda ash
- ii) alumina
- iii) borax
- iv) feldspar.

3. Answer the following (12Marks)

- a. Draw the basic components of the **float process** and then comment.
- b. Give the importance of the following sizing (coating) components in fiberglass industry:
 - i) Lubricants
- ii) binders
- iii) coupling agents

- c. Write on the following
- i) Radial and concentric cracks of glass fracture
 - ii) Environmental impact of glass industry regarding CO₂ and SO₂

$l_{\underline{y}}$. Mark right answer with ($\sqrt{\ }$) and the wrong one with (X)

(13 Marks)

- a. Beck line appears inside the glass fragment when the refractive index of liquid (in which the fragment is immersed) is higher than that of the glass.
- b. 96% silica glass is transluscent and has very high thermal expansion coefficient.
- c. Glass has the crystal structure and hence it breaks.
- d. Gelcoat used in fiberglass molds gives the mold a shiny appearance.
- e. The pot furnace in glass manufacture possesses higher capacity than tank furnaces.
- f. Number of glass fibers as well as their direction affect the durability of glass fiber cloth.
- g. Every 10% of cullet (recycled glass) used as a raw material in glass manufacture results in 7% reduction in carbon emission.
- h. Wired glass resists fire.
- i. Glass fibers are not moisture resistant.
- j. Every 10% of cullet (recycled glass) used as a raw material in glass manufacture results in 7% reduction in carbon emission.
- k. Borosilicate glass is called also pyrex or Jena glass.
- l. When 99.5% silica glass is heated above its melting point, it becomes transparent (clear silica glass).
- m. Alkali-silicate glass is manufactured from only two components, i.e sand and soda as

Chemistry Department

May 2025

Faculty of Science

Time 2h

Assiut University

Final exam of course 310 C (glass industry $\,$) for the third level students of the industrial program.

4. Give reasons for FIVE of the following (10 Marks)

- a. Too hot and too long firing of glass cause devitrification.
- b. Use of sodium sulphate (salt cake) in glass industry.
- c. Use of waste glass (cullet) as a raw material in glass industry.
- d. Addition of arsenic oxide to the glass melt in tank furnace.
- e. Polyester resin is preferred for wetting the chopped strand mat (CSM).
- f. Bushings in glass fiber furnace is heated and heat should precisely controlled

2. Choose the correct answer (5 Marks)

- a. E-glass is a type of glass that can be regarded as
 - i) alkali-lime glass with high boron oxide content
 - ii) alumino-silicate glass with high MgO content
 - iii) alumino-borosilicate glass with less than 1% alkali oxide
 - iv) alumino-borosilicate glass with more than 2% calcium oxide.
- b. C-glass is a type of glass that is
 - i) electrical resistant
- ii) with high tensile strength
- iii) resistant

- to chemical attack iv
- iv) non of them 🟲
- c. From the health point of view, are glas fibers safe?
 - i) not safe
- ii) safe
- iii) it is not known till now
- iv) research work on this subject is ongoing.
- d. Devitrification of glass occurs
 - i) above 700°C ii)
 - ii) below 700°C
- iii) at 580°C

iv) below 580°C

aelabi1

1

iii- Mn^{2+} and Zn^{2+} follow the expected lattice energy line. iv- d^3 and d^8 complexes have higher octahedral site preference energies.

2-Complete the following:

i-CFT cannot explain partly nature of metal ligand bond.

ii-VBT dose not distinguish between and ligands.

iii-Non-linear systems will undergo a that makes the complex less

iv-A small neutral ligand with a highly localized lone pair results in significantly larger values than might be expected.

3-i ${\rm [Fe(H_2O)_5NO^+]^{2+}}$ has 3 unpaired electrons, show whether the given complex ion is inner or outer orbital octahedral complex ion.

ii-Determine the CFSE for d⁷ configuration in octahedral and tetrahedral fields.

4-i The maximum absorption spectrum of [PtCl₆]⁴ is at 27,600 cm⁻¹, calculate its crystal field splitting energy and CFSE of the complex ion.

ii-The complex ion $\left[VL_{6}\right]^{3}$ -has three energy transitions, give their assignment.

5-i Find the ground terms for d^4 and d^2 configuration and show their splitting in weak octahedral field.

ii-State the main assumptions of crystal field theory.

