

(a) **F**

Final Exam - Second Term: 2023/2024 - Course Title: Physics of low temperature Code P- 422- Time: 3 h - Teaching Staff: Prof. Dr. Ahmed Sedky

Co	le P- 422- 11me: 3 n - 1 each	ing Staff. I for. Dr. Anmed Scuky
Q1 - Choose True	(T) or False (F) (20 mar	<u>ks):</u>
1- Superconductors c	n be used to increase the	friction of the superconducting trains.
(a) F	(b) T	
2- Superconductors c	n be used in radar apparat	tus due to their ferromagnetic behaviors.
(a) F	(b) T	
3- The sign of the the	moelectric power of a sur	perconductor is usually negative.
(a) F	· /	
4- The Cooper pairs i	love as a super-current wi	th high power dissipation.
(a) F	(b) T	
5- The electron pairs	equire less energy than bi	nding energy for breaking.
(a) F	(b) T	er jaget with a se
6- The jump in specif	c heat at T _c is due to enha	incing the order parameter.
(a) F	(b) T	· · · · · ·
7- When $I > I_c$, the v		ncreases with increasing I.
(a) F	- Pr	
8- The slope (dV/dI)	lefines the flux flow resis	tance R_f .
(a) F	(b) T	
9- The entropy of the	electrons in the NS is high	ner than that in the SS.
(a) F	(b) T	
10- In the mixed state	, $\psi(r)$ increases over a len	gth equal to ξ.
(a) F	(b) T	
11- The T_c of La: 21		
(a) \mathbf{F}	(b) T	
12- The T_c of $Y: 123$	is about 38 K.	
(a) F	(b) T	
13- The T _c of Bi: 222	3 is about 89 K.	[설문자] 설명하게 된 경영하다. 4 전기에 하는 기계
(a) F	(b) T	10-14 (XX 1.1)
14- Flux quantum in	superconductor equals 4.1	4×10^{-1} (Web).
(a) F	(b) T	
15- In R:123 system	R = Bi, Ti, and Hg.	

16- The temperatu	ure of liquid nitroge	en is – 196 °C
(a) F	(b) T	
17- When $F_L > F_p$, the vortex lines w	ill move (flux flow).
(a) F	(b) T	
18- When $F_L = F_p$, the vortex lines v	will be localized at the top of the well.
(a) F	(b) T	
19- Superconduct		when the flux flow occurs.
(a) F	(b) T	
	2223 is about 127	K. Aggragian and Market and A
(a) F	(b) T	
00 (00	Chassa the correct	t answar (MCO):
Q2 (30 marks): 0	Choose the correct	actors occurs at a pressure of:
		(c) 200 GPa
(a) 300 GPa	(b) 180 GPa	
22- The critical fie	eld Hc ₂ of the Bi:221	
(a) 7 T	(b) 10 T	(c) 9 T
23- The highest H	c ₂ obtained for high	T _c superconductors is about;
(a) 100 T	(b) 92 T	(c) 120 T
24-The T _c of a sup	perconductor is obta	ined when
(a) $I = zero$	(b) $T = zero$	(c) $V = zero$
25- The crystal str	ructure of the FeSeT	e system is;
(a) Orthorhombi	ic (b) Hexagonal	(c) Tetragonal
26- The specific h	neat of a supercondu	ctor at T _c equals;
(a) Zero	(b) ≈ 3Cen	(c) << 3Cen
27- The condensa	ation energy at a crit	ical field of 12 T equals;
(a) 5.762 J	(b) 5.732 J	(c) 5.702 J
28- If $H_c(0) = 5$	T and $T_c = 150 \text{ K}$, th	en H _c (100 K) equals;
(a) 2.877 T	(b) 2.778 T	(c) 2.718 T

29- The field at London depth equals;

- (a) B (a)
- (b) (1/e)B(a)
- (c) Zero

30- If $\lambda(0) = 5.1 \, \mu \text{m}$, then H_{c1} equals;

- (a) 1.207×10^{-5} T (b) 1.267×10^{-5} T
- (c) 1.246×10^{-5} T

31- The energy gap at 0 K for a 40 K Tc of a superconductor equals;

(a) $1.943 \times 10^{-21} \,\mathrm{J}$ (b) $1.916 \times 10^{-23} \,\mathrm{J}$ (c) $1.966 \times 10^{-20} \,\mathrm{J}$

32- The surface sheath of type (I) superconductors occurs when:

- (a) $\kappa_{\rm GL} \ge 0.419$
- (b) $\kappa_{\rm GL} < 0.419$
- (c) $\kappa_{\rm GL} > 0.319$

33- The G-L parameter of type (II) superconductors is

- (a) $\kappa_{\rm GL} \ge 0.707$
- (b) $\kappa_{\rm GL} < 0.707$ (c) $\kappa_{\rm GL} = 0.607$

34- The G-L parameter of type (I) superconductors is:

- (a) $\kappa_{\rm GL} < 0.707$
- (b) $\kappa_{\rm GL} > 0.707$
- (c) $\kappa_{\rm GL} = 0.757$

35- If $H_{c2} = 4.1$ T, then Hc_3 equals;

- (a) 6.949 T
- (b) 6.937 T
- (c) 6.967 T

36- Copper pairs occur as a result of interaction between;

(a) Electron-lattice (b) Electron-phonon (c) Electron-electron

37- A rapid change of C_{en} at T_c is ascribed to;

- (a) Energy gap
- (b) Electron pairs (c) Both of them

38- The activation energy E_a of flux bundles can be obtained from;

- (a) $\ln f$ and T_n
- (b) f and $1/T_n$
- (c) $\ln f$ and $1/T_p$

39- If $T_c = 110$ K for a superconductor, $\gamma = 0.0125$, then $H_c(0)$ of BCS equals;

- (a) 14.569 T
- (b) 14.780 T
- (c) 14.699 T

40- The temperature of liquid helium equals

- (a) 4.2 K
- (b) -268.8 °C
- (c) both of them

41- If $\xi(0) = 2.1 \mu m$, then H_{c2} equals;

- (a) 7.407×10^{-5} T
- (b) 7.474×10^{-5} T
- (c) 7.496×10^{-5} T

42- If $\xi = 0.81$ µm and $\lambda = 0.6$ µm, then δ_{ns} equals;

- (a) 8.06×10^{-9} H_c
- (b) 8.36×10^{-9} H_c (c) 8.96×10^{-9} H_c

43- If G-L parameter $\kappa_{GL} = 0.511$ and $H_c = 0.21$ T, then Hc_2 equals;

- (a) 0.149 T
- (b) 0.152 T
- (c) 0.137 T

44- If G-L parameter $\kappa_{GL} = 0.511$ and $H_c = 0.21$ T, then Hc₃ equals;

- (a) 0.247 T
- (b) 0.257 T
- (c) 0.237 T

45- If $r = 0.45 \mu m$ and $H_c = 0.125 T$, then I_c equal;

- (a) 2.5×10^{-8} (A)
- (b) 2.81×10^{-8} (A) (c) 3.01×10^{-8} (A)

46-If $n(0) = 12.16 \times 10^{21}$ cm⁻³, $T_c = 150$ K, then n(100 K) equals;

- (a) $9.758 \times 10^{21} / \text{cm}^{-3}$ (b) $9.558 \times 10^{21} / \text{cm}^{-3}$ (c) $9.798 \times 10^{21} / \text{cm}^{-3}$

47-If $T_c = 150 \text{ K}$, $\lambda(0) = 0.51 \text{ } \mu\text{m}$, then $\lambda(100 \text{ K})$ equals;

- (a) $0.569 \mu m$
- (b) 0.549 µm
- (c) 0.579 µm

48- If $E_c = 0.112 \text{ J}$ and $f_s(T) = 0.958 \text{ J}$, then $f_n(T)$ equals;

- (a) 1.07 J
- (b) 1.061 J
- (c) 1.081 J

49- If $Hc_2 = 20$ T, $\rho_n = 5 \times 10^{-5}$ (Ω .m), then γ for Hg:1223 under pressure equals;

- (a) 0.079 (J/Kg.K)
- (b) 0.088 (J/Kg.K) (c) 0.069 (J/Kg.K)

50- Onset of diamagnetism occurs when;

- (a) χ' equals zero
- (b) χ'' is the maximum (c) χ' is the maximum

Good Luck

Physics Department Faculty of Science Assiut University

P491 SELECTED TOPICS IN PHYSICS (I)

(Clinical Plasma Medicine)

THIS TEST HAS FIFTEEN PAGES DURATION OF TEST: THREE HOURS

Answer All Questions from Part I,II & III.

