
3	Most reaction rates depend on the fraction of molecules possessing Ea or greater.
4	Catalysts increase the rate of a reaction by decreasing the activation energy of the reaction.
5	If a reaction is zero order in a particular reactant, changing its concentration will have a great effect on the rate as long as the reactant is present.
6	In a multi step reaction each step will have its own rate constant and activation energy.

Question(2): Choose the correct answer from the following answers: (1 Mark for each one)

Question (3): As indicated from the following figure for a certain reaction: (5 Marks) $A \longrightarrow B \longrightarrow C \longrightarrow D$

- 1) How many elementary reactions are there in the mechanism?
- 2) How many intermediates?
- 3) Which step is rate limiting?
- 4) Which is the fastest step?
- 5) Exothermic or endothermic reaction?

Question (4): The decomposition of a certain insecticide in water follows first-order kinetics with a rate constant of 1.45yr $^{-1}$ at12 $^{\circ}$ C. A quantity of this insecticide is washed into a lake on June1, leading to a concentration of 5.0 x 10 $^{-7}$ g/cm 3 . Assume that the average temperature of the lake is 12 $^{\circ}$ C.

- 1) What is the concentration of the insecticide on June1 of the following year?
- 2) How long will it take for the concentration of the insecticide to drop to $3.0 \times 10^{-7} \text{g/cm}^3$?

Good Luck

1	
Assiut University Faculty of Science - Chemistry Department Physical Chemistry Examination for 2rd Level Applied Industrial Chemistry S	Date: 14/5/2025 Time: 2 hours Students (203 IC)
Answer the following questions:	
Part I: Catalysis: (17 Marks)	
Answer Two Only from the following:	
Derive the relation between the reaction rate and the ionic strength of 2) Derive the rate equation of a bimolecular homogeneous catalytic reaction.	
A+B — K2 → products	
3) Discuss the main postulates of heterogeneous catalytic reaction.	
Part II: Solid state Chemistry: (17 Marks)	
Answer the Following Questions:	
1- Put (v) or (x) for the following sentences:	
(i) lonic crystal exhibits high strength and low melting points. ()
 (ii) The freedom of the valence electrons to move through a metal give conductivity. (iii) If the reflection of all lattice positions through a point brings a coir a center of symmetry. (i) 	
(iv) When the two substances are quite different chemically but have t	he same structure, they

()

(vi) The amorphous materials are the atoms being packed in a little random fashion. ()2-Explain how are the electrons and holes created within Ge parent structure by the addition of P

(v) Chemical imperfection results from addition of the impurities. ()

3-Write short notes on two only from the following:

- (i) Point defects
- (ii) Slip dislocation
- (iii) Schuttcy and Frenkel defects 4

are said to be isostructural.

Part III: Chemical Kinetics: (17 Marks)

Answer the following questions:

Question (1): Mark ($\sqrt{}$) for the correct sentence and (x) for the wrong one. (1 Mark for each one)

In most reactions the increase in reaction rate is linear with the increase in temperature.
 Unit for k depends on the overall order of the reaction.

1

Q2:Choose (T) for true statements or (F) for False statements (1Mark each) for the following statements . (15 mrks)

No.	Sentences	T	F
1	Oscillatoria sp. belonges to cyanophyta while Codium sp. to Chlorophyta		,
2	Chlamydomonas sp. reproduced vegetatively by longitudinal binary fission		
3	Microcystis sp. is prokaryote while Rivularia sp. is eukaryotic microorganism		
4	Zygnema sp. is unbranched filaments with spiral form chloroplasts.		
5	Multiplication by fragmentation plays an important role in the case of filamentous cyanobacterial sp.	93	
6	Heterocyst play an important role in asexual reproduction of cyanobacteria		
7	Pamdorina sp. belongs to Myxophycophyta whlie Spirogyra sp.to Chlorophyta		
8	Species of codiales do not form separating walls and the entire organism is Coenocytic.		
9	Microcystis sp. produce very harmfull toxins		
10	The prominent phase of the Codium sp Life Cycle is haploid.		
11	Euglena sp. Are Important for formation of petroleum deposits		
12	The plant body of diatoms consists of two overlapping halves called valves.		
13	Fucoxanthin, diatoxanthin and diadinoxanthin and are the commen	31	
	pigment in cyanophyta		
14	Diatomite,The cell wall material of diatoms. Suitable for filters production		
15	Iodine can produce from phaeophyta but its production from algae was costless		

Q3: Write short notes on two only from the following (20 marks)

- 1- General character of phaeophyta and the life cycle of Fucus with drawing
- 2- Economic and harmfull aspects of algae
- 3- Compare between sexual reproduction of Chara and Spirogyra (with drawing)

Best wishes , Prof, Awatief F. Hifney

Faculty of Science Assiut university

Final exam (Phycology 204NT) Time allowed: 2hours. (2025-2026),

Answer the following Questions

QI: Choose the correct answer of the following:	<u>(15 marks)</u>
1.Algae belonging to Oscillatoriales have filamentous with	heterocyst
a. intercalary b. basal c. No	d. a&B
2.Cell wall of Eugleoides composed from	
a. Calcium carbonate b. Cellulose c. glycogen d. Eu	iglena have no cell wall
3. Chlamydomonas sp. and Spirogyra Sp. are Chlorophyta Cyanophyta	while belonges to
a. Chroococus b. Microcystis c. Zygnema	d.A&b
4. The secretion of by cyanophyta cause animals	d a death of some farm
a. exotoxins b. endotoxins c. Carragenin endotoxins	
5.Sexual reproduction is not found in	II Bugienn sp. Ans Imnum
a. Spirogyra b. Nostoc c. Chloropyta d.	b&C e. Diatoms
6. Reserve food material of Cyanophyta is	13 Foodynamina, diagonauth
a. Oil b. Glycogen c. Starch 7. Alginate can be extracted and found in cell wall of a. Phaeophyta b. Rhodophyta c. Euglenophyta	Chlorophyta d.
8. Alternation of generation are found in sp. Of	
a. Cyanophyta b. Codiales c. Charles 9. Non filamentous form of cyanobacteria belongs to a. Chrococcales b. Codiales c. Nost 10. Most of show gliding or creeping, rotator m	tocales d. Euglenophyta
a. Cyanophyta b. Chlorophyta c. Nostocales	d. Euglenophyta

c- Explain how old quantum mechanics successfully explained the characteristics of X-ray spectrum. (5 Marks)

Electron chaege e	1.6x10 ⁻¹⁹ C	Plank's constant h	6.626 x 10 ⁻³⁴ Joul.sec
Electron mass m_e	9.1x10 ⁻³¹ kg	Light velocity c	3x10 ⁸ m.sec ⁻¹
Proton mass m _p	1.672x10 ⁻²⁷ kg	Coulomb constant k	9x10 ⁹ J.m.C ⁻²
Wien's displacement constant	2.8977×10 ⁻³ m⋅K	Ionization energy of the hydrogen atom E _o	13.6 eV
Rydberg constant R	1.097 x10 ⁷ m ⁻¹		

WITH MY BEST WISHES

Hesham Al-Attar

2

9.

a- Choose the correct statement:

Please write your selections (a or b or ...) in the blank column to the right of the table.

