

المقرر: 414 ر (معادلات تفاضلية جزئية)

جامعة أسيوط - كلية العلوم - قسم الرياضيات

الزمن: ثلاث ساعات

الفرقة: المستوى الرابع – علوم (رياضيات)

(درجات الامتحان: الدرجة الكلية 50 درجة موزعة على خمسة أسئلة بواقع 10 درجات عن كل سؤال - 5 درجات عن كل فقرة)

$$p=z_x$$
 , $q=z_y$, $D_x=rac{\partial}{\partial x}$, $D_y=rac{\partial}{\partial y}$. -:ملاحظة

أجب عن مما يأتي:-

والذي $\phi(r,\theta)=f(r)\cos heta$ على الصورة $rac{\partial}{\partial r}\left(r^2rac{\partial \phi}{\partial r}
ight)+rac{1}{\sin heta}rac{\partial}{\partial heta}\left(\sin hetarac{\partial \phi}{\partial heta}
ight)=0$ والذي $rac{\partial \phi}{\partial r} o 0$ as $r o \infty$, $rac{\partial \phi}{\partial r}=-\cos heta$ when r=a يحقق الشروط:

. $z^2(p^2+q^2+1)=1$: المعادلة التفاضلية والحل المفرد -إن وجد – المعادلة التفاضلية

2- أ) بطريقة فصل المتغيرات – أوجد حلا لمعادلة لابلاس: $z_{xx}+z_{yy}=0$ بحيث يحقق الشروط:

و الجميع قيم x في y=0 عندما y=0 عندما y=0 او $z=\pi x-x^2$ (ii) , $x=\pi$ أو y=0 الفترة z=0 (i) . z=0 الفترة z=0 الفترة

ب) باستخدام التعويضات: $X=rac{1}{x}$, $Y=\ln y$, $Z=\ln z$ الكامل والحل المفرد -إن وجد- للمعادلة التفاضلية :-

$$x^4p^2 - y z q - z^2 = 0.$$

. $\left(D_{x}^{2}+D_{x}D_{y}^{2}-2\right)z=e^{2x}cos\ 3y+e^{y}sin\ 2x$: أوجد الحل العام للمعادلة التفاضلية -3

ب) اثبت أن الحل الكامل للمعادلة التفاضلية: $z=xp+yq+\sqrt{p^2+q^2-1}$ يمثل مجموعة مستويات غلافها سطح زائدى قائم.

4- أ) أوجد الحل العام للمعادلة التفاضلية الآتية باستخدام طريقة أويلر:-

$$(x^2D_x^2 - 2xyD_xD_y + y^2D_y^2 - xD_x + 3yD_y)z = \frac{8y}{x}.$$

ب) باستخدام التعويض $Z=\ln z$ أوجد الحل الكامل والحل المفرد -إن وجد- للمعادلة التفاضلية:-

$$z^2(x+y)=p^2+q^2.$$

. $r-yp=-\sin x-y\cos x$, $(r=z_{xx})$ أوجد الحل العام للمعادلة التفاضلية:

ب) باستخدام تحويلات لابلاس $y_{tt}-4y_{xx}+y=16x+20\ sin\ x$: والذي يحقق الشروط :-

y(0,t)=0 , $y(\pi,t)=16\pi$, $y_t(x,0)=0$, $y(x,0)=16x+12\sin 2x-8\sin 3x$.

كلية العلوم

المقرر: بحوث عمليات (2) 426ر

الفرقة: المستوى الرابع علوم

الزمن: 3 ساعات

التاريخ: الثلاثاء 2024/5/21

الدرجة: 50 درجة

جامعة اسيوط كلية العلوم قسم الرياضيات امتحان الفصل الثاني للعام الجامعي 2023- 2024

أجب عن الأسنلة الآتية: كل سؤال (10 درجات)

السوال الأول: (أ) برهن أن الشرط الكافي لنقطة التشبع x^* (التي تكون المشتقات الجزئية للدالة مساوية للصفر) لكي تكون نقطة تطرف هو أن مصفوفة الهسين H تكون موجبة فأن النقطة تكون نهاية صغرى وإذا كانت سالبة تكون نهاية عظمى .