Part I. True or Fa	ulse questions.
--------------------	-----------------

(10 Points)

Tick the correct answer.

Statement	True	False
1. Physical plasma is a special excited gas state, sometimes named "the	al p	
fourth state of matter" following solid, liquid, and gaseous states.		
2. It can not be generated by a continuous supply of energy to the atoms)* 2)	2
or molecules of a neutral gas until an excited state is achieved.		
3. The most important basic plasma effect is relevant for medical		
applications is inactivation of a broad spectrum of microorganisms, including multidrug resistant pathogens		
4. The electron impact ionization is not the most robust procedure		
generating a plasma for biomedical purposes.		
5. Plasma medicine can be considered a field of applied redox biology.		
6. One of the most important results of basic research in plasma medicine		s e .
is the insight that biological plasma effects are mainly mediated via		
reactive oxygen and nitrogen species influencing cellular redox regulated processes.		p
7. Plasma medicine is a new field of research combining plasma physics,		
life science and clinical medicine.		

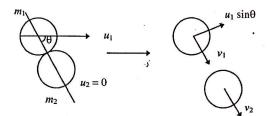
Statement	True	False
8. Thermal plasmas have long been used in various medical fields (for instance for cauterization and sterilization of medical instruments).		
9. Experiments show that cold atmospheric plasmas (CAPs) allow efficient, contact-free and painless disinfection, even in microscopic openings, without damaging healthy tissue.	*,	.k
10. Plasma is matter (gas) heated beyond its gaseous state, heated to a temperature so high that atoms are stripped of at least one electron in their outer shells, so that what remains are positive ions in a sea of free electrons.		
11. The energy is not transferred by inelastic and elastic collisions of high-energy electrons generated by a strong electric field with the atoms or molecules in the gas resulting in its partial ionization.		
12. The temperature of such partially ionized gas is always substantially lower than the characteristic ionization temperature.	٠	. * _
13. In a plasma, the different species-ions, electrons, and neutrals- may have different temperatures. Ti, Te, and Tn. These three (or more, if there are different kinds of ions or atoms) interpenetrating fluids can move through one another, but they may not collide often enough to equalize the temperatures, because the densities are usually much lower than for a gas at atmospheric pressure.		
14. During an elastic collision the particles only exchange kinetic energy.		(8)
15. One of the most important basic plasma effects is relevant for medical applications is stimulation of cell proliferation and angiogenesis with lower plasma treatment intensity.	-	
16. Physical plasma can not be generated by a continuous supply of energy to the atoms or molecules of a neutral gas until an excited state is achieved		

Statement	True	False
17. The energy required to generate physical plasma may be provided	e)	
separately by thermal, chemical, electrical and radiative resources or a	ME.	
combination of all.		
18. The electron impact ionization is not the most robust procedure		
generating a plasma for biomedical purposes.	·	3
19. In physical plasma, the energy is transferred by inelastic and elastic		
collisions of high-energy electrons generated by a strong electric field		
with the atoms or molecules in the gas resulting in its partial	=	
ionization.		
20. Medical treatment techniques using such plasmas have been firmly		5
established for a long time in the field of electro surgery, even if they		
were not explicitly referred to as plasma medicine at the time. Such		*
techniques, like argon plasma coagulation (APC), rely on precisely		
targeted thermal necrotization of tissue to achieve hemostasis		
(cauterization), or to cut or remove tissue		a
21. Electrons moving in a gas under the action of a magnetic field are		
bound to make numerous collisions with the gas molecules.		=
22. When an electron travels a distance equal to its free path λe in the		
direction of the field E , it gains an energy of $eE\lambda e$.		
23. Electrical breakdown occurs in Townsend regime with the addition		
of secondary electrons emitted from the cathode due to ion or photon		a w
impact.		
24. Glow discharge means that the plasma is in contact with only a small		
part of the cathode surface at low currents.		
25. During an elastic collision the particles only does not exchange		
kinetic energy.		
26. Low-temperature plasma (LTP) applications in biomedical systems		
are the main element of plasma medicine.		
27. Plasmas produce electromagnetic radiation, including ultra-violet		
(UV) radiation and light in the visible spectrum, and involves excited		
gas particles, charged ions, free electrons, free radicals, neutral		
reactive oxygen and nitrogen species, and molecule fragments.		

Circle the one best answer to each question.

- 1. What is a plasma?
 - a) Mixture of atoms and molecules in gaseous state.
 - b) Soup of electrons and ions.
 - c) Ionized gaseous state.
 - d) A gas with equal number of electrons and ions with no uncharged particles.
- 2. What is the frequency usually used for plasma applications and why?
 - a) 2.54 GHz, Cheap source.
 - b) 13.56 GHz. We get good property plasmas at this frequency.
 - c) 13.56 MHz, Federal government mandated frequency.
 - d) 13.56 GHz, Federal government mandated frequency.
- 3. Is plasma frequency a good parameter for measurement (Yes/No), Why?
 - a) Yes, We can measure it easily.
 - b) No, It's hard to measure the plasma frequency.
 - c) Yes, Plasma frequency is same as the electron frequency in plasma.
 - d) No. Other waves too can exist in the same frequency.
 - 4. What is a Debye length?
 - a) It is the 1/e distance for reducing the momentum.
 - b) An effective length over which a plasma will shield a magnetic field.
 - c) It is the length an electron can travel without collision.
 - d) Length over which sheath exist in a plasma.
- 5. What happens to sheath potential as we go into the sheath (from plasma)?
 - a) Potential decreases.
 - b) Potential increases.
 - c) Potential remains a constant.
 - d) Potential changes as a sinusoidal function.
- 6. Plasma with small Debye length shields out
 - a) A.C field
- b) D.C field
- c) Nothing
- 1) Both a) and b)

7. In the phenomeno	on of electric discharge	e through gases at low p	ressure, the coloured
glow in the tube	appears as a result of.		
a) Excitation of	electrons in the atoms	S.	
b) The collision	between the atoms of	the gas.	
c) The collision	s between the charged	d particles emitted from	the cathode and the
atoms of the	gas.		
d) The collision	between different ele	ctrons of the atoms of th	ie gas.
å mis turnitis og å			
* *	non-sustaining aiscna	urge into self-sustaining	discharge is called
a) ionization	4	b) collision	
c) spark break		d) vacuum breakd	own
	ction in gases was first		
a) Loeb	b) Maxwell	c) Townsend	d) Hertz
10. According to 1	Townsend current gr	owth process the curre	ent (I) in a uniform
electric field gap	is.		
a) $I_o exp(-\alpha a)$,	b) $I_o \exp(\alpha d)$	
c) $I_o \exp(\gamma d)$		d) $I_o \exp(-\gamma d)$	š
11.In a self-sustain	ed discharge the anod	le current I_a is given in	the form.
a) $I_a = I_o exp($	$(-\alpha d)$	b) $I_o = I_o \exp(-$	γd)
c) $I_a = \gamma I_a e x \gamma$	$o(-\alpha d)$	d) $I_b = \frac{I_e \exp(\alpha)}{1 + \gamma - \gamma \exp(\alpha)}$	(x d)
,		$1+\gamma-\gamma exp$	$p(\alpha d)$
12. A plasma is a.			3
a) Gas heated be	eyond its gaseous stat	te, to a temperature so	high that atoms are
stripped of at	least one electron in	their outer shells, so th	at what remains are
positive ions i	n a sea of free electron	ns.	
b) Quasineutralbehavior.	gas of charged and	neutral particles which	h exhibits collective
c) Fourth state o	f matter.		3.
d) All of the abor	ve.		
13. The breakdown	voltage of gas or air w	rith increase in pressure	under uniform field
hasrelati	on with pressure		
a) Linear	b) Square	c) non-linear	d) reciprocal
. ,	• -	,	<i>,</i> -
		5	


- 14. The collisional cross section is defined as
 - a) An "effective area" that quantifies the likelihood of a scattering event when an incident species strikes a target species.
 - b) The area around a particle in which the center of another particle must be in order for a collision to occur.
 - c) Quantify the probability of a collision taking place between two or more particles.
 - d) All of the above.
- 15. The maximum energy δ transferred to the internal energy of the target particle is given by.

a)
$$\delta = (m_2/(m_1 + m_2)) \cos^2 \theta$$

b)
$$\delta = (m_2/(m_1 + m_2)) \cos 2\theta$$

c)
$$\delta = (m_1/(m_1 + m_2)) \cos 2\theta$$

d)
$$\delta = (m_2/(m_1 + m_2)) \sin 2\theta$$

- 16. Ionization coefficients α , γ are functions of
 - a) applied voltage

b) pressure and temperature

c) electric field

- d) ratio of electric field to pressure
- 17. Time lag for breakdown is
 - a) Time difference between instant of applied voltage and occurrence of breakdown.
 - b) Time taken for the voltage to rise before breakdown occurs.
 - c) Time required for gas to breakdown under pulse application.
 - d) None of the above.
- 18. Streamer mechanism of breakdown explains the phenomena of electrical breakdown of
 - a) Very short spark gaps.
 - b) When pd is less than 1000 torr.cm.
 - c) Very long gaps where field is non-uniform.
 - d) Spark gaps subjected to impulse voltages.
- 19. The mechanism of breakdown in vacuum is due to
 - a) Particle exchange

b) Field emission

c) Clump formation

d) All of the above.