Atomic numbers: V=23, Mn=25, Fe=26, Zn=30, Rh=45 and Pt=78.

Examiners

Prof. Dr. Aref Ahmed

Prof. Dr. Mohamed Abdelhakeem

Prof. Dr. Asma Ibrahim

- D. Choose the correct answer A, B, C or D (3 Marks) 1. Oxidation state +7 is shown by :
 - A) Pa and U B) Np and Pu C) Am and Cm D) all of these pairs
 - 2. Among the quadrivalent lanthanides, it was found that one of the following quadrivalent lanthanide ions is sufficiently stable in solution as well as in solid state:

C. Tb(IV) B. Pr (IV) A. Ce(IV)

- 3. Solution chemistry of uranium are complex due to:
 - A) presence of four oxidation states
 - B) complex reactions with anions in solution
 - C) formation of polymeric species only

D) all the three reasons.

D. Dy (IV)

Part II

(17 Marks)

A) Answer four only of the following:

(12Marks)

- i- ... A solution of $[Ni(H_2O)_6]^{2+}$ is green but a solution of $[Ni(CN)_4]^{2-}$ is colorless. Explain.
- Discuss the factors affecting on the magnitude Δ
- Write the electronic configuration of d^4 in terms of t_{2g} and e_g in an octahedral field when $\Delta_0 > P$
- Discuss effect high spin on d^4 and d^8 in Π_T and LFSE (where : Δ_0 $=9350 \text{cm}^{-1}$; $\Pi_e=19600 \text{cm}^{-1}$; $\Pi_e=-2000 \text{cm}^{-1}$)
- v- Account number of uses crystal field stabilization energy
- B) Explain why Co (III) forms a paramagnetic octahedral complex with weak field ligands whereas it forms a diamagnetic octahedral complex with strong field ligands. (3Marks)
- C) What is the difference in the energy of the electrons in $\left[Fe(H_2O)_6\right]^{+3}$ and {Fe(CN)6]-3 (2marks)

(16 Marks)

Answer Only Four of the following questions

1-Give reason(s) of the following:

i-Co(CO)4 compound has paramagnetic property.

ii-[FeF6] 4 complex ion is in HS state while [Rh(NH3)6] $^{3+}$ is in LS state.

Assiut university

May, 2025

Faculty of Science

Time 3h

Chemistry Department

Final exam of "Inorganic chemistry III" course code 324C for the third level students

Part I

(17 Marks)

Answer the following

- A. Complete THREE of the following (4 Marks)
 - i.is the most stable divalent ion among the divalent lanthanides.
 - ii. Breaking of bonds by emitted particles in a sample of a radioactive actinide element is equivalent to a process of......
 - iii. +5 oxidation state in actinde elements is very important for the
 - iv. Very pure thorium can be obtained by thermal decomposition of......
- B. Give reason for the following (4 Marks)
 - i. Cerium and terbium form stable +4 oxidation states.
 - ii. Zirconium and hafnium have almost the same atomic size and almost the same chemistry.
 - iii. Actinides show higher oxidation states ranging from +4 to +7 while lanthanides exhibit a maximum oxidation state of +4.
 - iv. Sm2+ and Yb2+ liberate hydrogen from water.
- C. Mark the correct sentence with $\sqrt{\ }$ and the false one with x (6 Marks)
- Owing to the lanthanide contraction the basic character of the hydroxides increases with increasing atomic number due to the decreased covalent character between the lanthanide ion and the hydroxide.
- 2. Sulphates of lanthanides are more soluble in cold water than in hot water.
- 3. Lanthanide contraction causes a slight decrease in the electronegativity of the trivalent lanthanides.
- 4. Actinide compounds are more basic than lanthanide ones.
- 5. The chemistry of lanthanides is predominantly covalent.
- 6. Electronegativity values of lanthanides are comparable to aluminium.

انظر خلف

Assiut University Faculty of Science Chemistry Department

19 May 2025 Time: 2 hours

Final Examination for 3rd Level of Nanotechnology students (Scientific Reports- 312 Chem.)

Answer the following questions:

(50 Marks)

First question:

- (a) Give the meaning of the following terms in the light of the scientific research: Only Five
 (5 X 3 = 15 Marks)
 - 1. IMRAD
- 2. Objectivity
- 3. Deductive research

- 4. Replicability
- 5. Plagiarism
- 6. Research literature
- (b) Discuss the criteria that must be fulfilled in preparing the abstract of the research paper and refer to the most important one. How can you prepare the graphical abstract.

