Second Semester Examination Subject: General Chemistry I (C-100) Students: First Level "Credit Hours System"

Part (I) (25 Marks)

A) Determine the molecular weight of a gas if 4.5 g of it occupies 4.0 liters	s at 950 to	rr and
182 °C. (R=0.082 L.atm.mol ⁻¹ K ⁻¹)		
B) Using Van der Waal's equation, calculate the pressure exerted by 1.0 m	ole of CO	2 gas
at 0 °C in a volume of i) 1.00 liter ii) 0.05 liter,		
$(a=3.59 L^2.atm.mol^{-2}, b=0.042 L.mol^{-1})$		
C) You have the following cell process:		
$Fe_{(S)} + Co^{2+}(0.05 M) \leftrightarrow Fe^{2+}(1.0 M) + Co_{(S)}$		
$Fe^{2+} + 2e^{-} \leftrightarrow Fe_{(S)}$ $E^{\circ} = -0.44 \text{ eV}$		
$Co^{2+} + 2e^{-} \leftrightarrow Co_{(S)} E^{\circ} = -0.28 \text{ eV}$		
Find ΔE° , ΔE and the concentration ratio at which $E = zero$.		
D) Write short notes on <i>three only</i> of the following:		
i) Condensation method for preparation of colloidal solutions		
ii) Electrical properties of colloids		
iii) Purification of colloidal solutions		
iv) Reversible cells		
Part (II) (25 Marks)		
Tart (II) (25 Warks)		
A) Put $(\sqrt{\ })$ for true sentences or (X) for false sentences:	(6 Mark	(s)
i) The hybridization of C in HCN molecule is sp ²	()
ii) The emission spectra consist of a series of dark lines superimposed	on	,
the continuous spectrum of the light source.	()
iii) de Broglie suggested that particles of matter should show wave char	racteristic	S
under certain circumstances.	()
iv) The C ₂ molecule has diamagnetic properties.	()
v) The geometrical shape of BrF ₅ molecule is Trigonal bipyramidal.	()
vi) In an antibonding molecular orbital, the nuclei are attracted to an ac	ccumulati	on
of electron density outside the internuclear region.	()
	(7 N/ -	l)
B) Choose the correct answer (a), (b), (c) or (d):	(7 Ma	rks)
i) The hybridization of P in PCl ₃ is	(1) 3 12	
(a) sp^2 (b) sp^3 (c) sp^3d	$(d) sp^3d^2$	
Please turn over for the res		

ii)	Which of the follo		set of quantum numb	bers for the outermost	
	(a) n=3, $\ell = 0$, n			=1, m_{ℓ} =-2, m_{s} =+1/2 =1, m_{ℓ} =+1, m_{s} =+1/2	
iii)		$\inf_{\mathbb{Q}_2} - 1/2$, $\inf_{\mathbb{Q}_2} - 1/2$ in \mathbb{Q}_2^+ molecule is.		-1 , $\text{III}_{\ell} -+1$, $\text{III}_{S} -+1/2$	v
,	(a) 1	b) 1.5	(c) 2	(d) 2.5	
iv)			cule is		
		, , ,	•	eesaw (d) T-shape	
v)				ne of the subs	
	(a) size	(b) energy	(c) shape	e (d) orientati	on
vi)		molecule is			
				covalent (d) dativ	re
vii)	spherical orbits		elliptical orbits in ato	oms in addition to the	
	(a) Plank	(b) Pauli	(c) Bohr	(d) Sommerfel	d,
C) Ans	wer the following	g:	• • • • • • • • • • • • • • • • • • • •	(12 Marks)	
		structures for each each atom in both o		O ₃ ⁻ and ClF ₃ , assign th	ie
			aw the energy level on the magnetic properti	diagrams for O_2 and B_2 les for each of them.	
iii)	Based on VSEPF	theory, predict the	electron domain geo	ometries and the	, o
	molecular shapes	for SO ₃ and SF ₄			
[4	Atomic numbers: H=	=1 , B=5 , C=6 , N=7 ,	O=8, F=9, Na=11, P=1	15 , S= 16 ,Cl= 17 , Br=35	