20. SF ₆ has the following property which is	not favorable for use in electrical
apparatus.	*
a) High dielectric strength.	
b) High are quenching ability.	
c) It is not environmental friendly and c	causes global warming.
d) None of the above.	
21. The most common method to invert 1	population is?
a) Quantum effects	b) Gas discharge
c) Temperature effect	d) All of these
22. Which is application of Plasma in indi	ustry?
a) Magnetrons	b) Arcs
c) Eye glasses	d) All of these
23. Low pressure glow discharge is applic	cable for?
a) Pulsed laser	b) DC laser
c) Light laser	d) Ultraviolet laser
24. High pressure glow discharge is application	cable for?
a) Pulsed laser	b) DC laser
c) Light laser	d) Ultraviolet laser
25. In the non-transferred plasma arc well	
tungsten electrode andbetween	n the tungsten electrode and
a) Workpiece	b) Earth clamp
c) Insulated copper nozzle	d) Gas cylinder
26. The breakdown criterion in a uniform	i field electrode gap is
a) $\gamma exp(\alpha d) = -1$	b) $\alpha \exp(\gamma d) = 1$
c) $\gamma exp(\alpha d) = 1$	d) $\gamma exp(\alpha d) = -\alpha$
27. Ionization coefficients α , γ are function	
a) applied voltage	b) pressure and temperature
c) electric field	d) ratio of electric field to pressure
28. According to Townsend current gro	owth process the current (I) in a uniform
electric field gap is	
a) $I_o exp(-\alpha d)$	b) $I_0 \exp(\alpha d)$
c) $I_o exp(-\gamma d)$	d) $I_o \exp(\gamma d)$

29.Town	nsend's first ioni	zanon coemcients A	ucp	cius apoir (1-8ac	toriperatore , p	
gas p	gas pressure, E- voltage across gas medium)					
a) 7	d	b) P	c)	E/P	d) Pand E/P	
30. The	secondary ioniz	ation coefficient Γ is	defi	ine as the net num	iber of secondary	
elect	rons produced p	er incident of				
a) P	ositive ion		b)	Excited particles		
c) P	hoton		d)	All off above		
31. The	total current as	per Townsend's theor	ry i	s (if I ₀ = initial curi	rent due to cathode,	
α - I	First ionization c	oefficient, γ = Second	lary	vionization coeffic	cient)	
a) I	$\int_{0} exp(\alpha d)/[1 - (\alpha d)]$	$-\gamma(exp(\alpha d)-1)]$	b)	$I_o exp(\alpha d)/[1-$	$-\gamma(exp(\alpha d)]$	
		$exp(\alpha d) - \gamma - 1$	d)	$I_o \exp(\alpha d)/[1$	$-\gamma$]	
32	are (collisions which when	n oc	cur, no change ta	kes place in the	
inte	rnal energy of th	ne particles but only t	hei	r kinetic energy go	ets redistributed.	
a) I	nelastic collision	1	•	Electric collision		
,	Air collision		•	Elastic collisions	· · · · · · · · · · · · · · · · · · ·	
33.Whi	ich of the follo	wing parameters is	1156	ed to describe th	e average speed of	
	ticles in a plasma			4		
a) 1	Pressure	b) Temperature	c)	Density	d) Volume	
34.Wh	at are some com	mon examples of pla	sm	as in nature?		
	The sun and star) Lightning		
c) 1	Earth's auroras		ď	All of the above		
35. W	hat type of react	tion occurs when a pl	lasn	na is created?	·	
	Nuclear fusion) Nuclear fission	•	
c)	Chemical reaction	ons	đ) None of the abo	ve	
36. W	hat is the prima	ry use of plasmas in i	indi	ustry?		
	Power generation		b) Welding and cu		
c)	Medical treatme	ents	d	l) All of the above	•	
37.Wh	nat is the name c	of the process in whic	h a	gas is heated to the	ne point that its	
elec	ctrons are separa	ated from its atoms?				
a)	Ionization	. C	ł) Fusion		
c)	Fission		Ċ	1) None of the abo)Ve	
		0				

38. Plasma have	collisions		
a) Continous		b) Frequent	
c) In frequent		d) Both a and b	
39. Larmour radius i	s equal to	ay som a and p	ť
	b) v_{\perp} . ω	c) $v_{\perp}/2\omega$	<i>-</i> 10
40. Charged particle si		ith lammous so disco	d) ω/v_{\perp}
a) Linear	b) Orbitrary		
•		c)) vibratory	d) circular
41. λ_D is defining by u	sing the		ž.
a) Electron spin		b) Electron flux	•
c) Electron temper		d) Magnetic flux	
42. The cyclotron frequency	uency ω_c is:		
a) $ q /mB$	b) $(q B)/m$	c) $mB/ q E$	d) $ q B^2/m$
43. We define the Larm	or radius r_L to be		ď
a) $ q /mB$		b) $mB/ q E$	•
c) $mv_{\perp}/ q B$		d) $(q B)/m$	
44. The Solar Corona is	lenuous plasma w		
a) 2KeV	b) 300KeV	c) 200KeV	d) 200eV
45. Which of the follow	ing is a characteri	stic of a plasma?	€,
a) It has a definite si	hape	b) It has a definite	
c) It can conduct ele		d) It is a good insul	
46. Which of the follows		otomarcal Land	ator
a) Pressure	-8 to a key parain		plasma?
c) Density		b) Temperature	3
47. Which of the followin	o devrices is see 1.	d) All of the above	
47. Which of the followin a) Tokamak	s acrices is used to		
c) Particle accelerator	r	b) Van de Graaff ger	nerator
		d) Cathode ray tube	3 · 1 · 1
48. What is the term for	the state of a plass	ma when it becomes sel	f-sustaining and
does not require extern	al heating?		-, allu
a) Equilibrium 1	o) Ionization	c) Ignition	d) Neutrality

49. Which of the following devices is	s used to generate and accelerate plasma
particles to high speeds?	,
a) Particle accelerator	b) Van de Graaff generator
c) Tokamak	d) Cathode ray tube
50. What is the term for the device t	used to measure the density of a plasma?
a) Spectrometer	b) Mass spectrometer
c) Particle detector	d) Langmuir probe
51. Which of the following phenor	mena is associated with plasma physics?
a) Aurora borealis	b) Solar flares
c) Lightning	d) All of the above
52. Which of the following paramete	rs is used to describe the average kinetic energ
of particles in a plasma?	
a) Pressure	b) Density
c) Temperature	d) All of the above
53. The plasma diagnostic techniqu	
a) the electron and ion temperate	
b) electron density and the therm	nal structure of the plasma,
c) its chemical composition and i	ionization state,
d) All of the above	•
54. The process that gives rise to the	emission of radiation from the plasma namely
a) Bremsstrahlung,	b) recombination
c) radiative decay.	d) All of the above
55. How does a plasma display create	
	rrents to control the brightness of pixels.
b) By using a backlight to illum	
	ultraviolet light to emit visible light.
d) By modulating the intensity	of organic light-emitting diodes (OLEDs)
56. In a plasma, what happens to the	electrons?
a) They gain energy and move f	
b) They lose energy and become	
c) They remain stationary	ushuy bound
•	, f
d) They combine with protons to	J form neutrons