10 marks

Second question:

(a) Put (T) for the true statement and (F) for the false one of the following:

(Answer in a table)

(10 X 1 = 10 Marks)

- 1. Good scientific reporting provides only replicable new findings of the research.
- 2. The methodological skills of the researcher depend only on his/her scientific knowledge.
- 3. Descriptive research provides secondary data.
- 4. Applied research is deductive research rather than inductive one.
- 5. The most important feature of scientific research is to be rigor.
- 6. Publishing all the data obtained obeys the ethics of scientific research.
- 7. Scientific research is bad when it is a cyclic process.
- 8. Precision in scientific research refers to the closeness of the findings to reality.
- 9. Citation must be provided in all parts of the scientific paper.
- 10. Literature knowledge is the sole source of suggesting the hypothesis.
- (b) Discuss the objectives of ethics in scientific research.

5 marks

Third question: Discuss briefly Only One the following:

10 marks

- (a) Different methods of in-text citation and preparation of the references list.
- (b) Steps of performing scientific research and refer to the most important one.

GOOD LUCK

Examiner: Asst. Prof. Awad Said

3. Nickel dissolves readily in dilute	acids to	produce:		with the same of t
a) Ni^{2+} and O_2 b) Ni^{2+} and H_2		c) Ni ³⁺ and H ₂		
4. Cuprous oxide (Cu ₂ O) reacts wit	Cuprous oxide (Cu2O) reacts with hydroiodic acid producing		oducing	a) Cura
a) CuI	a) CuI b) CuI ₂			c) Cu ₂ I
5. The product of reacting Cu ⁺² ion	s with ex	CND 13-		c) [Cu(CN) ₆] ⁴⁻
a) Cu(CN) ₂	b) [Cu	(CN) ₄] ³⁻	heating to form	0) [04(014)6]
6. Ammonium metavanadate (NH.) a) VO ₂ + NH ₃ + H ₂ O	h) Vac	omposes on	H ₂ O	c) $V_2O_3 + N_2 + H_2O$
a) VO ₂ + NH ₃ + H ₂ O 7. What happens when Cr(OH) ₃ is	dissolve	d in excess h	NaOH?	
a) It forms CrO ₄ ²⁻		orms Cr ²⁺		c) No reaction
The state of the s				
(C) The sums of the first and second	ionizati	on energies	and those of the	
energies of nickel and platinum	are giver	below:		(2 Marks)
	Metal	$IE_1 + IE_2$	$IE_3 + IE_4$	
	Ni	2.49	8.80	
	Pt	2.66	6.70	
Based on these values, answer the	ne follow	ving:		
(D) Explain why for only two of the 1. [Ni(CN) ₄] ²⁻ is diamagnetic 2. The complex formed between	en nickel		ylglyoxime is sta	ble.
3. Mn ⁺² is more stable than Fe Question Number Three:	+2	MATK (41)		(16 Marks)
Question Number Three.				AN JOSE & SANGERO - CHE LO ROSINOS
(A) Complete the following: 1. The tendency of transition	metals	to form cor	nplexes is mainl	y due to the following two
reasons:				
i)		ii)		
2. Colour in transition-series	metal co	ompounds is	generally due to	electronic transitions of the
following two principal ty				
i)		ii)		Allon algemetus out of 10). A
3 TiO ₂ occurs in the following	ng three	different cry	stalline forms:	
i)		ii)		iii)
4. Zn, Cd and Hg have	lower r	nelting poi	nt compared to	other transition elements
because			7	
5. TiCl ₄ +2 H ₂ O →	ado bas			
(B) Define each of the following:				(6 Marks)
1. Charge transfer transitions.	2 7	Transition el	ements.	di ar ao autos autos ar savinarit
	1			
 Ionization energy. Paramagnetic substances. Magnetic susceptibility and its relation with magnetic moment (Using equations). 				
	i its iciai	JOH WILLI IIIA	Succession mornous (
6. Lanthanide contraction		Good	Luck	
		THOUGH	LUCK	

Prof. Dr. Said Ahmed Ibrahim, Dr. Mahmoud Kamal

Assiut University
Faculty of Science
Chemistry Department

Time: 3 hrs. June 2025

Final Exam in Inorganic Chemistry (2) (Chem 321) for Third Level Students

Question Number One:

(17 marks)

a) Write the statement of the effective atomic number rule.