1-	A large constant force is used to accelerate which form of Newton's second law—relation object take a longer time to reach a speed of	0.9c?				
	(a) Relativistic.	(b) Nonrelativistic.				
	(c) Same for both.	(d) impossible to measure				
2-	Two clocks, equidistant from O and at reference frame of O , start running when the flash of light from the light source midwithem. According to O , the two clocks are so (they start at the same time). According to moving with velocity u relative to O , clocks are so that O , and O , where O is the first of the flat O .	vay between vay between the light				
	(a) Yes	(d) impossible to measure				
	(c) Depends on location of O_2 (d) impossible to measure					
	(c) Depends on location of O_2 In a certain collision process, particles A and B collide, and after the collision particles C and D appear (C and D are different from A and B). Which quantities are conserved in this collision?					
3-	(a) only linear momentum and kinetic energy					
	(b) only mass and kinetic energy					
	total relativistic energy					
4-	a continu	g at speed $v = 0.866c$ directly toward one at remains is a new particle of mass M . What				
	(a) $M=2m$ (b) $M=4m$	(c) $M = m$ (d) $M = 1.5m$	-			
	Photoelectrons stopping potential depends on					
	(a) frequency of incident light and nature of the cathode material.					
5-	(b) only the intensity of the incident light.					
5-	(c) only the frequency of the incident light					
	(d) only the nature of cathode material.					

- b- Electrons in a particle accelerator are accelerated in two stages. The first stage accelerates the electrons from rest to a speed of u=0.99c, that is, a 99% increase. The second stage accelerates the electrons from 0.99c to 0.999c, increasing by only 0.9%.
 - i- Find the amount of energy that the first stage supplied to the electrons.
 - ii- How much energy did the second stage supply the electrons to increase their speed by just (5 Marks) 0.9%?

c- Electromagnetic radiation with a wavelength of $5.7 \times 10^{-12} \, m$ is incident on stationary electrons. At what scattering angle, radiation that has a wavelength of $6.57 \times 10^{-12} \, m$ is detected?

(12.5 Marks) (2.5 Marks)

Question (4):

a- Choose the correct statement:

Please write your selections (a or b or ...) in the blank column to the right of the table.

1-	If it requires energy U to accelerate a rocket from rest to 0.5 c , the energy needed to accelerate that rocket from 0.5 c to c would be						
	(a) 0.5 <i>U</i>	(b) <i>U</i>	(c) 2 U	(d) infinite			
2-	For a material object	such as a rocket ship	, the possible range of	$\gamma_{ m v}$ is			
	(a) $0 \le \gamma_v \le 1$	() - 1 /	(c) $0 < \gamma_{\rm v} < \infty$				
	earth makes a trip t	aveling at 99.99% of o a star 100 light yea ke the trip). During th	rs from earth (meani	asured relative to the ng that it would take			
	(a) People on earth v	would age essentially 1	00 years.				
3-	(b) People on earth would age less than 100 years.						
	(c) The astronauts in the rocket would age more than 100 years.						
	(d) The astronauts in the rocket would age less than 100 years.						
	(e) The astronauts in the rocket would age essentially 100 years.						
	In the Bohr model of energy difference bet	of the hydrogen atom ween any two successi	, by increasing the question the levels in the atom	uantum number, the			
4-	(a) increasing (b) be equal						
	(c) decreasing (d) none of the preceding						
	Compton shift depen	ds on which of the foll	owing?				
5-	(a) incident radiation (b) nature of scattering substance						
	(c) angle of scattering	g	(d) amplitude of fr	requency			

b- Define the proper mass, and prove that the proper mass of any particle moving with speed of light c "such as photon" is zero. (5 Marks)

- c- Write Bohr's hypotheses for his atomic model. Using these assumptions:
 i- Estimate the radius of the stable hydrogen atom.
 ii- Prove that the distance between any two successive energy levels increases by increasing the quantum number n.

a- Choose the correct statement:

Please write your selections (a or b or ...) in the blank column to the right of the table.

1-	An electron moves through the lab at 99% the speed of light. The lab reference frame is S and the electron's reference frame is S'. In which reference frame is the electron's proper mass larger?				
-	(a) Frame S, the lab frame	(b) Frame S', the electron's frame			
+	(d) impossible to measure				
	A high-speed train passes a train platfor Miguel is standing on the train platform, a platform in the same direction as the train how long each of these observers measures to	is traveling. Choose the proper order of			
2-	(a) Carolyn, Miguel, Anthony.	(b) Miguel, Carolyn, Anthony.			
	(c) Miguel, Anthony, Carolyn.	(d) Anthony, Carolyn, Miguel.			
	Mi Cowolym	(f) Carolyn, Anthony, Miguel.			
	(e) Anthony, Miguel, Cartolyn. Suppose a rocket traveling at 99.99% of the speed of light measured relative to the earth makes a trip to a star 100 light years from earth (meaning that it would take light 100 years to make the trip). During this rocket trip				
	(a) People on earth would age essentially 100 years.				
3-	(b) People on earth would age more than 100 years.				
	(c) People on earth would age less than 100 years.(d) The astronauts in the rocket would age more than 100 years.				
	(d) The astronauts in the rocket would age more than 200.				
-	(e) The astronauts in the rocket would age essentially 100 years. What is the effect of doubling the accelerating voltage across an x-ray tube?				
	What is the effect of doubling the accelerate	nes are halved			
	(a) the wavelengths of the characteristic lines are halved				
4-	(b) the minimum wavelength of the X-rays is halved				
	(c) the X-rays are most probably less penetrating				
	(d) the intensity of the X-ray beam is doubled				
	Rayleigh-Jean's law holds good for which	of the following:			
5-	(a) shorter wavelength	(b) longer wavelength (d) high energy			

b- As the outlaws escape in their getaway car, which goes 0.75c, the police officer fires a bullet from the pursuit car, which only goes 0.5c (as shown in the Fig.). The muzzle velocity of the bullet (relative to the gun) is c/3. Does the bullet reach its target (a) according to Galileo, (b) according to Einstein?

- c- Prove that:
 - i. All inertial observers will agree that two events are simultaneous if they occur in the same place.
 - ii. They may disagree as to the order of the two events that occur at two different points in space. (5 Marks)

uestion (2):

a- Match the following two Lists:

(12.5 Marks) (2.5 Marks)

Answer	List-I			List-II	
	1- Pair production and annihilation experiments		a	Prove the de Broglie hypothesis for the wavelength of a particle with mass.	
2- Thomson, son of J. J. Thomson, electron diffraction experiment. 3- Davisson and Germer experiment.			b	Evidence for the wave nature of x-ray.	
		c	Clear evidence of space quantization and the magnetic moments of electrons.		
	4-	J. J. Thomson, e/m experiment.	d	Confirmed the quantized structure of the atom.	
	5-	The Franck-Hertz experiment.	e	Prove that electron behaves as particles.	
				Proved that electric charge is quantized.	
			g	Prove the equivalence of mass and energy.	

b- A light source of wavelength λ illuminates a metal and ejects photoelectrons with a maximum kinetic energy of 1.0 eV. A second light source with half the wavelength of the first ejects photoelectrons with a maximum kinetic energy of 4.0 eV. Determine the work function of the metal.