	approximately	or electrons in a De	ebye sphere for n = 10 ⁻¹	<i>m</i> , KI. =10 ev 1
	a) 135	b) 0.14	c) 7.4 X 103	d) 1.7 X 10 ⁵
	58. The Townsen	1 mechanism explain	is the phenomenon of bre	3°
	a) Only at low	_	b) Only at high pr	
	,	y high pressure	d) Only bat very lo	
	•		ism for breakdown under	_
	a) Townsend	theory	b) Streamer theor	y
	c) Clump theo	ory	d) Only (a) and (b)
	60. Light is produ	ced in electric discha	rge lamps by	
	a) Cathode ray	y emission	b) Ionisation in a	gas or vapour
	c) Heating effe	ect of current	d) Heating effect of	of current
			arge through gases ulti	mately lead to the
	discovery of			<i>3</i>
	a) nucleus	b) electrons	c) protons	d) neutrons
	62.Corona is -			*.
	a) Partial brea	kdown of air.	b) Complete breal	kdown of air.
	c) Sparking be	etween lines.	d) None of these.	
	63. Which of the fe	ollowing statements i	is true regarding corona-	
	a) Corona take	es place at a voltage l	ower than breakdown vol	tage.
b) Corona takes place at a voltage higher t			nigher than breakdown vo	oltage.
	c) Corona is a	current phenomenor	n.	
	d) Corona inci	eases the transmissio	on line efficiency.	<i>\$</i>
	64. Corona is acco	mpanied by-		
	a) Violet visibl	e discharge in darkn	ess.	
	b) Hissing sour	nd and Vibration.		
	c) Power loss,	Radio interference aı	nd Ozone.	
	d) All of the al	ove		ı i
	65. The resistance	e of the arc may be in	icreased by	
	a) increasing	the length	b) cooling the arc	,
	c) splitting the	earc	d) All of the above	e 9

Part III. Answer the following questions.

(20 Points)

1. Describe in brief a method for generating medical plasma.

A1.

2. Discuss in brief how we can use physical plasma in medicine.

A2.

3. Write three effects most important for a medical application?

A3.

4. What is the medical application of physical plasma?

A4.

Faculty of Science

Undergraduate
Final Exam
2nd Semester 2023_2024
Course: Physical Measurements Using Computers

Code: (P462) Time: 3 hours Date: 1-6-2024

University

01:	Multi	Choice	Question	(MCO).
X	I'A CARCA	CHICAGO	Question	TITO

[15 Degree]

7	1: Multi Choice Q	uestion (1	VICQ).	- 1	18	[15 Degree]
	The truth table shown a. a NAND gate c. an exclusive-OF		b. a NOR § d. an exclus	gate sive-NOR gate		Inputs Output A B X 0 0 1 1 0 1 0 1 1 1 1 1
2	The fractional bins a. 1/4	ary number b. ½	er 0.11 ha	s a decimal c. ³ / ₄	value of	d. none of the above
3	The truth table for a 2	-input ANI	gate is			
		Inputs	Output		Inputs	Output
	\$100,800 3 a C	A B	X	•	A B	X
		0.0	0		0 0	ī
	a.	0 1	1	b.	0 1	0
		1 0	1		1 0	0
		1 1	0		1 1	0
		Inputs	Output		Inputs	Output
		A B	X		A B	X
		0 0	0		0 0	0
	c.	0 1	0	d.	0 1	1
	14.79	1 0	0		1 0	1
	****,	1 1	1		1 1	
ļ	A	$\overline{}_{X}$				
	The symbol $B \longrightarrow H$		is for a(n)	****	D	LVOD
	a. OR gate	b. ANI		c. XNO	K gate	d. XOR gate
	The expression $X = A$. ***	ND D	1 A VAIOD D
)	a. A OR B	b. A A		c. A XC	JK B	d. A XNOR B
)	If the period of a cloc a. 20 MHz	k signal is : b. 200		c. 2 GH	7	d. 20 GHz
	The decimal number 2					4. 20 5112

8	The circuit shown is equivalent to an				A _	HTV2		
	a. AND gate	b. XOR gate) 4
	c. NOR gates		d. none of the	e above		8 —		
0	The based admin at my make on	2C hog o	docimal aquiva	lant valu	a of	20	2 300 2 1 N 2 2 3 2 2 3 2 2 3 2 3 2 3 2 3 2 3 2 3	
9	The hexadecimal number	b. 44	c. 64		C OI	d	none of the	above
10	a. 14		0.04			<u>u.</u>	none or the	40000
10	The 2's complement of 1 a. 0111	b. 1000	c. 10	01		d	1010	
11	A logic gate that produce				ite ir			is a(n)
11		b. AND		R gate	115 11		NAND gate	
12	a. OR gate The Boolean equation Al					u.	TITITO gate	
12	a. the distribution law b	the com	mutative law	aics the ass	ociat	ive l	aw d DeM	organ's theorem
13	The associative law for a	ddition is	normally writte	en as	OCIAL	1101	urr d. Derri	lorgan s uncoroni
13	a. $A + B = B + A$	h (A + F	(B) + C = A + (B + C)	- C)	c.	AB	=BA	d. A + AB = A
14	The truth table for a 2-ing							
1				- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Tron	arte	Output	
	-	Inputs	Output	-	Inp	200		
	_	A B	X		A	В	<u> </u>	
	a.	0 0	0	b.	0	0	1	
		0 1	1	~ .	0	1	0	
		1 0	1		1	0	0	
		1 1	0		1	1	0	
								а 1
		Inputs	Output	-	Inr	outs	Output	20
	a facility and	4 1 2 2 2 2 2 2 2	X	-		В	X	
				-				5
		0 0	0	d	0	0	0	
	C.	0 1	0	a.	0	1		
		1 0	0		1	0		
		, 1 , 1	1		1	1	1	
15	The circuit shown is equ	ivalent to				A -		
	a. an NAND gate		b. an XOF					
	c. an OR gates		d. none of the	he above		В-		
1	1 2					a 8 8, 8	THE RESERVE OF THE PARTY OF THE	SACROPHIC STREET, STRE

Q2: Convert the following

[15 Degree]

- a) into their equivalent binary numbers
 - (i) $(336)_{10}$

(ii) (679)₁₀

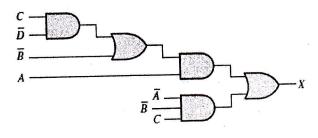
- b) into their equivalent decimal numbers
 - (i) (1010111)₂
- (ii) (1110101)₂

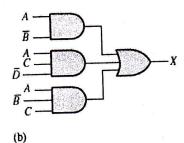
(iii) (100010011)₂

- c) to binary and then to octal
 - (i) (2BAFC)₁₆
- (ii) (67DEF)₁₆
- d) into their decimal equivalent
 - (i) (26775)₈
- (ii) (67344)₈

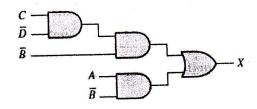
e) into their equivalent octal and hexadecimal numbers

(i) (798562)₁₀


(ii) (179856)₁₀

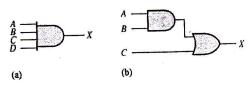

Q3: Answer the Following Questions:

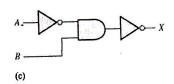
[20 Degrees]


1- Determine which of the logic circuits in Figure are equivalent (b &d)

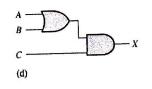
[6 Degrees]

(a)




 $\frac{A}{B} \longrightarrow X$ $\frac{A}{C} \longrightarrow X$

(c)


2- Write the Boolean expression for each of the logic circuits in Figure

[4 Degrees]

(d)

3- Convert the following expressions to sum-of-product (SOP)& product-of-sum (POS) forms: [6 Degrees]

 $A\overline{B}C + \overline{A}\overline{B} + AB\overline{C}D$

 $^{2} (A + \overline{B} + C)(\overline{B} + C + \overline{D})(A + \overline{B} + \overline{C} + D)$

4- Using Boolean algebra techniques, simplify the following expressions as much as possible, with Draw circuit before and after simplify: [4 Degrees]

 $1 \quad AB + A(B + C) + B(B + C)$

Best wishes,,,,, Dr. Ghada Salaheldin Assiut University Faculty of Science Physics Department

required.