- b) Calculate the effective atomic number for the following complexes and clarify it is obeying the rule or not.
 - (i) [Ni(CO)4], (ii) K₃ [Fe(CN)6]
- c) Write the formula of the following complexes:
 - (i) Tetramminedicyanoplatinum(IV)tetrachloroplatinate(II).
 - (ii) Octaammine- μ -hydroxo- μ-amidodicobalt(II) chloride.
- d) Write the IUPAC name of the following complexes.
 - (i) [PdI2(ONO)2]
 - (ii) [Co(en)2NH3Br]Cl
- (iii) K[Pt(NH₃)Cl₅]
- e) What kinds of isomerism that compound (i) above can possess?
- f) Put $(\sqrt{\ })$ or (x) in front of the following:
- (i) The compound [Co(NH₃)₅Cl]Cl₂ contains 4 charges and 3 ionizable Cl.
- (ii) The oxidation number of nickel in the complex K₄ [Ni(CN)₄] is zero.
- (iii) The number of charges in a solution of the complex [Pt(NH₃)₂Cl₂] is zero.
- (iv) A solution of the complex [Co(NH₃)₆]Cl₃ contains 6 charges and 4 particles.
- (v) Chiral complexes possess superimposable mirror image isomers.
- g) In the light of HSAB concept, predict which direction the following reaction will go.?

 $HgO+H_2S = HgS+H_2O$

Question Number Two:

(17 marks)

(A) Put $(\sqrt{})$ for the true statements and (x) for the false ones. Then, correct the false statements.

(6 Marks)

1. The brown ring test involves the formation of K_{*}[Fe(CN)₆] complex.

2. [Ni(NH₃)₆]²⁺, [Ni(H₂O)₄(NH₃)₂]²⁺, and [Ni(ethylenediamine)₃]²⁺ are all octahedral, and are paramagnetic.

1

- 3. The color of V_2O_5 (red-orange) is due to defects in the structure and charge transfer transitions. 4. The (+II) state is the most stable and common for group 7 elements (Mn, Tc, Re).
- 5. Both Cu⁺ and Au⁺ undergo disproportionation in water.
- 6. Zn dissolves in acidic solution to form zincate ions.

(B) Choose the correct answer

(7 Marks)

1. Prussian blue is formed when:

a) Fe^{2+} reacts with $K_3[Fe(CN)_6]$ b) Fe^{3+} reacts with $K_4[Fe(CN)_6]$

c) Fe2+ reacts with NH,

2. Which compound is known as ferrocene?

a) (C,H,),Fe

b) Fe(CO),

c) K₃[Fe(CN)₆]

انظر خلقه باقي الأسئلة

Answer the following questions:

- 1 For molecular carbon dioxide (CO₂) at 25 $^{\circ}$ C, calculate the collision frequency z_{11} and the collision density Z_{11} at a pressure of 1 µbar. The collision diameter of carbon dioxide is 0.464 nm.
- 2 Drive the probability density equation $(F(\epsilon)d\epsilon)$ and plot $F(\epsilon)$ for the molecular translational energy of an ideal gas molecular at 300 K versus the energy (ϵ) .
- 3- What is the mean free path for oxygen at 25 °C and 0.1 Pa pressure? where the collision diameter of oxygen is 0.361 nm.
- 4 The vapor pressure of solid beryllium was measured by using a Knudsen cell. The effusion hole was 0.318 cm in diameter, and they found a mass loss of 9.54 mg in 60.1 min at a temperature of 1457 K. What is the vapor pressure?
- 5- Calculate the viscosity of molecular methane at 273.2 K and 1 bar. The molecular diameter is 0.414 nm.
- 6- State which of the following statements are true and which are false:
 - a- The collision frequency of a gas is inversely proportional with the mean speed. (T) (F)
 - b-The mean relative speed of two different molecules increases with increasing the square root of temperature. (T) (F)
 - c- In general, the speed distribution curve is wider (broader).at higher temperature than that at lower temperature. (T) (F)
 - d- Polyatomic molecules besides having transitional motion, they also have rotational and vibrational motions. (T) (I

 $(R = 0.082 \text{ L atm K}^{-1} \text{ mol}^{-1}, 8.314 \text{ J K}^{-1} \text{ mol}^{-1}, 1.987 \text{ cal K}^{-1} \text{ mol}^{-1}, \text{ Avogadro's number} = 6.022 \times 10^{23},$ $h = 6.626 \times 10^{-34} \text{ JT}^{-1}, k = 1.381 \times 10^{-23} \text{ JK}^{-1}, \text{ speed of light} = 3.0 \times 10^{10} \text{ cm s}^{-1},$ the atomic mass of C = 12, N = 14, Be = 9.012 and H = 1).