4

Assiut University Faculty of Science Department of Physics Second semester 23/5/2025 Course: Modern Physics Code: P225

Code: P225 Time: 2 Hour Final Exam 50%

The exam is written in ten (10) pages

Answer four (4) only of the following questions:

Question (1):

(12.5 Marks) (2.5 Marks)

a- Choose the correct statement:
Please write your selections (a or b or ...) in the blank column to the right of the table.

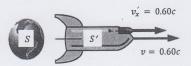
1-	A spaceship leaves Earth and maintains a constant force by means of a nuclear engine. As the speed of the spaceship increases, an observer on Earth finds that relative to her the magnitude of the spaceship's acceleration is						
	(a) 0		ecreasing.	(c) constant.		(d) increasing.	
	Molly flies her rocket past Nick at constant velocity v. Molly and Nick both measure the time it takes the rocket, from nose to tail, to pass Nick. Which of the following is true?						
2-	(a) Both Molly and Nic	ck meas	sure the same a	amount of time			
4-	(b) Nick measures a sh	orter ti	me interval th	an Molly.			
	(c) Molly measures a s	horter	time interval t	han Nick.			
	(d) impossible to meas	ure.		(e) none of th	e abov	e.	
3-	Beth and Charles are at rest relative to each other. Anjay runs past at velocity v while holding a long pole parallel to his motion. Anjay, Beth, and Charles each measure the length of the pole at the instant Anjay passes Beth. Rank in order, from largest to smallest, the three lengths L_A , L_B , and L_C .						
	(a) $L_A > L_B = L_C$		(b) $L_A = L_B$	$=L_{C}$	(c) L	$_A > L_B > L_C$	
	(d) $L_A < L_B = L_C$		(e) $L_A = L_B$				
4-	In Compton scattering from stationary electrons the largest change in wavelength occurs when the photon is scattered through:						
	(a) 0°	(b) 4		(c) 90°		(d) 180°	
5-	Light of frequency 1. material. If the freq becomes	9 times uency	the threshold is halved and	frequency is i l intensity is	nciden double	t on a photosensitive d, the photocurrent	
	(a) quadrupled	(b) d	oubled	(c) halved		(d) zero	

b- A furnace has walls of temperature 3000 °C. what the wavelength of maximum intensity emitted when a small door is opened? (5 Marks)

Marks of Q

(6 Marks)

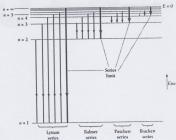
- 1) A proton with a mass of $m_p=938~\frac{MeV}{c^2}$ is accelerated to a total energy $E=5E_0$.


 a) Find its speed v in terms of c?
 b) Is the proton considered a relativistic or classical particle? Explain your reasoning?
 c) Calculate its momentum p in $\frac{GeV}{c}$?
 d) Find the kinetic energy in GeV?
 e) Determine the accelerating potential difference V.

- e) Determine the accelerating potential difference V in gegavolts (GV) required to achieve this energy?

4) (6 Marks)

1) A spaceship (S') moving away from the earth (S) with velocity v=0.75c fires a missile in the direction of travel with a speed of $v_x'=0.60c$ relative to the spaceship, where c is the velocity of light. What will be the approximate velocity of the missile (v_x) as observed from the earth?


2) A rod has a proper length of $L_0=100\ m$. What is its length L as measured in a frame moving at 0.8c parallel to the rod?

Marks of Q

(6 Marks)

The figure below shows the spectral series of Hydrogen. A hydrogen atom is in the n = 3 state absorbs a photon and the electron jumps to $\mathbf{n}=\mathbf{6}$ state.

- a) What is the wavelength of absorbed photon (λ) in nm?
- b) How many photons might be emitted from this atom following this absorption?
 c) Compute the wavelengths (λ₁: 6 → 5), (λ₂: 6 → 2) and (λ₃: 5 → I) of the emitted photons?
 d) Which photon (or photons) lies in the IR, visible or UV region of the spectrum?

Maı	ks	of	Q	

(6 Marks)

Q2) 1) The resolving power of a microscope depends on the wavelength used. If one wished to "see" something, a resolution of approximately a wavelength (λ) would be required. An electron microscope is used to resolve a virus of size $2\times 10^{-9}\,m$.

- a) Calculate the electron momentum required in $(\frac{kg \cdot m}{s})$ and in $(\frac{eV}{c})$?
- b) Find the kinetic energy of the electron in (eV)?
- c) Determine the photon energy in (eV) needed for equivalent resolution and explain why electrons are preferred?

2) A photon's position is measured with uncertainty $\Delta x = 100\,nm$. If its de-Broglie wavelength is $\lambda = 500 \, nm$, estimate the minimum uncertainty in its wavelength ($\Delta \lambda$)?

Marks of Q

Part Two: Answer Four (4) only of the following questions Q1)

(24 Marks)

(6 Marks)

An X-ray photon ($\lambda=0.020\,nm$) scatters off an electron at $\phi=60^\circ$. a) Find the scattered photon's wavelength (λ ')?

- b) Calculate the electron's kinetic energy (E_e) ? c) Calculate the electron's recoil angle (θ) ? d) Verify momentum conservation by showing that $p=p'cos\phi+p_e\cos\theta$ and $p'sin\phi=p_e\sin\theta$?

- 23. The energy released in nuclear reactions comes from:
 - a) breaking chemical bonds
 - b) converting a small fraction of mass into energy
 - c) friction between particles
- d) electron transitions
- **24.** A particle's kinetic energy is equal to its rest energy when Lorentz factor (γ) equals
 - a) 1

b) 2

c) 4

- d)
- **25.** Relative to a stationary observer, a rod of length $L_0=10\ m$ is moving at $v=0.6\ c$. It would appear to the observer that the rod's length L is:
 - server th a) 8 m

b) 6 m

c) 10 m

- d) 12 m
- **26.** At what speed (v) does the Lorentz factor (γ) become 2?
 - a) $\frac{1}{2}c$
- b) $\frac{\sqrt{3}}{2}$
- $c)\frac{3}{4}c$
- $d)\,\frac{\sqrt{2}}{3}\,c$
- 27. The muon experiment confirms Special Relativity because:
 - a) Muons decay faster when moving.
 - b) Muons survive longer due to time dilation and length contraction.
 - c) Muons travel faster than light.
 - d) Muons gain mass at high speeds.
- **28.** A spaceship (S') moving away from the earth (S) with velocity v=0.50c. If a light beam ($v_x'=c$) is emitted forward from the spaceship, its speed (v_x) as observed from the earth is:

- a) 1.5 c
- c) 0.50 c

- b) c
- d) 0.75 c

12. The wavefu	unction of a particle	in a 1d hov is zero :	t the houndaries	hocauso	
a) the	outside the box				
	c) the particle's velocity is zero			box is non-conducti	
			a, are	SOX IS HOTT COTIGUECTI	116
13. A particle in equal to:	n a one-dimensional	box of width L has	its first excited s	tate ($n=2$) de Brog	lie wavelength
a) L			b) L	/2	
c) 2L				is not related to L	
	where $ \Psi(x) ^2 = 0$:				
	particle has maximu	01	b) The	particle cannot be f	ound
c) The	wavefunction is disc	continuous	d) The	potential energy is	zero
45 144:1					
	sicist formulated the	Uncertainty Princi			
a) Niel				ert Einstein	
c) Erwi	in Schrödinger		d) We	rner Heisenberg	
16. If a particle momentum?	e's position is measu	red with high precis	ion, what happe	ns to the knowledge	of its
a) It be	ecomes more precise	e Santal Real Mark	b) It b	ecomes less precise	
c) It re	mains unaffected			ecomes exactly know	vn
				ction.	
17. According t	to the Bohr model o	f hydrogen, the spe	ed of the electro	n in the n-th orbit is	proportional to
	ron jumps from n=3				
	eases by a factor of			reases by a factor of	
c) incre	eases by a factor of 9	9	d) dec	reases by a factor of	9
19 The red line	a in the visible budge	agan spactrum (II	inal halansa ta t	B 1 10 10 1 1 1 1 1 1 1 1 1 1 1 1	E v 0
	e in the visible hydro an series	bgen spectrum (n_{α}		mer series	
	chen series			ckett series	
c) rasc	iletractics		u) bia	ckett series	
19. The ratio of	f minimum wavelen	gths of Balmer to Ly	man series will h	ne.	Series limit
		Build of Dumilor to E	man series will k	,	Eño
a) $\frac{4}{5}$	b) $\frac{4}{1}$	$c)^{\frac{2}{-}}$	d) $\frac{2}{1}$		
5	1	5	u) 1	n+1 -	Lyman Balmer Paschen Bracken
					series series series series
20. If 1 kg of m	nass is entirely conve	erted into energy, t			
a) 9 ×				$10^{-16}J$	
c) 3 ×	$10^8 J$		d) 1.6	$\times 10^{-19} J$	
			* .		
21. If a particle	e's total energy is E	and its rest mass en		at is its kinetic energ	y?
a) $\sqrt{E^2}$	$2 - m_0^2 c^4$			$-m_0c^2$	
c) E —	m_0c^2		$d)^{E-n}$	$\frac{v_0c^2}{c^2}$	
			C	4	

- 22. The "twin paradox" arises because:
 a) traveling twin experiences acceleration, breaking symmetry between frames.
 b) time flows backward for one twin.
 c) length contraction affects biological aging.

- d) special relativity only applies to non-living objects.

Marks of Q

Part One) Choose the correct option for the following questions (1 Mark each)

(26 Marks)

- 1. Planck's Law resolved the ultraviolet catastrophe by introducing:
 - a) Wave-particle duality

b) Energy quantization

c) The photoelectric effect

- d) Relativistic effects
- **2.** The photon is a massless particle of speed c, and a wavelength λ carries momentum p. Which of the following expressions for p is correct?

a)
$$p = h/\lambda$$

b)
$$p = \lambda/hc$$

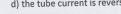
c)
$$p = \lambda/h$$

d)
$$p = \lambda c/h$$

- 3. In Compton scattering, the maximum increase in wavelength $\Delta\lambda_{max}$ occurs when the photon is scattered through an angle of:

 - a) 90° c) 0°

b) 180°


- d) 45°
- **4.** In the photoelectric effect, if the frequency of incident light is exactly twice the threshold frequency u_0 of the metal whose work function is ϕ , the maximum kinetic energy of the emitted electrons is:
 - a) hv_0

b) $2hv_0$

c) $hv_0 - \phi$

- d) $hv_0 + \phi$
- **5.** Characteristic X-rays (K_{α} and K_{eta}) are produced when:
 - a) electrons are decelerated
 - b) electrons make transition between atomic energy levels
 - c) the target melts

d) the tube current is reversed

- 6. Which application is most closely associated with X-ray diffraction?
 - a) Observing absorption spectra
- b) Determining crystal structures

c) Detecting radioactivity

- d) Observing emission spectra
- 7. The active medium in a ruby laser is:
 - a) a liquid dye
 - c) Germanium doped with arsenic
- b) a crystal of Al₂O₃ doped with Cr³⁺ ions
- d) pure nitrogen gas
- 8. Which process is responsible for producing coherent light in a laser?
 - a) Spontaneous emission

b) Stimulated emission

c) Absorption

- d) Scattering
- 9. The de-Broglie wavelength of a neutron compared to an electron with the same speed is:
 - a) longer

b) shorter

c) equal

- d) undefined
- 10. The de Broglie wavelength of protons accelerated through voltage V is λ . If the acceleration voltage is reduced to V/9, the new wavelength is:
 - a) 32

b) $\lambda/3$

c) 92

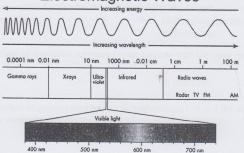
- d) \(\lambda/9\)
- 11. Among the following particles which one will have the shortest wavelength, if all have the same speed:
 - a) Electron ($m_e = 9.1 \times 10^{-31} \, kg$)
- b) Proton ($m_p = 1.67 \times 10^{-27} \, kg$)
- c) Neutron $(m_n = 1.67 \times 10^{-27} \text{ kg})$
- d) Alpha particle ($m_{\alpha} = 6.64 \times 10^{-27} \, kg$)

Assiut University Faculty of Science Department of Physics Second Semester (2024-2025) Final Exam (50%)

Level: (2) Date: June 3rd, 2025

Physics Program

Time: 3 hours

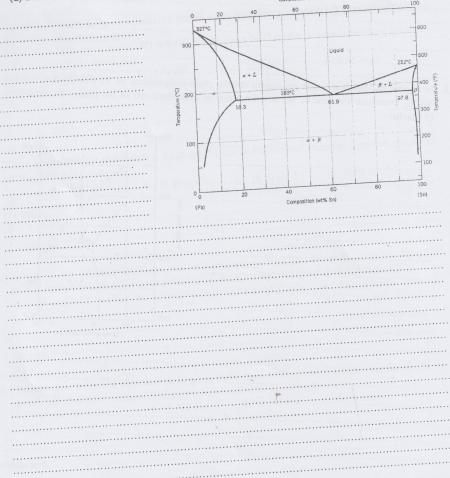

Course Title: Modern Physics Teaching Staff: Prof. Dr. Salah A. Makhlouf

Code: P 215

Constants & Conversion of units

Electron mass: $m = 9.11 \times 10^{-31} \text{ kg & Proton mass: } m = 1.673 \times 10^{-27} \text{ kg}$ Electron charge: $e = 1.6 \times 10^{-19} C$ Planck's constant: $h = 6.626 \times 10^{-34}$ J·s and $\hbar = 1.054 \times 10^{-34}$ J·s Avogadro's number: $N_A = 6.02 \times 10^{23}$ atom/mole Speed of light: $c = 3 \times 10^8$ m/s *Boltzmann's constant:* $k_B = 1.38 \times 10^{-23} \text{ J/K}$ Compton wavelength: $\lambda_c = 2.426 \text{ pm}$ Rydberg Constant $R = 1.097 \times 10^7 \, \text{m}^{-1}$ For hydrogen atom: Bohr radius $a_0 = 5.292 \times 10^{-11}$ m & $E_{lon} = 13.6$ eV $\varepsilon_0 = 8.85 \times 10^{-12} \, \text{C}^2 / N \, \text{m}^2$ $1 eV = 1.6 \times 10^{-19} J$ $1 \text{ Å} = 10^{-10} \text{ m & } 1 \text{ nm} = 10^{-9} \text{ m}$