Final Exam: 2023-2024 **Exam Date:** June 6^h, 2024

Time: 3 hours

Course Name: Nanomaterials Science and its Applications

458P (50%)

Coordinator: Dr. Alaa Abd-Elnaiem

	Part I: Answer the following questions
Oı	nestion (I): Chose the correct answer for the following questions: (20 Marks)
	The creation of nanoscale materials by chemically or physically breaking down the
	larger materials is known as approach in nanotechnology.
	a. Top-down b. Bottom-up c. Bottom-down d. None of them
2.	Which one of the following is an example of a top-down approach?
	a. Sol-gel b. Ball milling c. Chemical precipitation d. Hydrothermal
3.	Carbon nanotubes are made up of sheets with nanosized diameter.
	a. Silver b. Graphite c. Silicon d. Fumed silica
4.	The size of nanoparticles is between nm.
	a. 100 to 1000 b. 0.1 to 10 c. 1 to 100 d. 0.01 to 1
5.	is a nanostructured material that is used in tyers of cars to increase the
	life of tyers.
	a. Carbon black b. Gold c. Graphite d. Fumed silica
6.	Nanorod is an example of nanostructures.
	a. 0D b. 1D c. 2D d. 3D
7.	time Which ratio decides the efficiency of nanosubstances?
a	. Weight/Volume b. Surface area/volume c. Volume/weight d. Pressure/volume
8.	Why is the conductivity of a nanowire much less than that of the corresponding bulk
	material?
	a. Due to precise control of the heating mechanism.
	b. Due to a greater mean free path.
	c. Due to scattering from wire boundaries.
	d. Due to the response of nanowires to an applied load.
Λ	
	Which of the following is not a requirement for an ideal semiconductor nanostructure?
	a. Density b. Uniformity c. Confinement potential d. Low melting point
	The coagulation phenomenon of nanoparticles results in
a	a reduction in surface energy b. a reduction in surface area c. a and b d. None
11.	The greater the surface tension of a liquid, the worse the wetting would be of a solid
	surface.
	a. True b. False
12	The smaller the particles, the longer the mean free path.
12.	a. True b. False
13	When semiconductors are reduced to nanometers they become pure conductors.
15.	a. True b. False
11	
	Which Nobel laureate in Physics invented the transmission electron microscope? Ernst Ruska b. Richard Feynmann c. Gerhard Binnig d. No one of them
	·
13.	Why is the melting point of nanoparticles lower than the corresponding bulk? a. The chemical bonds in the bulk of nanoparticles are weakened in proportion to the
	nanoparticle volume.
	· ·
	b. Large surface relative to bulk leads to less bonds to be broken by thermal energy. Surface plasmons provide additional kinetic energy which leads to less thermal energy is
	c. Surface plasmons provide additional kinetic energy which leads to less thermal energy is

16. plasmon resonance is:

- a. a resonant light emission from quantized states in semiconductors.
- **b.** a resonance between the surface charge and the electric field of light on metallic nanoparticles.
- c. a resonance between a plasma and a surface

17. The energy levels in a quantum structure become closer to each other:

- a. when the structure size decreases.
- **b.** when the structure size increases.
- **c.** when the band-gap difference between the two materials increases.

18. The particles in nanopowder are the wavelength of visible light.

- a. smaller than
- **b.** greater than
- c. equal
- d. very large

19. In an Electron microscope, the light source is replaced by a beam of very fast-moving:

- a. Electron
- b. Neutron
- c. Photon
- d. Proton

20..... types of waves have the shortest wavelength.

- a. Radio waves
- **b.** X-ray
- c. Microwave
- d. UV

Part II: answer three questions only from the following:

Question (II): Write short notes on the following:

(10 Marks)

- 1. Nanoparticle synthesis by spray pyrolysis method.
- 2. The novel properties of carbon nanotubes (CNTs).
- 3. The size-dependent properties of nanomaterials.
- **4.** Gleiter's classification of nanostructured materials.

Question (III): Answer in detail the following:

(10 Marks)

- 1. Discuss in detail the influence of size reduction on the properties (Structural, Mechanical, Thermal, Thermodynamic, Kinetic, Electrical, Electronic, Magnetic, Optical, and Chemical) of the nanoparticle.
- 2. Describe the principles and processes in chemical and physical vapor deposition (CVD and PVD) methods for the synthesis of nanomaterials.

Question (IV): Compare between the following couples:

(10 Marks)

- 1. Physical self-assembly and Chemical self-assembly.
- 2. Bottom-up and top-down approaches.
- 3. Nanocomposite and Nanoparticles.
- **4.** Nanophysics and Nanoelectronics.
- 5. The principles of scanning probe microscope and atomic force microscope.

Question (V): Answer briefly the following:

(10 Marks)

- 1. Outline the significance of impedance measurements on the characterization of nanomaterials.
- 2. What are the concepts of "surface form engineering" in nanomaterial science?
- 3. Draw a flow chart for the sol-gel method of nanoparticle synthesis.
- **4.** Give in detail the structural behavior of core-shell nanocomposites.
- **5.** Describe by plots the change of magnetization energy with decreasing particle size and related phase transitions from ferromagnetic to paramagnetic state.

Good luck,,,

Assiut University Faculty of science – Physics department

D			
Exam time	3 hours	Course	Radiation physics P444
	50	Exam	Final term
degree	30		

1. Choose the correct answer (20 degrees)

- 1. A radioactive element has a half-life of 2 days. Which fraction represents the amount of an original sample of this element remaining after 6 days?
 - A. 1/8
 - B. 1/2
 - C. 1/3
 - D. 1/4
- 2. What form of radioactive decay is shown in the following reaction?

$${}^{4}_{2}He + {}^{11}_{5}B \rightarrow {}^{15}_{7}N + \cdots$$

- A. Beta negative.
- B. Beta positive.
- C. Alpha decay.
- D. Gamma decay
- 3. As the temperature of a sample of a radioactive element decreases, the half-life of the element will.
 - A. Decrease.
 - B. Increase.
 - C. Remain the same.
- 4. Characteristic x-ray photons produced during the photoelectric effect can contribute to increasing patient dose.
 - A. True
 - B. false
- 5. The energy losses by an electron moving through a medium with density ρ are described by the total mass energy
 - A. Stopping power
 - B. Specific ionization
 - C. The range

- 6. An 80 milligram sample of a radioactive isotope decays to 5 milligram in 32 days. What is the half-life of this element? A. 8 days. B. 2 days. C. 16 days. D. 4 days. 7. A bone sample contains only 1/2 of its original radioactive C¹⁴ content. How
- old is the bone sample?
 - A. 1 C¹⁴ half-life
 - B. 2 C¹⁴ half-lives
 - C. 9 C¹⁴ half-lives
 - D. 4 C¹⁴ half-lives
- 8. An original sample of a radioisotope has a mass of 10 grams. After 2 days, 5 grams of the radioisotope remains unchanged. What is the half-life of this radioisotope?
 - A. 1 day
 - B. 2 days
 - C. 5 days
 - D. 4 days
- 9. The number of ion pairs produced per unit track length is
 - A. Specific ionization
 - B. Stopping power
 - C. The range
- 10. Radium-221 has a half-life of 30 sec. How long will it take for 95% of a sample to decay?
 - A. 60 sec.
 - B. 2.16 min.
 - C. 3.285 min.
 - D. 180 sec.

2. Answer the following questions: (30 degrees)

1. The half-life of ¹⁴C is 5568 years. How long will it take a 20 mg sample to decay to a mass of 5 mg?

2. In a radioactive transformation, the parent element has a half-life T_p , which is very much greater than the half-life T_D of the daughter element. Find out the time required, in terms of T_D , to have transient equilibrium between the parent and daughter, and calculate it within 75%.

3. What are the different sources of radiation exposures to man?

Page 3 of 5

4. In an archaeological expedition, charcoal from an ancient fire-pit was excavated. This sample showed a ¹⁴C activity of 11.3 counts per gm per min. The absolute activity of ¹⁴C is 15.3 counts per gm per min. Estimate the age of the charcoal sample.