With Our Best Wishes

Examiners:- 1- Prof. Dr. AbdelRahman A. Dahy

2- Prof. Dr. Mostafa Farrag Mostafa

Assiut University
Faculty of Science
Chemistry Department

May 2025 Time allowed: 3 hours

Chemistry Department Second Semester Final Examination of Physical Chemistry III (C-332) for Third Level Students
Section I- Quantum Chemistry Section: (17 Mars
A) If $\Psi = Ce^{im\phi} + D \ e^{-im\phi}$ is a solution for Schrödinger equation for a microscopic particle moving in a circle
with radius r. Confirm that the rotational energy for that particle is quantized and equal to $m^2 \frac{\hbar^2}{2I}$.
(note: $e^{ix} = \cos x + i \sin x$) (8 Mark B) Answer Only Two from the following: i) Confirm that the allowed wavelengths for a particle moving in one dimensional box is given by the related to the length of the length of the length.
$\lambda = \frac{2a}{n}$ where a in the length of the box.
 ii) Calculate the wavelength for each of the following; 1- Tennis ball has weight 65.0 g moving with velocity 45.0 ms⁻¹. 2- Electron with kinetic energy 205 eV. What do you deduce from solution of this problem? iii) The infrared spectroscopy of carbon monoxide is formed from one intense line at 2143 cm⁻¹. Calculate its force constant.
Constants: (h = 6.626×10^{-34} Js, $m_e = 9.11 \times 10^{-31}$ kg, $e = 1.602 \times 10^{-19}$ C, $c = 3 \times 10^8$ ms ⁻¹ , Avogadro's number = 6.022×10^{23} , the atomic mass of C = 12, O = 16)
Section II- Molecular Spectroscopy Section: (17 Mark
Answer the following questions:
1- The ESR frequency for a free electron is 9000 MHz. Calculate the magnetic field at which the ESR
spectrometer is working, (Bohr magneton $\beta = 9.273 \times 10^{-24} \text{ JT}^{-1}$, g value = 2).
2-Write the rule of mutual exclusion, and show when NO ₂ ⁻ ion will be infrared active and when Raman active
3-Explain, how the electron charge cloud around an atom or molecule is distorted, when UV-Vis light
is absorbed or emitted by the atom or molecule.
4 - A NMR spectrometer operating at a 60 MHz frequency gives proton spectra at a field of 1.4092T. At what field would the ^{11}B spectrum be observed at 60 MHz. (For ^{11}B , I=3/2, g = 1.792, μ_N = 5.0504 x 10^{-27} JT $^{-1}$
5- Calculate the degrees of freedom for acetate ion and draw its vibrational modes.
6- State which of the following statements are true and which are false:
a - The relative energy levels of the three transition processes are in the order electronic > rotational > vibrational.
b- In asymmetric top molecule, two moments of inertia are equal and the third is not equal to both or zero
(T)(
c - Shifting the absorption maximum to longer wavelength means hypsochromic shift. (T)
d - Symmetric stretching in CO ₂ is Raman active. (T) (

Examination of Nano Catalysis for 3th Level Students (Chem.305)

Material Science and Nanotechnology

Time :2 h
Date: 14/5/2025

Faculty of Science Chemistry Department

Assiut University

Answer the Following Questions:

I- Put true (v) or false (x) for the following sentences:

(10 marks)