Electromagnetic Waves


			Wome average on antication a	
	In Figure, cite the phases that are present and the phase	composition	ons for 95 wt% Zn-5 wt% Cu	at
3.	In Figure, cite the phases that are present and the phases 300°C. Determine the relative amounts (in terms of months)	ass fraction	is) of the phases for the allo	ys.
	300°C. Determine the relative amounts (in terms of			
	(3 Marks)			
		800	pater and the beautiful to the state of the	
			-1400	
			Liquid	
			Long	
			1200	
	1 mg	600		
		9	e 1000	Tr.
		Temperature (°C)	+ L 1000	Temperature (F)
		edu		nper
			800	٩
	•••••	400	7	
			t+n 600	
		-		
		200	80 87 97 100	
			80 87 97 100 Composition (wt% Zn)	
	· · · · · · · · · · · · · · · · · · ·			
			Best wi	shes,

Page | 8 of 8

2. In Figure, for a 30 wt% Sn-70 wt% Pb alloy at 100° C, in below phase diagram:

(4 Marks)

- (a) What phase(s) is (are) present?
- (b) What is (are) the composition(s) of the phase(s)?
- (c) Calculate the relative amount of each phase present in terms of the mass fraction. (d) Describe in detail the phase diagram shown below and state the different equilibrium lines.

(9 Marks) Question (II): Put $(\sqrt{\ })$ or (\times) for all the following sentences: 1. Ceramics are compounds of metallic and nonmetallic elements; they are most frequently oxides, 2. Substances in which measured properties are independent of the direction of measurement are 3. The Frenkel defect is equivalent to a missing atom that leaves its original site and migrates to the surface of the crystal (). 4. A screw dislocation is formed by shear stress that is applied to produce the distortion (). 5. Planar defects include external surfaces, grain boundaries, twin boundaries, precipitates, stacking faults, and phase boundaries ().

- 6. Grain size and shape are only two features of what is termed the microstructure (). 7. For many alloy systems and at some specific temperature, there is a maximum concentration of solute atoms that may dissolve in the solvent to form a solid solution; this is called a solubility limit ().
- 8. A stable state or microstructure may persist indefinitely, experiencing only extremely slight and almost imperceptible changes as time progresses ().
- 9. The binary isomorphous phase diagram presents the complete liquid and solid solubility of the two
- 10. Increasing the number of vacancies in a solid will decrease the rate of vacancy diffusion ().
- 11. The structure of a material usually relates to the arrangement of its internal components ().
- 12. Structural elements that may be viewed with the naked eye are termed "microscopic" ().
- 13. Interstitial diffusion in solids requires the presence of empty lattice sites (vacancies) ().
- 14. A composite is composed of two (or more) individual materials, which come from the categories: metals, ceramics, and polymers ().
- 15. The cubic system has the greatest degree of symmetry, but the orthorhombic system has the least
- 16. The primitive unit cell contains the same kind of atoms, while the Bravais lattice contains only one lattice point ().
- 17. The coordination number is the number of nearest-neighbor or touching atoms ($\,$).
- 18. The coordination number for FCC and HCP structure is 12 ().

 Iron (Fe) and vanadium (V) solution in Fe for concentrate concentration in weight perc nm. (Hint: ρ_V = 6.11 g/cm³, ρ 	ions up to approximate of V that must be	added to Fe to yield	a unit cell edge length	
nm. (Hint: $\rho_V = 6.11$ g/cm , ρ	b. 12.9 wt%	c. 20 W170	d. 92 wt%	
		tuo berrino gene tess	······································	0.0000000
14. Determine the indices for th a. $[0\overline{1}\overline{1}]$	h 121(1)	6. [114]		
51000				
		d a lilw sangle side		T. For wa
15. Determine the Miller indice a. (101)	b. (324)	c. (0)	cell (Figure (b)): d. (021)	(20) o.
PATTURA STATE OF THE U.A. LANS.				
Figure (a)	+z 2231/23 5000	Figure (b)	43 MILLERY MILLS 1960	
1/2		1/3	1 2	
	149		1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	
42	1/2	+x ***		
				Page 4 of 8

	(V) both
Ilea fina a	and
concentration of carbon is 0.	ally containing 0.3 wt% C is carburized at an elevated temperature and surface carbon concentration constant at 1.0 wt%. If, after 60 h, the surface carbon concentration 4.0 mm below the surface, determine the ent was carried out. (Hint $erf(0.9) = 0.797 \& erf(0.95) = 0.8209$): b. 1280 K c. 1364 K d. 1468 K
	da llas han nama ad
11. For which set of crystallograp	shic planes will a first-order diffraction peak occur at a diffraction angle when monochromatic radiation having a wavelength of 0.0711 nm is
(20) of 46.21° 101 BCC from used? (Hint R=0.1241 nm)	d. (330)
a. (011)	b. (310) c. (200)
	t f cold
12. Gold (196.97 g/mol) forms	a substitutional solid solution with silver. Compute the number of gold for a silver-gold alloy that contains 10 wt% Au and 90 wt% Ag. The year are 19.32 and 10.49 g/cm³, respectively.
densities of pure gold and si	ever are 19.32 and 10.49 g/cm ³ , respectively. d. 1.44×10^{21}
a. 7.36 × 10 ⁻¹	
	Page 3 of 8

				seed for all Selection
		donoi	ty of 12.41 g/cm ³ , an	d an atomic weight is 102.91
Phodiu	m has an atomic radi	ius of 0.1345 nm, a densi	ty 01 12 8	
Middle	ts crystal structure s	hould be:	PCC	d. HCP
			c. BCC	
	a. 50			
			Annual Paris	301015 atomics
	cin i distalla canta	into leteves typica		the
			1 956 and a density	of 7.13 g/cm ³ . Compute the
7: h	as an HCP crystal	structure, a c/a ratio of	1.050, and a 4	
Zinc ii	as an Her Zn (Hint	M _w for Zn is 65.41 g/mc	e. 0.153 nm	d. 0.167 nm
atomic	radius for Zir (Time	b. 0.142 nm	c. 0.153 nm	
	a. 0.133 nm			
			A modine	of 0.1363 nm. the interplanar
	(Ma) has a	BCC crystal structure	and an atomic raulus	Of O.12
. Moly	bdenum (IVIO) IIas a	mads drag		d. 0.1707 nm
spacit	ng dili equais.		c. 0.1527 nm	u. O.I.
	a. 0.1817 nm			
		b. 0.1432 nm		
	90,0 U.S.S.			he energy for vacancy formation are 7.65 g/cm ³ and 55.85 g/mol
		aise per cubic mete	er in iron at 850°C. T	he energy for vacancy
8. Calc	culate the number of	vacancies per cuote and a	tomic weight for Fe	are 7.65 g/cm and 33.65 g/m
is 1.	08 eV/atom. Further	rmore, the density and a		he energy for vacuus 3 are 7.65 g/cm ³ and 55.85 g/mol 3 3 4 0 10 28 m ⁻³
roen	ectively, (KB 8.62×1	10 ⁻⁵ eV/atom K):	$2.75 \times 10^{22} \text{ m}^{-3}$	d. 3.40×10^{26} m
	$1.18 \times 10^{24} \text{ m}$	D. 1.10	C. 2.15 / 10	
	a. 1.10			
	christians a density			
		Ye		
			11 is 0.15 wt9	%. What is the concentration
	anneantration of	carbon in an iron-carbo	on alloy is 0.15 wer	%. What is the concentration and iron are 2.25 and 7.87 g/cm ³) d. 2.48 kg/m ³
- 001	e concentration of	r cubic meter of alloy? (densities for carbon a	$\frac{1}{3}$ d $\frac{2.48 \text{ kg/m}^3}{1}$
9. The	C - de an ma	I VIIVIV	c 7 33 kg/m	u. 2.40 kg
9. The	ograms of carbon pe	$h = 9.72 \text{ kg/m}^3$	C. 1.55 6	
9. The	ograms of carbon pe a. 11.80 kg	r cubic meter of alloy? ($^{\prime}$ /m ³ b. 9.72 kg/m ³		
9. The	ograms of carbon pe a. 11.80 kg	/m³ b. 9.72 kg/m³		
9. The kild	ograms of carbon pe a. 11.80 kg	/m³ b. 9.72 kg/m³		
9. The kild	ograms of carbon pe a. 11.80 kg	/m ³ b. 9.72 kg/m ³		