5. Find the stopping power of water for protons with energy 10 MeV. Knowing that the volume of water is 3 m³.

6. What is the difference between external and internal radiation exposures? With my best regards

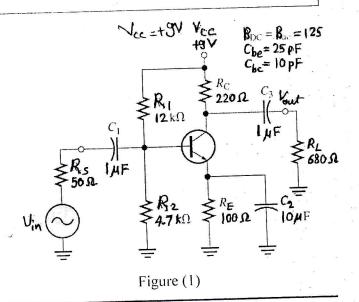
Page 5 of 5

Assiut University Faculty of Science Physics Department Physics and Electronics Program 2nd Semester, Final Exam, 2024

Course: Electronic Circuits (2) Course Code: EE422 Time: 3 Hours, Marks: 50

Important remarks

- No. of Pages: 3
- No of Questions: 5
- Answer All the Questions


QUESTION 1:	[10 POINTS] -	[1 POINT EACH]
-------------	---------------	----------------

.1100	ose the correct answer:				*
1.	Ideally, the midrange gain of an am (a) increases with frequency	nplifier		s constant with fre	equency
	(c) decreases with frequency		(d) depends	on the coupling of	capacitors
2.	When the voltage gain of an amplitude (a) is not affected	fier is increased, t	(b) incre	eases	
2	(c) decreases			mes distorted	, a
3:	The low-frequency response of ar (a) the voltage gain	amplifier is dete		pe of transistor	
	(c) the supply voltage		(d) the co	oupling capacitors	S
4.	The high-frequency response of ar (a) the gain-bandwidth production in the control of the contr	et	(b) the b	ypass capacitor	
	(c) the internal transistor capa	acitances	(d) the ro	oll-off	
5.	An oscillator differs from an ampli (a) has more gain (c) requires no dc supply	fier because the o	(b) requi	res no input signa ys has the same o	
6.	One condition for oscillation is (a) a gain around the feedback lo (c) a gain around the feedback lo	150		ft around the feed ft around the feed	back loop of 180° back loop of 0°
7.	In a certain oscillator, $A_v = 50$, Th (a) I (b) 0		he feedback circuit (c) 10	must be (d) 0.02	
8.	The Wien-bridge oscillator's positi (a) an RL circuit (b) an LC		uit is c) a voltage divider	(d) a lead-l	ag circuit
9.	In a Wien-bridge oscillator, if the frequency	V _q	the positive feedba	ick circuit are de	creased, the
	(a) remains the same	(b) increases	,	(c) decreases	
10.	For conversion to a fourcomparators		number by ana	log to digital	converter,
	(a) 5		(b) 10		
	(c) 15		(d) 20		

QUESTION 2: [15 POINTS]

For the amplifier circuit shown in Figure (1), determine

- a) Critical frequencies associated with the lowfrequency response [3 Points]
- b) Dominant critical low frequency [3 Points].
- c) Critical frequencies associated with the high-frequency response [3 Points].
- d) Dominant critical high frequency [3 Points].
- e) The bandwidth of the amplifier [3 Points].

QUESTION 3: [10 POINTS]

For the oscillator circuit shown in Figure (2), assume Q>>10:

- a) State type of the oscillator [2 points]
- b) Determine the frequency of oscillation [4 points].
- c) If the oscillator is loaded to a point where the Q drops to 8, determine the new value of the oscillation frequency [4 points].

QUESTION 4: [5 POINTS]

A negative-feedback amplifier has a closed-loop gain $A_f = 100$ and an open-loop gain $A = 10^4$. What is the feedback factor β ? If a manufacturing error results in a reduction of A to 10^3 , what closed-loop gain results? What is the percentage change in A_f corresponding to this factor of 10 reduction in A?

QUESTION 5: [10 POINTS]

Figure (3) shows the schematic diagram of a three-digit analog-to-digital converter (ADC), if the analog input signal and the sampling pulses as shown are applied to the ADC circuit, write in the table the binary number sequence of the three-digit output, assume $V_{REF} = 8V$.

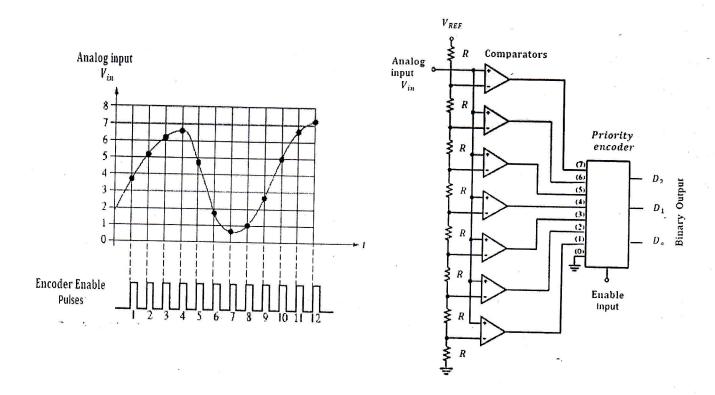
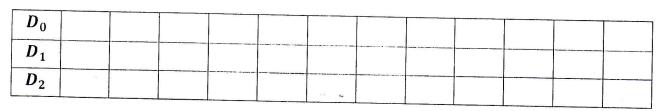



Figure (3)

Binary Output

Assiut University
Faculty of Science
Department of Physics
Second semester 2024

Course: Atomic and Molecular Spectroscopy

Code: P432 Time: 3 Hour Final Exam (50%)

Q1 (24)	Q2 (26)	Total (50)
	,	

Answer the following questions

Question (1):

(1.5 mark for each one, 24 Marks)

Choose the correct answer

1. When electrons move from the higher energy level to a lower energy level, energy is

- a. absorbed
- b. emitted
- c. both a) & b)
- d. none of these

2. The different types of energies associated with a molecule are ...

- a. electronic energy
- b. vibrational energy
- c. rotational energy
- d. all the mentioned

2- The correct order of different types of molecular energies is

- a. $E_{rot.} > E_{vib.} > E_{elect.}$
- b. $E_{vib.} > E_{rot.} > E_{elect.}$
- c. $E_{elect.} > E_{rot.} > E_{vib.}$
- d. $E_{elect.} > E_{vib.} > E_{rot.}$

3-The splitting of spectral lines because of in the presence of electric field is known as

- a. Zeeman effect
- b. Paschen back effect
- c. Stark effect
- d. Doppler effect

4. Which one of the following exhibits rotation spectra:

- a. CO
- b. N₂
- c. CO₂
- d. H₂

5. According to Bohr model, the orbital angular momentum of electron in the orbit n=2 is...

a) $2\pi h$

b) $\frac{h}{2}$

 $c)\frac{h}{2\pi}$

- 6. The region of electromagnetic spectrum for rotational spectra is... a. Uv-visible region b. x-ray c. microwave d. visible light 7. The number of normal Zeeman splitting components of $P \rightarrow D$ transition is b. 4 c. 8 d. 9 8. The rotational (microwave) spectrum of a rigid diatomic rotor consists of equallyspaced lines with spacing equal to: $\mathbf{a}. \ \overline{\mathbf{B}}$ b. $2\overline{B}$ c. $3\overline{B}/2$ d. $\overline{B}/2$ 9. The rotational absorption spectrum of HCl shows the following lines Neglecting the centrifugal distortion, Calculate the value of rotational constant \overline{B} in cm⁻¹ 54 () - E a) 3 b) 5 83.03 (104.10 124.30 145 03 165 5 c) 10 Wein 1d) 20 10. If n = 5, which one of the following is not an allowed orbital quantum number la. 5 b. 2 c. 4 d. 0
- 11. In a rotational spectrum, transitions are only observed between rotational levels of $\Delta J = ...$
 - a. ±1
 - b. ± 2
 - c. 5
 - d. ± 3
- 12. The expression for the second overtone frequency in the vibrational absorption spectra of a diatomic molecule in terms of the harmonic frequency w_e and anharmonicity constant χ_e is
 - a. $2w_e(1-\chi_e)$
 - b. $2w_e(1-3\chi_e)$
 - c. $3w_e(1-2\chi_e)$
 - d. $3w_e (1 4\chi_e)$

.In rotational -vibrational spectrum the frequency of R- branch lines is the fundamental frequency.