Good Luck

Prof.Dr. Ahmed S. Elawad and Dr. Soliman A. Soliman

Assiut University Faculty of Science Department of Chemistry

Date: 20th May 2024 Time allowed: 2 hours

Final Examination of General Chemistry (2) (C-105) for 1st level students

يتم طمس (تسويد) الإجابة المختارة من قبل الطالب باستخدام القلم الجاف فقط					
Answer the following questions: Section A; Organic Chemistry (25 Marks)					
Q1- Shade the correct answer A,B,C or D (1 Mark each)					
1- Ethene characterized with:					
A) tetrahedron carbons, B)Free rotation,					
C) higher bond length, D) None.					
2- Reaction mechanism is:					
A) step by step description, B) bond breaking and bond making processes,					
C) A and B, D) None					
3- The IUPAC name of (CH ₃) ₂ CCH(CH ₂) ₂ C(CH ₃)CHCH ₂ OH:					
A) 2,6-dimethylocta-2,6-diene-8-ol,					
B) 3,7-dimethylocta-2,7-diene-1-ol,					
C) 2,6-dimethylocta-3,7-diene-8-ol,					
D) 3,7-dimethylocta-2,6-diene-1-ol					
4-1,2-dimethylcyclopentane has:					
A) one isomer, B) two isomers,					
C) three isomers, D) four isomers					
5- Which of the following compounds is relatively acidic:					
A) CH_3CHCH_2 B) CH_2CH_2 ,					
C) CH ₃ CCH, D) CHCH					
6- Addition of HBr to ethene takes place through:					
A) one transition state isolated,					
B) two transition states isolated,					
C) carbanion,					
D) None					
7- In ethylene:					
A) the two carbons and the four hydrogen atoms that are attached to them					
lie in a single plane,					
B) free rotation about the carbons,					
C) short bond length,					
D) A and C					
8- Allyl alcohol is:					
A) CH ₃ (CH ₂) ₂ OH, B) CHCCH ₂ OH,					
C) CH ₃ CHCHOH, D) None					

9- The pi - bond may be formed by linear					
A) one of them is occupied by two	o electrons and the other is empty,				
B) each one is occupied by two el	ectrons,				
C) A and B,					
D) None					
10- Hydration of cyclohexene gave:					
A) cyclohexane;	B) cyclohexanal,				
C) cyclohexanone,	D) None				
11- Which of the following alkenes exhib	oit cis - trans isomerism:				
A) CH ₃ CH ₂ CHCH ₂ ,	B) CH ₃ CHCHCH ₂ Cl ₂ ,				
C) CH ₃ CHCHCH ₃ ,	D) (CH ₃) ₂ CHCHC(CH ₃) ₂				
12- The correct order of increasing ener	gy of the following orbitals:				
A) S,P, SP^2, SP^3, SP ;	B) S, SP, SP ² , SP ³ , P;				
C) S , SP^3 , SP , SP^2 , P	D) S , SP^3 , SP^2 , SP , P				
13- Radicals are:					
A) stable;	B) unstable;				
C) highly reactive;	D) B & C				
14- The number of isomers of C ₄ H ₈ is:					
A) 2, B) 3, C) 4,	D) 5				
15- Pentane and isopentane are example					
A) chain isomerism;	B) positional isomerism;				
C) functional isomerism;	D) None				
16- The correct order of increasing angle					
A) SP, SP ² , SP ³ ;	B) SP ³ , SP ² , SP;				
C) SP ³ , SP, SP ² ;	$D) SP^2, SP^3, SP$				
17- The correct order of increasing C-H					
A) SP ³ -H, SP-H, SP ² -H;	B) SP ³ -H, SP ² -H, SP-H;				
C) SP-H, SP ³ -H, SP ² -H;	D) SP-H, SP ² -H, SP ³ -H				
18- The rate determining step in two step					
A) higher energy barrier,	B) lower energy barrier,				
C) carbanion,	D) None				
19- The greatest %S character is in:					
A) ethane, B) ethylene,	C) acetylene, D) cyclohexane				
20-Propyne reacts with H ₃ O ⁺ to give:	c) acceptone, 2) cycles and				
A) propanol, B) propanal,	C) propanone, D) None				
21-In propyne the number of sigma and					
A) three sigma and one pi;	B) three sigma and two pi;				
, ,	D) None				
C) six sigma and one pi;	Difference				
22- Ozonolysis of 2- butene gave: A) ethanol, B) ethanal,	C) propanone, D) None				
,					
23- The reaction of CH ₃ CCCH ₃ with 2H (Ni) gave: A) cis - butene; B) trans - butene; C) butanol; D) butane					
	,				
24- The reaction of propyne with ethylic	dide in presence of son amine gave.				

(

...