. $f(\underline{x}) = x_1 + 2x_3 + x_2x_3 - x_1^2 - x_2^2 - x_3^2$ او جد نقط النهایات العظمی و الصغری للدالة

Min $f(\underline{x}) = (x_1 - 1)^2 + x_2$ السؤال الثانية (أ) مستخدم الشرط الضروري من الرتبة الثانية حل المسألة التالية $s.t \quad x_1 - x_2^2 \le 0$

 $\underline{x}^* = (2, -1, 3)$ عند النقطة $f(\underline{x}) = x_2^2 x_3 + x_1 e^{x_3}$ عند النقطة (ب)

السؤال الثالث: أستخدم طريقة مضروبات لاجرانج في حل المشكلة التالية

. $Max \ f(x_1, x_2) = x_1^2 x_2$ S.t $g(x_1, x_2) = 2x_1^2 + 2x_1x_2 - 12 = 0$

ثم طبق الشرط الكافي لمعرفة ان النقطة نهاية عظمى.

السوال الرابع: (أ) بأستخدام طريقة خطوة الانحدار الشديد أوجد طول الخطوة α للدالة

. $(x_1^0, x_2^0) = (1,2)$ غند الحل عند $f(\underline{x}) = 3x_1^2 + 2x_2^2 + 2x_1 x_2 + 7$

(ب) بأستخدام طريقة تعديل المتغيرات أوجد القيمة الصغرى للدالة

 $f(x) = 25x_1^2 + x_2^2$ $at(x_1^0, x_2^0) = (1,1)$

 $f(\underline{x}) = 2x_1^2 + x_2^2 - 2x_1 x_2$ السؤال الخامس: (أ) بأستخدام طريقة نيوتن اوجد القيمة الصغرى للدالة

 $(x_1^0, x_2^0) = (5,5)$ عندما

Min $f(\underline{x}) = (x_1 - 1)^2 + (x_2 - 2)^2$ (ب) استخدم دالة الجزاء (penalty) اوجد حل المسألة التالية $g(x) = x_1 + x_2 - 4 = 0$

مع تمنياتي بالنجاح والتوفيق

د/ مصطفى على الخطيب

Arab Republic of Egypt

Ministry of Higher Education

Assiut University

Faculty of Sciences

Department of Mathematics

Course: Complex Analysis

Final Term Exam (2st Term)

Second Semester of the year 2023/2024

Date: 23/5/2024 Time: 3 Hours

Code: Math. 412 Testing degree: 50 marks

Answer only five of the following questions:

Question One: (10 marks = 4+3+3)

- 1. Define and give an example for each of the following: <u>Analytic Functions</u>, <u>Entire Functions</u>, <u>Meromorphic Functions</u>.
- 2. Show that $f(z) = \begin{cases} \frac{\text{Re}(z)}{z}, & z \neq 0 \\ 0, & z = 0 \end{cases}$ is <u>not continuous</u> at $z_0 = 0$.
- 3. Give an example with proof that shows that the following relationship $\log(z_1z_2) = \log(z_1) + \log(z_2)$ is not always true, and when the equality is true.

Question Two: (10 marks = 3+3+4)

- 1. Find an upper bound for $\left| \frac{1}{z^4 5z + 1} \right|$, if |z| = 2.
- 2. Find the image of the line x = 1 under the complex mapping $w = z^2$, and illustrate this with a drawing.
- 3. By using contour integration, evaluate the integral $\int_{0}^{2\pi} \frac{1}{2 + \cos(\theta)} d\theta$.

Ouestion Three: (10 marks = 4+3+3)

1. Calculate the value of the following expressions:

$$(i)\left(\frac{1-i}{1+i}\right)^{10}$$

(ii)
$$(1-i)^{\frac{1}{2}}$$

(iii)
$$(1+i)^i$$

- 2. Let f(z) be analytic inside and on a circle C of radius r and center at z = a. Prove <u>Cauchy's</u> inequality $\left| f^{(n)}(a) \right| \le \frac{M \cdot n!}{r^n}$; n = 0, 1, 2, 3, ..., where M is a constant such that $\left| f(z) \right| \le M$.
- 3. By using contour integration, evaluate the integral $\int_{0}^{\infty} \frac{x^2}{(1+x^2)^2} dx$.