- 1- Nano catalysts are typically larger than 100 nano meters in size ()
- 2-Nanoparticles used in catalysis often have a lower surface area to volume ratio compared to bulk materials ()
- 3-Nano catalysts can be easily separated from reaction mixture using filtration methods ()
- 4- Nano catalysts are only used in heterogeneous catalysis()
- 5-The catalytic activity of nanoparticles is independent of their shape ()
- 6-The small size of nanoparticles makes then more susceptible to poisoning by impurities ()
- 7- Nano catalysts are only used in chemical synthesis reactions ()
- 8- Nano catalysts are not effective at high temperatures ()
- 9- Nano catalysts are more expensive than tradition catalysts ()
- 10- Nano catalysts can simultaneously reduce CO, HC and NO_x emissions ()

II- Write short notes on three only from the following:

(20 marks)

- 1. What are the key factors influencing the catalytic performance of nanoparticles
- 2. The factors ate responsible for deactivation of a catalyst.
- 3. The characteristic properties of a catalyst support.
- 4. A advantages and disadvantages of heterogeneous and homogeneous catalysis.

III-Answer four only from the following:

(20 marks)

- 1-Write on basic oxidation reduction reactions used in the catalytic converter.
- 2-What are the specific properties afford by nano catalysts.
- 3-Mention the factors affecting synthesis of nanoparticles.
- 4-The role of the shape of nanoparticles in catalytic reaction.
- 5-The role of texture and structure promoters on the catalyst properties.

------ Good Luck -----

Prof. Dr. Abd El-Aziz A. Said

5. What are the types of classification of amino acids according to their metabolic fate in the body?

II. Choose the correct answer:(10 Marks)

- 1. Glucose and allose epimers at: a. C2 b. C4
- 2. In reduction of mannose with sodium borohydride to give mannitol, which has: a. plan of symmetry, b. point of symmetry c. has no element
- 3. Amino acid containing two amino groups: a. Leucine b. L-lysine c. Threonine
- 4. From neutral AAs (5-Hetrocyclic): a. histidine b. tyrosine c. valine
- 5. From glucogenic amino acid:
 a. Leucine: b. Aspartic acid c. Cysteine
 6. From ketogenic amino acid:
 a Glutamic acid b. Glutamine c. leucine
- 7. Amino acids that are both glycogenic and ketogenic: a. phenylalanine b. Proline c. Serine
- 8. From polar amino acids which can forming hydrogen bonds:
 - a. Threonine b. Methionine c. cysteine
- From acidic amino acids: a. Ornithine b. glutamic acids c. Arginine
- 10. From basic amino acids: a. Lysine b. aspartic acid c. glutamic acid
- 11. The isoelectric point is: a. the pH at which an amino acid is electrically neutral b. the pH at which the amino acid cannot form Zwitterion c. the pH at which the amino acid is acidic
- 12. From achiral amino acids: a. alanine b. tryptophan c. Glycine
- 13. When alanine treated with nitrosyl chloride gave: a. acetic acid b. propanoic acid c. chloroacetic acid.
- 14. Hippuric acid was prepared from reaction of glycine with: a. acetyl chloride b. formaldehyde c. benzoyl chloride.
- 15. When amino acid treated with chloroform and KOH gave: a. hydroxyl acid b. chloroacid c. carbylamines (isocyanoacid).
- 16. Hydroiodic acid reacted with amino acid to give: a. Iodo acid b. hydroxyl acid c. aliphatic fatty acid.
- 17. Amino acids when heated with barium hydroxide gave: a. barium salt of amino acid b. aliphatic fatty acid c. primary amine
- 18. Which disaccharide when hydrolyzed produce two Glucose bonded by (1-1) linkage: a. trehalose b. cellobiose c. Lactose
- 19. Lactulose is a disaccharide sugar found in:
 - a. Mammalian milk b. is formed from glucose & galactose c. semisynthetic sugar formed produced by isomerization of lactose.
- 20. Hyaluronic acid is composed of: a: glucuronic acid and N-acetyl-dglucosamine b. N-acetyl-d-glucosamine and gluconic acid c. N-acetyld-glucosamine and glucaric acid

Best Wishes Prof. Adel Kamal El-Dean Prof. Abdel-Aal Gaber Assiut University
Faculty of Science
Chemistry Department

Time 3 hours May 2025

Final Examination of Natural Products and Biochemistry for 312 C Students

Answer the following questions:
Section A: Natural Products Chemistry

(25 Marks)

1. Write on the following:

(8 Marks)

- a) Prove that piperic acid has two double bonds in its side chain.
- b) conversion of quinolone into 1- allylbenzene.
- c) Conversion of oestriol into oestrone and via verse through Leed et.al.
- d) conversion of β-farncene into phytol