Assiut University Faculty of Science **Physics Department**

Final: Second term 2025

Date: May 31st, 2025

Allowed time: 3 hours

Course Name: Physics of Metals, Alloys and Ceramics Coordinator: Prof. Alaa Abd-Elnaiem

Course Code: P256 Grade: 50 Marks

Coordinate	
Answer all the following questions. (30 M	(arks)
Answer an the local	down
Question (I): In the following multiple-choice questions, please circle the correct answer(s). You must write the correct answer.	down
In the following multiple-choice questions, please circle as the steps to get the correct answer. 1. The atomic radius for tungsten (W) is 0.137 nm, W has a BCC crystal structure, therefore, the steps to get the current answer. 1. The atomic radius for tungsten (W) is 0.137 nm, W has a BCC crystal structure, therefore, the step of the state of the stat	linear
density for the [111] direction b. 1.42 nm ⁻¹ c. 2.23 nm	
d merile	
	- mlonar
2. The atomic radius for nickel (Ni) is 0.125 nm, Ni has an FCC crystal structure; therefore, the atomic radius for nickel (Ni) plane is:	e pianai
density for the (111) plane is:	Molyb
	-0.10-11
diffusion coefficient and activation energy for Cu in Si are D (300°C) =	7.8×10
m^2/s , $Q_d = 41.5 \text{ Kg/mol}$. When m^2/s b. $3.4 \times 10^{-8} \text{ m}^2/s$ c. $1.2 \times 10^{-8} \text{ m}^2/s$	
	65.06
4. Calculate the radius of a vanadium atom, given that V has a BCC crystal structure, a density $(N_A = 6.022 \times 10^{23} \text{ atoms/mol})$.	01 3.90
g/cm ³ , and an atomic weight of b. 0.132 nm c. 0.148 nm u. 0.124 nm	
	Dens 11 of

A series RLC AC circuit has $R=425\Omega$, $L=1.25H$, $C=3.5\mu F$, $\omega=377rad/s$, and $\Delta V_{\rm max}=150V$. A) Determine the inductive reactance, the capacitive reactance, and the impedance of the circuit? b) Find the maximum current in the circuit? c) Find the phase angle between the current and voltage in the circuit?

3- An electron moves through a uniform electric filed E=(2.5i+5j)V/m and a uniform magnetic field $(B=0.4 \ k)T$. Determine the acceleration of the electron when it has a velocity $(v=10 \ i)m/s$?

4- A current of 0.1 A circulates around a coil of 100 turns and having a radius equal to 5 cm. Find the magnetic field set up at the center of the coil?

5- A proton moving with a velocity, 2.5×10^7 m/s, enters a magnetic field of intensity 2.5 T making an angle 30° with the magnetic field. Find the force on the proton?

22- Consider the arrangement shown in the figure. Assume that R=6.0 Ω , l=1.20 m, and a uniform 2.5 T magnetic field is directed into the page. At what speed the bar should be moved to produce a current of 0.5 A in the

a) 1.0 m/s b) 100 m/s c) 10 m/s d) 0.1 m/s

23-When the magnitude of the force per unit length between two long parallel wires that carry identical currents and are separated by 1 m is 2×10^{-7} N/m, the current in each wire is defined to be:

b) Zero c) 0.1 A

24- For two long straight parallel wires separated by a distance a and carrying currents I_1 =6A and

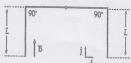
 I_2 =2A in the same direction, where the magnetic force on each wire is F_1 and F_2 . Which is true? b) $F_1 = F_2/3$

c) $F_1 = 3F_2$

25- A charge q is moving in a magnetic field, then the magnetic force does not depend upon: a) charge b) mass c) velocity d) magnetic field

26- Gauss's law of magnetism states that the net magnetic flux through any closed surface equals:

a) Infinity b) 1 weber c) zero d) BA


27- A straight wire is bent into the shape shown. Determine the net magnetic force on the wire when the current I travels in the direction shown in the magnetic field B?

a) 2ILB in + z direction

b) 2ILB in - z direction

c) 4ILB in + z direction

d) 4ILB in - z direction

2- Answer the following questions:

- 1- A 2.00-nF capacitor with an initial charge of 5.1 μC is discharged through a 1.3-k Ω resistor.
 - a) What is the maximum current in the resistor?
 - b) Calculate the current in the resistor 9 $\mu\,\text{sec}$ after the resistor is connected across the terminals of the
 - c) What charge remains on the capacitor after 8 μs ?

11-In RLC circuit, the phase angle i a) more capacitive b) mo 12-At an instant of time during the this instant, the voltage across th	re inductive oscillations of an LC ci e capacitor is:	c) pure resistance reuit, the current is at its	d) all the above maximum value. At
a) Minimum b 13- In a purely capacitive AC circuit a) may leads or lags the voltage) maximum , the current: depending on the frequ	c) Infinity	d) no change
b) leads the voltage by 90°	c) lags the voltage by		with the current.
14- A coil has an inductance of 3.0 r 0.20 s. Find the magnitude of the	nH, and the current in a average induced emf in	it changes from 0.20 A to the coil during this time	1.50 A in a time of
a) 122 V b) 15- The voltage and current in an ac $V = 5 \sin(100\pi t - \frac{\pi}{6})$ I:	50 V circuit are given by: = $4 \sin(100\pi t + \frac{\pi}{6})$	c) 22.5 V	d) 19.5 mV
a) Voltage leads the current by 30°b) Current leads the voltage by 60°		urrent leads the voltage booltage leads the current b	y 60°_
16- Determine the initial direction of enter the magnetic fields as show	the deflection of charg	ed particles as they	Bright +
a) No deflection b) into the p		page d) up ward	
17- A long solenoid of radius R has $I = I_0 \cos \omega t$. Determine the electronic (r > R)	s n turns per unit length tric field induced outsid	n and carries a time-vary le the solenoid at a distan	ing current given by ce r from its axis?
a) $E = zero$	c) $E = \frac{\mu_0 n I_0 \omega R^2}{2r} \sin \theta$	ωt	R
b) $E = \frac{\mu_0 n I_0 \omega r}{2} \sin \omega t$	d) $E = \frac{\mu_0 n l_0 \omega r}{2} \sin \theta$	ωt	
18- A plane loop of wire of area A is and B varies with time according	placed in a region when to $B = B_0 e^{-at}$. Find the	re the magnetic field is p the induced emf in the loop	arallel to the plane, p?
a) $\varepsilon = AB_0e^{-at}$ b) $\varepsilon = 19$ - A current of 0.1 A circulates are the magnetic field set up at the can $4\pi \times 10^{-5}$ tesla b) 8π	und a coil of 100 turns enter of the coil?		to 5 cm. Determine
20- Substance contains permanent at			
in a weak external magnetic field	l. romagnetic	c) Diamagnetic c) Ferrimagnetic
a) Faraday's law b) Gaus	ss's law c)]	Maxwell's law	d) Ampere's law