- a. smaller than
- b. equal to
- c. higher than
- d. both a & b

14. What is the cause of the R branch lines moving closer together as energy increase in a real spectrum of molecule?

- a. Rotational -vibrational coupling
- b. Independent Rotation and vibration
- c. Rigid rotor only
- d. Harmonic oscillation only

15. For P branch ΔJ should be

- $\mathbf{a.} \ \Delta \mathbf{J} = \mathbf{0}$
- **b.** $\Delta \mathbf{J} = -1$
- c. $\Delta J = +1$
- d. $\Delta J = +2$

16. The energy separation in the normal Zeeman effect is

- a. $\Delta E = m_l \mu B B$
- b. $\Delta E = gm_i \mu B B$
- c. $\Delta E = gm_s \mu B B$
- d. $\Delta E = (2m_s + m_l) \mu B B$

Question (2):

(26 marks)

Answer the following:

i. Stern-Gerlach experiment clearly showed evidence for space quantization and demonstrated the existence of a spin magnetic moment for the electron, discuss that. (4 marks)

ii. Describe diatomic molecule as a rigid- rotator and explain rotational energy level, wavenumber, selection rules, spectra and the information obtains from spectra. (5 marks)

iii. Describe Bohr's assumptions for atomic model and write down the success of Bohr's model. (6 marks)

Fig. 3. Fig. 3		
)
		for each one, 24 Mar
noise the correct answer		
active Servicese		
The different types of energics adsociate		
a. electronic energy		
L savitanal coorgy		
$v_{i} \in v_{ot} \times v_{ret} > U_{oto}$		
$c_{i} \to E_{i+i} > E_{i+i} > E_{i+i}$		
a. Zeeman effect	V4	
The control of the co	gettelete i January	
The state of the s	(utvor symptom) (utvor symptom) u **state)	
	· · · · · · · · · · · · · · · · · · ·	

- From the vibration spectra of NO molecule it is found that the fundamental line at 1876.06 cm⁻¹ and the first overtone at 3724.2 cm⁻¹. Calculate
 - A. the oscillation frequency w_e
 - B. the anharmonicity constant χ_e .

(6 marks)

Electron chaege e	1.6×10 ⁻¹⁹ C	Plank's constant h	6.626 × 10 ⁻³⁴ Joul.sec
Electron mass me	9.1×10 ⁻³¹ kg	Light velocity c	3×10 ⁸ m.sec ⁻¹
Proton mass mp	1.672×10 ⁻²⁷ kg	Coulomb constant k	9×10° J.m.C ⁻²
Bohr radius a _o	0.529×10 ⁻¹⁰ m	Rydberg constant R	1.097 ×10 ⁷ m ⁻¹
Bohr magneton μ_B	9.274×10 ⁻²⁴ J.T ⁻¹	Ionization energy of the hydrogen atom E _n	13.6 eV
mass of Nitrogen atom	2.32×10 ⁻²⁶ kg	mass of an oxygen atom	2.6567×10 ⁻²⁶ kg

اختبار نهاية الفصل الدراسي الثاني 2024/2023

فع

مقرر " فيزياء الليزر وتطبيقاته" 472 ف

ملاحظات هامة: (أ) أي شطب أوتغيير يلغي الدرجة (ب) لكل فقرة درجتان

أولا: الجزء التحريري

أجب عن $\frac{5}{5}$ من الفقرات التالية $\frac{1}{2}$ من الفقرات التالية القوسين أمام كل فقرة:

1) من أهم عمليات الحصول علي الليزرهي حدوث مايعرف "بقلب التعداد", والتي تعني زيادة تعداد المستوي السفلي للطاقة بالمقارنة مع تعداد المستوي العلوي. () ().

2) التوازن الحراري لنظام ليزري يعني ان الطاقة الكلية له يجب ان تبقي ثابتة. () ().

3) من أهم مراحل انتاج الليزر أن يكون الانبعاث التلقائي أفضل من المحفز. () ().

4) في الأنبعاث التلقائي تبعث الذرة بفوتون واحد,بينما في المحفز بفوتونين. () ().

5) في الضخ الليزري يتم نقل طاقة الذرات من مستوي طاقةأعلي الي اخر أقل. () ().

6) الليزرات المصنعة من الغاز يصلح لها الضخ الضوئي. () ().

7) الليزرات المصنعة من مادة شبه موصلة أنسب لها الضخ الكهربائي. () ().

9) الليزرات المتعددة مستويات الطاقة افضلها ذلك ذو الثلاث مستويات. ()

جامعة أسيوط - كلية العلوم قسم الفيزياء

المراسي 2024/2023م الثاني للعام الدراسي 2024/2023م في مقرر فيزياء الليزر وتطبيقاتها 472 ف

اجب عن أربعة اسئلة

السوال الأول

١. عرف المصطلحات الليزرية التالية

(الاتزان الحراري - انقلاب التعداد - المادة الفعالة)

ب . اكتب مقالة علمية تاريخية عن الضوء

السوال الثاني

تكلم مع التوضيح بالرسم عن الستويات الطاقية لليزرات التي تم دراستها بالمقرر · السوال الثالث

١. عرف المصطلحات الليزرية التالية :-

(انعدام الاتزان الحراري - الضخ الليزري - المستوي الأكثر استقراراً)

ب. أكتب مع التوضيح بالرسم أحد الليزرات الصلبة التي تم دراستها بالمقرر.

السؤال الرابع

تكلم عن تفاعل الموجات الكهرومغناطيسية مع المادة مع التوضيح بالرسم ،

السؤال الخامس

تكلم عن مايأتي :-

1 - مميزات أشعة الليزر.

2 - خصائص أشعة الليزر.

3 - بعض فوائد أشعة الليزر الهامة .

مع التوفيق بالنجاح

Assiut-A.R.E71516 Telephone; 088- 2412122 Fax: 088- 2342223

السيوط - جمهورية مصر العربية 71516

ت: 2412122 -088

فاكس : 2342223 -088

23/5/2024 Time allowed: 3 hours

Final Exam

The exam is equivalent to 50 marks Examiner Dr. Mohamed Sabet

Code: 451P

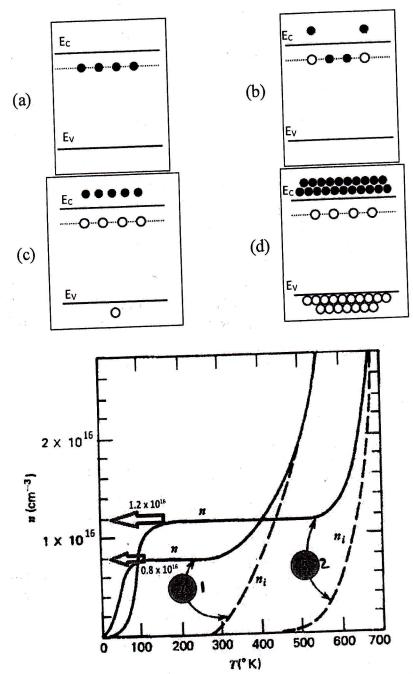
First Question: True (T) or False (F)

(20 Marks, 1 Mark for Each)

- 1. An electron is a negatively charged particle.
- 2. Electrons are part of the nucleus of an atom.
- 3. Maximum number of electrons in any shell are given by N_e=2n² where n is the shell number.
- 4. Valence electrons exist in the inner shells of an atom.
- 5. The value of the band gap has no effect on the number of carriers present at room temperature
- 6. The donor and acceptor binding energies are relatively smaller than the band gap energy.
- 7. The Fermi function gives the number of available states at an energy E while the density of states gives the probability that these states are occupied at a temperature T.
- 8. At higher temperatures, the extrinsic semiconductor then looks like an intrinsic one.
- 9. As a result of the spin of the electrons and Pauli Exclusion Principle, each state occupied by two electrons.
- 10. If the Fermi-Dirac Function is f(E), then 1- f(E) is the probability that a state at given energy E is occupied by an electron.
- 11. For T > 0 K, the Fermi function at Fermi energy $f(E_f) = \frac{1}{2}$.
- 12. If the Fermi energy is E_f , the absolute temperature is T, Boltzmann's constant is k, the Fermi-Dirac function at energy E is given by

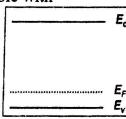
 $\frac{1}{1 + e^{(E - E_f)/kT}}$

- 13. For non-degenerate semiconductor, the Fermi level at E_f is positioned such that for all energies in the conduction band E_c , $(E_c E_f) > 3kT$ (where k is Boltzmann's constant and T is the absolute temperature.
- 14. In any given material at fixed temperature the product of the electron and hole and concentrations depends on the doping.
- 15. In an indirect band gap semiconductor, the minimum energy level in the conduction band and the maximum energy level in the valence band have the same crystal momentum (k-vectors).
- 16. For a given temperature, the mobility increases with increasing impurity concentration because of enhanced impurity scatterings then saturates.
- 17. The mobility decreases with increasing temperature because of increasing lattice vibration with increasing temperature.
- 18. Mathiessen's rule states that each scattering mechanism is associated with a specific mobility and the lowest mobility is the dominating one.