2. Discuss the following:

(8 Marks)

- a) Conversion propannitrile into ephedrine.
- Prove by equation that gerianol has two double bonds at positions 2 and 6.
- c) conversion of β -ionone into Vit A2 into via Reformatsky reaction.
- d) Conversion of p-hydroxybenzaldehyde into adrenaline

3. Explain the following points:

(9 Marks)

- a) Conversion of α -pinene into terpenylic acid
- b) Conversion of ergosterol into ergocalciferol.
- c) IUPAC name of the following compounds: Hygrine, Nerolidol, α-ionone, Adrenaline
- d) Prove by equation that papaverin contains achiral centre.
- e) Ozonolysis of squalene gave the followings compounds::
 - a) 4 Mole of laevulic acid and succinaldehde
 - b) 2 Mole of laevulaldehyde and acetone
 - c) 4 Mole of laevulic acid and succinic acid.
 - d) None of the above

Section B: Biochemistry

(25 Marks)

Answer the following questions:

I. Show by equation the following:...

(15 Marks):

- 1. Using Kiliani Fisher synthesis, conversion arabinose to mannose
- Write the names and draw the structure of essential and non-essential amino acids.
- 3. Define Polar Acidic a Amino Acids exploring your answer with examples.
- Mention the name of two heterocyclic amino acids and developing your answer with structures.

بقية الأسئلة خلف الصفحة

	die cortain dyes or stains exhibit a color change	
39	Metachromasia is the phenomenon where certain dyes or stains exhibit a color change or shift when they bind to specific tissue components. Peptide bonds are the type of bond that links monosaccharide subunits in a disaccharide.	
40	Peptide bonds are the type of bond that this shortest	

Q3: Write short notes on five only of the following eight topics: (10 marks, 2 marks for each)

- 1- Oligosaccharides, with one example.
- 2- Periodic Acid-Schiff (PAS) stain, indicating its principle.
- 3- Oil-soluble dyes, indicating their basic concept, with one example.
- 4- Feulgen method, indicating its principle.
- 5- Metachromasia.
- 6- Indirect fluorescent antibody method.
- 7- Lyophilization.
- 8- Simultaneous coupling method.

Write the numbers of the five selected topics in the box below

WITE the man	
T. A. Landon	
Selected topics	
The state of the s	

Q2: Write the letter (T) if the statement is true, and write the letter (F) if the statement is false, then put your answer inside the empty box, under the black arrow:

(15 marks, one mark for each)

21	Verbascose is an example of an oligosaccharide that contains 3 monosaccharide units.
26	verbascose is an example of an oligosaccharide that contains 5 molesaccharide and
27	The staining reactions for proteins or protein-containing substances depend on their
	amino acid composition.
28	Formaldehyde is the best routine fixative for lipid histochemical methods.
29	The Sagaguchi method is a histochemical technique used for the detection of tyrosine in
	proteins.
30	Glycogen is a homopolysaccharide composed of only one type of monosaccharide
	subunit.
31	In Immunohistochemical methods, most of disadvantages of fluorochrome have been
	overcome by using of enzyme-labeling of the antibodies especially with the horseradish
	peroxidase.
32	Histochemical demonstration of proteins is possible only in fresh tissue due to their high
	sensitivity.
33	Cerebrosides are a type of glycolipids that consist of a fatty acid linked to sphingosine
	and a single carbohydrate residue.
34	Proteins are involved in the synthesis of hormones, such as testosterone and estrogen.
35	Alcian Blue stain is a histochemical method used to detect acidic polysaccharides in
	tissue samples.
36	Sudan Black B is an appropriate histochemical method for the demonstration of
	phospholipids.
37	In the Malachite green and Acridine red histochemical method, DNA is stained red, and
	RNA is stained green.
38	A nucleotide is an organic molecule formed of a nitrogenous base, a six carbon-sugar,
	and a phosphate group.