Assiut University Faculty of Science Physics Department

pgled ते प्रदेश Pl begundaget: Course: Electricity, AC and Magnetism Code: P261 Final Exam (50 Marks)

Exam date: /5/2025 Exam Time: 3 hours 2nd semester 2024-2025

Permittivity of the free space ϵ_0 8.85 × 10 ⁻¹² F/m	Permeability of the free $4\pi \times 10^{-7} \frac{we}{4}$		Charge of electron or proton ∓1.6 × 10 ⁻¹⁹ C
	The exam is written in	m (4) pages	
st Question: Choose the correct	anewer		
	Control of the Contro		
 Capacitors are charge and 		er	
a) Linear b	exponential	c) square	d) none of the above
2- The voltage output of an A current in the circuit when	AC source is given by the this source is connected to		$(200 V) \sin \omega t$. Find the rm
	b) 1.41 A	c) 1.41 A	d) 1.41 A
brightest at: a) high frequencies	on the following figure. The amplitude is held constant c) low frequencies came at all frequencies.	nt. The lightbulb	will glow the
4- The self-inductance of a st	raight conductor equals:		Ta or O gar
a) Zero b) 1		inity	d) $\mu_0 A/l$
5- An ac source of variable fr			
figure represents the variat	tion of current I in the circu	it with frequency	f?
(a) / (b)	(c) 1	∫ (d	
6- In a transformer, the coeff 0.2 henry. When the curre secondary coil will be:			mary and the secondary coil nary, the induced e.m.f. in the
a) 500 V	b) 100 V	c) 10 V	d) 1 V
7- The power factor is maxin		194	a) Paramanade
a) $R = 0$ b) 8- The unit T·m ² /s is equivalent		$X_{L}=0$	$d) X_{L} = X_{C}$
a) Ambere	b) joule	c) Weber	d) volt
9- The factor ωL has the sam	e units as:	Parat Plantico (d	
a) Resistance	b) Inductance	c) Capacitive	d) Electric field
10- As the resistance R decrea	ses, the resonance curve:		
a) becomes broader	b) becomes narrow	c) remains the	e same d) becomes linea

A series RLC circuit has a resistance of R = 45.0 Ω and an impedance of Z = 75.0 Ω .

(a) (4 marks) Calculate the phase angle ϕ between the current and the applied voltage.

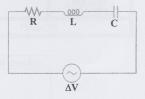
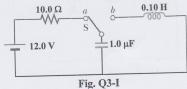
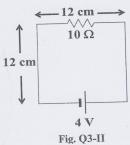


Fig. Q3-III


(b) (3 marks) What average power is delivered to this circuit when ΔV_{rms} = 210 V?

End of the exam.
I wish you the best of luck.

. Answer the following problems:


(21 Marks: 7 marks for each problem)

- 1. Referring to Fig. Q3-I, the switch S is connected to point a, for a long time. After the switch is thrown to point b, Find:
- (a) (3 marks) the frequency of oscillation of the LC circuit.

- (b) (2 marks) the maximum current in the inductor.
- (c) (2 marks) the total energy the circuit possesses at t = 3.0 s?

II. The circuit shown in Fig. 3-II is in a uniform magnetic field that is directed perpendicularly into the page and is decreasing in magnitude at the rate 150 T/s. Find the current in the circuit (in Amperes).

ong solenoid with cross-sectional area A1 (=10 cm²), length L1 (= 80 cm) and number of turns (1000 turns) is surrounded at its center with a coil of cross-sectional area A2 (= 11 cm²), length

L1 (= 50 cm) and N2 (= 10 turns). Calculate the mutual inductance M.

- a) 5 µH
- b) 25 μH
- c) 10 mH
- d) 1 mH

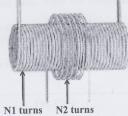


Fig. Q2-4

5. A 1.2 μF capacitor in a flash camera is charged by a 1.5 V battery. When the camera flashes, this capacitor is discharged through a resistor. The time constant of the circuit is 10 ms. What is the value of the resistance?

- a) $8.0 \times 10^{-2} \Omega$
- b) 0.12 Ω
- c) 12 kΩ
- d) $8.3 \text{ k}\Omega$

6. An 8 μF capacitor is connected to the terminals of a 60 Hz AC source whose rms voltage is 150 V. Find the current in the circuit.

- a) 2.22 A
- b) 1.11 A
- c) 0.45 A
- d) 0.14 A

. Circle the correct choice and show your answer. (18 Marks: 3 marks for each problem)

. A conducting rectangular loop of width 20 cm and length 15 cm moving with a velocity 15 m/s through a uniform magnetic field (B = 0.1 T) directed into the page as shown in Fig. Q2-1. Find the magnitude and direction of the induced current in the conducting loop of total resistance 0.5 Ω .

- a) 0.11 A, counter-clockwise
- b) 2.22 A, counter-clockwise
- c) 0.225 A, clockwise
- d) 0.45 A, clockwise

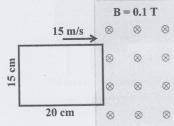


Fig. Q2-1

- 2. The induced emf in a single loop of wire has a magnitude of 1.48V when the magnetic flux is changed from $0.850~\mathrm{T.m^2}$ to $0.110~\mathrm{T.m^2}$. How much time is required for this change in flux? a) $0.01~\mathrm{ms}$
- b) 0.1 s
- c) 0.5 s
- d) 1 s

- 3. A DC motor of internal resistance 6.0 Ω is connected to a 24-V power supply. The current is 1.0 A at full speed. What is the back emf when the motor is running at full speed?
- a) zero
- b) 6.0 V
- c) 18 V
- d) 24 V

rapid exponential decay in just a few cycles of the charge on the plates of capacitor in an RLC cuit might be due to: a. a large inductance

b. a large capacitance c. a small capacitance

d. a large resistance

7. What happens when an insulation fault occurs in the ground fault interrupter (GFI) of Fig. Q1-7?

a. $i_1=i_2$ and the net flux in the sensing coil is zero.

b. $i_1=i_2$ and the net flux in the sensing coil is no longer zero.

c. $i_1 \neq i_2$ and the net flux in the sensing coil is zero.

d. $i_1 \neq i_2$ and the net flux in the sensing coil is no longer zero.

a. larger than

b. less than R

c. equal to R

d. impossible to determine

9. In Fig. (Q1-9), which of the following phasor diagrams represents the case of: X_L>X_C (X_L and X_C are inductive and capacitive reactance

a. (a)

b. (b)

c. (c)

d. There is no difference at all.