- 19. The carrier mobility varies directly with the amount of scattering taking place within the semiconductor.
- 20. The Einstein relations show that mobility and the diffusion constant are proportional to each other at fixed temperature.

Second Question: Choose the most accurate answer (30 Marks, 1 Mark for Each)

- 1. An atom consists of ...
 - (a) one nucleus and only one electron
 - (b) one nucleus and one or more electrons
 - (c) protons, electrons, and neutrons
 - (d) answers (b) and (c)
- 2. Valence electrons are ...
 - (a) in the closest orbit to the nucleus
 - (b) in the most distant orbit from the nucleus
 - (c) in various orbits around the nucleus
 - (d) not associated with a particular atom
- 3. The difference between an insulator and a semiconductor is ...
 - (a) a wider energy gap between the valence band and the conduction band
 - (b) the number of free electrons
 - (c) the atomic structure
 - (d) answers (a), (b), and (c)
- 4. The energy band in which free electrons exist is the ...
 - (a) first band
 - (b) second band
 - (c) conduction band
 - (d) valence band
- 5. In a semiconductor crystal, the atoms are held together by ...
 - (a) the interaction of valence electrons
 - (b) forces of attraction
 - (c) covalent bonds
 - (d) answers (a), (b), and (c)
- 6. Electron-hole pairs are produced by ...
 - (a) recombination
 - (b) thermal energy
 - (c) ionization
 - (d) doping
- 7. Recombination is when ...
 - (a) an electron falls into a hole
 - (b) a positive and a negative ion bond together
 - (c) a valence electron becomes a conduction electron
 - (d) a crystal is formed
- 8. The current in a semiconductor is produced by ...
 - (a) electrons only


- (b) holes only
- (c) negative ions
- (d) both electrons and holes
- 9. In an intrinsic semiconductor, ...
 - (a) there are no free electrons
 - (b) the free electrons are thermally produced
 - (c) there are as many electrons as there are holes
- 10. The process of adding an impurity to an intrinsic semiconductor is called ...
 - (a) doping
 - (b) recombination
 - (c) atomic modification
 - (d) ionization
- 11. A trivalent impurity is added to silicon to create
 - (a) germanium
 - (b) a p-type semiconductor
 - (c) an n-type semiconductor
 - (d) a depletion region
- 12. The majority carriers in an n-type semiconductor are ...
 - (a) holes
 - (b) valence electrons
 - (c) conduction electrons
 - (d) protons
- 13. Holes in an n-type semiconductor are ...
 - (a) minority carriers that are thermally produced
 - (b) minority carriers that are produced by doping
 - (c) majority carriers that are thermally produced
 - (d) majority carriers that are produced by doping
- 14. A PN junction is formed by ...
 - (a) the recombination of electrons and holes
 - (b) ionization
 - (c) the boundary of a p-type and an n-type material
 - (d) the collision of a proton and a neutron
- 15. The depletion region consists of ...
 - (a) nothing but minority carriers
 - (b) positive and negative ions
 - (c) no majority carriers
 - (d) answers (b) and (c)
- 16. In a silicon crystal the bonds are ... coordinated
 - (a) tetrahedral
 - (b) hexagonal
 - (c) tetragonal
 - (d) triclinic

- 17. In intrinsic semiconductors the number of electrons ... the number of holes.
 - (a) equal to
 - (b) larger than
 - (c) less than
 - (d) not related to
- 18. All electrons in the conduction band have the same ..., while all the holes in the valence band have the same ...
 - (a) Kinetic energy, kinetic energy
 - (b) Potential energy, kinetic energy
 - (c) Kinetic energy, potential energy
 - (d) Potential energy, potential energy
- 19. Increasing the temperature of the semiconductor results in ...
 - (a) increase the intrinsic carrier concentration
- (b) decrease the intrinsic carrier concentration
- (c) increase then decrease the intrinsic carrier concentration
- (d) decrease then increase the intrinsic carrier concentration
- 20. Increasing the temperature of the semiconductor results in ...
 - (a) increase the energy of the band gap
 - (b) decrease the energy of the band gap
 - (c) increase then decrease the energy of the band gap
 - (d) decrease then increase the energy of the band gap
- 21. The effect of increasing the semiconductor temperature on the intrinsic carrier concentration is ... than the effect on the energy of band gap.
 - (a) . larger than
 - (b) equal all time
 - (c) smaller than
 - (d) firstly equal then unpredictable with
- 22. In doped semiconductor, the donor level is ...
 - (a) closer to the conduction band
 - (b) closer to the valence band
 - (c) in the mid-range between the valence band and conduction band
 - (d) higher than the minimum of the conduction band or lower than the maximum of the valence band
- 23. In doped semiconductor, the acceptor level is ...
 - (a) closer to the conduction band
 - (b) closer to the valence band
 - (c) in the mid-range between the valence band and conduction band
- (d) higher than the minimum of the conduction band or lower than the maximum of the valence band
- 24. Which of the following represents a n-type semiconductor at high temperatures? (Black dots represent the electrons, white dots represent the holes)

- 25. Previous figure depicts the electron concentration for two n-type materials 1 and 2. The donor concentration for material 1 is ... cm⁻¹
 - (a) 0
 - (b) 0.8×10^{16}
 - (c) 1.2×10^{16}
 - (d) 2.0×10^{16}
- 26. From the previous figure, the energy of the band gap of material 1 is ... the energy of the band gap of material 2.
 - (a) larger than
 - (b) equal all time

- (c) smaller than
- (d) firstly equal then unpredictable with

- 27. The previous figure represent the energy band structure of ...
 - (a) N-type semiconductor
 - (b) P-type semiconductor
 - (c) Intrinsic semiconductor
 - (d) Unknown
- 28. The number of electrons per cubic centimeter in the entire conduction band is ... $(E_c$ is onset energy of the conduction band, k is Boltzmann's constant and T is the absolute temperature, E_f is Fermi level energy, N_c is the effective density of states)
 - (a) $N_C e^{(E_c E_f)/kT}$
- (b) $\frac{N_C}{e^{(E_C E_f)/kT}}$ (c) $\frac{e^{(E_C E_f)/kT}}{N_C}$
- (d) $N_C e^{(E_f E_C)/kT}$
- 29. If an electric field is applied to semiconductor and increased, the carrier velocity ...
 - (a) increases
 - (b) decreases
 - (c) increases then saturate
 - (d) decreases then saturate
- 30. The free electrons thermal velocity can be obtained by ... (assume that k is Boltzmann's constant and T is the absolute temperature, m is electron mass)
 - (a) $\sqrt{\frac{3kT}{2m}}$
- (b) $\sqrt{\frac{3kT}{m}}$
- (c) $\sqrt{\frac{kT}{m}}$ (d) $\sqrt{\frac{kT}{2m}}$

End of questions

Answer sheet

استخدم قلم جاف اسود/ازرق.

لا يمكن تعديل الإجابة بعد تظليل الدائرة

- في حالة اختيار أكثر من إجابة للنقطة الواحدة سيتم احتساب الإجابة خاطئة.
 - لا يمكن مسح او تعديل او شطب الإجابة بعد تظليل الدائرة.
 - قد يؤدى استخدام الكوريكتور الى احتساب الاجابة خاطئة.

	True False 15	39 0000 40 000 41 000 42 000	
=	19 O O 20 O O Second Question	43 0000 44 0000 45 000	
	Choose the correct	а в с D 46 ООО	
-	A B C D ■ 21 ○○○○	47 0000	
Class Occasion	22 0000 23 0000	48 0000 49 0000	
First Question True or False	24 0000	50 0000	
True False	25 0000 A B C D		
2 0 0	26 0000 27 0000		
2 O O 3 O O 4 O O 5 O O	27 0000 28 0000		
5 O O True False	29 0000 30 0000		
	A B C D		
6 O O O 7 O O O O O O O O O O O O O O O	31 0000 32 0000		
9 0 0	33 ○○○○ ■ 34 ○○○○		
10 O O True False	35: 0000		
	A B C D		
11 O O 12 O O 13 O O	37 0000	_	_
■ 14 O O	38 0000		