17	What cellular structures can be visuali enzymes?	ized using dehydrogenase and ATPase		
	A) Nuclei B) Golgi apparatus	C) Mitochondria D) Lysosomes		
18	Which staining method is specific for glycogen?			
	A) Alcian Blue stain	B) PAS stain		
	C) DPAS stain	D) None of the above		
19	Which method involves the precipitation of colored PRP at the site of enzyme			
	activity?	28 - Formaldehyde is the nest routine fixative		
	A) Self-colored substrate	B) Post-incubation coupling		
	C) Metal precipitation technique	D) Simultaneous coupling		
20	Which of the following is a pyrimidine ba	ise?		
	A) Adenine B) Cytosine C) Guanine D) Inosine			
21	Which method is used to demonstrate tr	iglycerides in histochemical methods for		
	lipids?			
	A) Copper rubeanic acid method	B) Acid hematin method		
	C) Schultz method	D) Calcium lipase method		
22	What color does the PAS stain produ	uce in areas where carbohydrates are		
	present?	D) Court		
	Ti) Blue B)g.	Yellow D) Green		
23	Which of the following is NOT an examp			
	A) Albumin B) Fibrin C) Glycoproteins D) Reticulin			
24	When osmium tetroxide is reduced by unturns into a:	nsaturated fatty acids and their esters, it		
	A) White oxide B) Yellow oxid	de C) Black oxide D) Red oxide		
25	Which histochemical method is specifical	lly used to demonstrate DNA?		
	A) Feulgen method	B) Basophilia		
	C) Acridine red method	D) Methyl Green Pyronin method		

V	Which method involves the simultaneous production and capture of primary reaction product (PRP) and final reaction product (FRP) in one incubating			
	nedium? A) Self-colored substrate C) Metal precipitation technique	B) Post-incubation coupling D) Simultaneous coupling		
1	C) Metal precipitation technique Which type of enzymes catalyze the rearran	ngement of chemical bonds		
1	closule?	C) Isomerases D) Hydrolases		
10	What enzyme is commonly used to illustrate A) Alkaline phosphatase	D) Esterase		
11	C) Dehydrogenase Which of the following staining reactions f configuration rather than their chemical co A) Sagaguchi method C) Mercury orange method	mposition? B) Ninhydrin-Schiff method D) Masson's Trichrome stains		
12	What are the monosaccharide units that co A) Glucose and fructose	D) Glucose and ribose		
13	Which histochemical method is used to det A) Copper rubeanic acid method	D) Calcium lipase method		
14				
	cholesterol esters? A) Polarizing microscopy C) Transmission electron microscopy	B) Fluorescent microscopy D) Scanning electron microscopy		
1	5 What type of bond links monosaccharide A) Peptide bond	B) Hydrogen bond D) Glycosidic bond		
1	6 What is the substrate used to visualize staining? A) Hematoxylin B) Alcian Blue	e peroxidase activity in immunoenzyme C) Eosin D) Diaminobenzidine (DAB)		

Final-term exam, 2nd semester, 2024/2025

Histochemistry (Z 316)

Time limit: 2 hours, Date: May. 15th, 2025

Total score: 50 marks, the test consists of 7 pages

Q1: Choose the correct answer from "A, B, C, or D", then put your answer inside the empty box, under the black arrow: (25 marks, one mark for each)

1	Which histochemical technique is used for the detection of free amino groups in proteins?				
	A) Ninhydrin-Schiff method B) Sagaguchi method				
	C) Mercury orange method D) Millon's reaction				
2	The histochemical method used to detect cholesterol and its ester is:				
	A) Copper rubeanic acid method B) Schultz method				
	C) Calcium lipase method D) Acid hematin method				
3	Acid hematin is a histochemical method used for the demonstration of:				
	A) Cholesterol esters B) Phospholipids C) Triglycerides D) Plasmalogens				
4	Which microscopy technique is used after staining with osmium tetroxide?				
	A) Confocal microscopy B) Light microscopy				
	C) Fluorescence microscopy D) Electron microscopy				
5	Which of the following methods is used to demonstrate antigens, antibodies, and				
	antigen-antibody complexes in tissues and cells?				
	A) Autoradiography B) Histological methods				
	C) Immunohistochemical methods D) Enzyme labeling				
6	The structural unit of nucleic acids is:				
	A) Monosaccharides B) Nucleotides C) Fatty acids D) Amino acids				
7	The general chemical formula for carbohydrates is:				
	A) $C_n(H_2O)_n$ B) $C_n(H_2O)_{2n}$ C) $C_n(H_2O)_{n+1}$ D) $C_n(H_2O)_{2n+1}$				