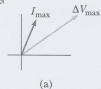
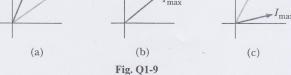



Fig. Q1-7

10. In an RLC series circuit, the source voltage is leading the current at a given frequency f. If the frequency f is lowered slightly, then the circuit impedance will:

a. increase

b. decrease

c. remain the same

d. need to know the amplitude of the source voltage

11. A high-Q circuit responds only to of frequencies than a low-Q circuit.

a. wider range

b. broader range

c. the same range

d. none of the above

Assiut University – Faculty of Science Physics Department 2024/2025 – 2nd semester (May, 2025)

Electricity & AC circuits - Code: P226

Final Exam

Time: 2h

Instructor: Prof. Dr. Hicham Mahfoz Kotb

Q1 (11)	Q2 (18)	Q3 (21)	Total (50 marks)
Ø1 (11)			

الاختبار مكون من 6 صفحات

Q1: Circle the correct answer for the following questions: (11 Marks: one mark for each problem)

- 1. In Fig. Q1-1, as the current I increases in the outer conducting loop, what is the direction of the induced current in the inner conducting loop?
 - a. clockwise
 - b. counterclockwise
 - c. alternating
 - d. zero current

Fig. Q1-1

- 2. If both the resistance R and the inductance L in an RL series circuit are doubled the new inductive time constant τ_L will be:
 - a. twice the old
 - b. four times the old
 - c. one-fourth the old
 - d. unchanged
- 3. 1weber is the same as:
 - a. 1V.s
 - b. 1T.s
 - c. 1T/m
 - d. 1T/m²
- 4. The units of motional emf are:
 - a. volt/second
 - b. volt.meter/second
 - c. tesla/second
 - d. tesla.meter²/second
- 5. take in energy by work and transfer it out by electrical transmission.
 - a. Electric generators
 - b. Dry batteries
 - c. Motors
 - d. Fuel cells

25) Calculate the transmission and reflection coefficient of amplitude for a wave travels from one medium to another if the mass of the unit length (μ) of the second medium is 4 times that of the first medium.

26) Deduce the heard frequency by a stopped observer when the source is moving:

i) toward the observer.

ii) away from the observer.

117

23) Represent by equations and drawing the Gaussian function for the following waves: (i) non-traveling wave. (ii) traveling wave by a distance of 2m in the left direction. 24) Proof that the equation $y = A \cos(x + vt)$ is a solution or not a solution for the wave equation. III- Four Marks for each

21) Show by drawing the forces acting on a displaced mass suspended at the end of vertical sprig. Then, prove that the equation $m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = -kx$ describes the mass vibration.

22) Prove that the relation between energy and time in a damped harmonic motion is $E(t) = E_{\theta} e^{-\gamma t}$

10- If an equation of motion is given by: $ma = -kx - bv + F_0$, then what is the expression for amplitude of motion?

a) $\frac{a\omega_0^2}{(1-\omega^2/\omega_0^2)}$ b) $\frac{a\omega_0^2}{[(\omega_0^2-\omega^2)^2+\omega^2\gamma^2]^{1/2}}$ c) $A_0 e^{-\gamma t}$ d) $a \omega_0/\gamma$

11. In a damped SHM of a spring mass system. If the time taken is 4 s for the amplitude to become half its initial value. What is the damping factor τ ?

 $\frac{\ln 4}{2}$ b) $\frac{\ln 4}{4}$ c) $\frac{\ln 2}{2}$

12- A spring of constant 100 N/m and mass of 4 kg moves in SHM under external force without damping. If $F_0 = 10$ N, determine the amplitude of oscillation at external frequency of 2 rad s⁻¹ a) 0.0166 m b) 0.166 m c) 1.166 m d) 2.166 m

13- In LCR circuit consists of L= 5 H, C = 5 μF and R =10 $\Omega.$ The system is

a) undamping b) critically damped c) heavy damped d) light damped

14- A transverse wave traveling along a string is described by the function $y = 2 \cos(0.2 x + 30 t)$, where x and y are in meters and t is in seconds. Find the wavelength in meters.

a) 10 π b) 6 π c) 4 π

15- In the last question, the velocity of the wave is a) 250 m/s b) 200 m/s c) 150 m/s d) 100 m/s

16- An observer is in a car moving north at a speed of 20 m/s. An ambulance travels to the south at a speed of 30 m/s, its siren emits sound at frequency of 210 Hz. What will be the frequency as heard by the observer? The speed of sound in air is 330 m/s.

a) 245 Hz b) 181 Hz c) 204 Hz d) 217 Hz

10	11	12	13	14	15	16
	1			Spark Street		

Assiut University
Faculty of Science
Department of Physics

Vibrations and Waves 212 Phy Final exam
5/2025
Time Allow: 3 hours

I- ONE Mark for each

ضع الحروف التي تشير الى الاجابات الصحيحة في الجدول (وضح تماماً الحروف)

 $1.\ A\ force\ of\ constant\ 4N/m\ is\ acting\ on\ a\ particle\ of\ mass\ 1kg.\ What\ is\ the\ time\ period\ of\ oscillations?$

a) $2\pi s$

b) $\pi/2$ s

c) π s

d) $2 \pi/\sqrt{2} s$

2. Amass 100 g is suspended from the end vertical spring of constant 50 N/m. If the mass is released, find the extension in the spring. (g = 10 m/s²)

a) 0.04 m

b) 0.03 m

c) 0.02 m

d) 0.01

3. The displacement versus time graphs of 2 simple harmonic motions (SHM) are given below. Which parameter is the same for both?

a) Angular frequency

b) Amplitude

c) Maximum speed

d) Phase constant

4- What is the maximum kinetic energy of a particle in SHM with mass of 2kg, $\omega = \pi$ rad/s, A=1m.

a) 1.57

b) 6.28 J

c) 3.14 J

d) 9.87 J

5. A sprig is performing a SHM. If its amplitude is doubled keeping the mass and force constant the same, total energy will become how many times the initial value?

a) 4

b) 2

c) 1

d) ½

6. The velocity (v), the frequency (f) and the wavelength of a wave (λ) relate as

a) $v = \lambda / f$

b) $\lambda = v/f$

c) $f = \lambda / v$

 $d) f = \lambda v$

II- TWO Marks for each

7. The maximum velocity and maximum acceleration of a body moving in a simple harmonic motion are 2m/s and $4m/s^2$ respectively. What will be the angular velocity?

a) 4 rad/sec

b) 3 rad/sec

c) 2 rad/sec

d) 1 rad/sec

8. Calculate the inertia of a uniform rod of mass 3 kg and length l = 2 m about an end.

-) (1-- -- 2

b) 4 kg m²

c) 3 kg m²

d) 2 kg m²

9. A circuit contains a capacitor of capacitance of 10^{-6} F and an inductor of 10^{-4} H. The frequency of electrical oscillation will be

a) $(10^5/2 \pi)$ Hz

b) $(2 \pi 10^5)$ Hz

c) $(10^{-5}/2 \pi)$ Hz

d) $(2 \pi 10^{-5})$ Hz

-	1	2	3	4	5	6	7	8	9
								0	

114