Question Four: (5 marks = 3+3+4)

- 1. Study the existence of the limit $\lim_{z\to 0} \left(\frac{z}{\overline{z}}\right)^2$.
- 2. Prove that the function $f(z) = \begin{cases} \frac{x^3(i+1) y^3(1-i)}{x^2 + y^2}, & z \neq 0 \\ 0, & z = 0 \end{cases}$ satisfies <u>Cauchy-Riemann</u>

equations at z = 0 but it is not analytic function at z = 0

3. Evaluate the following integrals.

$$(i) \oint_{|z|=1} e^{z} dz$$

$$(ii) \oint_{|z|=1} \frac{1}{z^2 e^z} dz$$

$$(i) \oint_{|z|=1} e^{z} dz \qquad (ii) \oint_{|z|=1} \frac{1}{z^{2} e^{z}} dz \qquad (iii) \int_{0}^{2\pi} \sin^{2} \left(\frac{\pi}{3} + 2e^{i\theta}\right) d\theta$$

Ouestion Five: (10 marks = 2+2+3+3)

1. Define and give an example for each of the following: Isolated Singularities, Removable Singularities, and Essential Singularities.

2. Evaluate the <u>residue</u> of $f(z) = z \cos\left(\frac{1}{z}\right)$ at $z = \infty$.

3. Find Laurent series about the indicated singularity for each of the following function:

$$f(z) = (z-3)\sin\left(\frac{1}{z+2}\right); z = -2.$$

4. By using contour integration, evaluate the integral $\int_{-\infty}^{\infty} \frac{\cos(2x)}{x^2+4} dx$.

Question Six: (10 marks = 3+2+3+2)

- 1. Prove that $u = y^3 3x^2y$ is <u>harmonic function</u>. Find the <u>harmonic conjugate function</u> of u.
- 2. Evaluate the integral $\oint z^2 dz$ where C is the unit circle.
- 3. Let f(z) be continuous in a simply connected region R and suppose that $\oint f(z)dz = 0$ around every simple closed curve C in R. Then f(z) is analytic function in R.
- 4. Using Cauchy's residue theorem, evaluate the integral $\oint \frac{e^{zz}}{z^2(z^2+1)} dz$; $C:|z+i| = \frac{1}{2}$.

With best wishes,,, Prof. Dr. M. Azab Abd-Allah & Dr. Ayman Shehata

		(2023/2024)
Assiut University		
Faculty of Science	Final Exam of the 2 nd Semester	Time: 3 h
	Mathematical Statistics	
4	For 4th Year Mathematics Students	50 Marks
	Instructor: Prof. Abd EL-Baset A. Ahmad	

Answer the following questions: (10 mark for each question)

(1) (a) Let X and Y be discrete random variables with bpmf

У Х	1	2	3
1	4/32	7/32	3/32
2	7/32	6/32	5/32

Find: (i) $f_{Y|X}(y|2)$

(ii) $F_{Y|X}(y|2)$ (iii) V[Y|X=2]

(b) Let the random variables X and Y have the bpdf

$$f_{X,Y}(x,y) = \begin{cases} e^{-y}, & 0 < x < y < \infty \\ 0, & o.w \end{cases}$$

Find $M_{X,Y}(t,s)$ and then use it to find Cov(X,Y), and $\rho(X,Y)$.

- (2) (a) $X_1, X_2, ..., X_n$ is a random sample drawn from a population whose density function is Inverse Gaussian $IG(\mu, \lambda)$. Use the moment generating function given in the **helpful distributions and expressions** to show that the moment estimator of μ and λ are given by: $\hat{\mu} = \bar{x}$ and $\hat{\lambda} = \frac{n \bar{x}^3}{(n-1)S^2}$.
- (b) If the bpdf of X and Y is given by

$$f_{X,Y}(x,y) = \begin{cases} 2, & 0 < x < y, \ 0 < y < 1, \\ 0, & o.w \end{cases}$$

Prove that:

(i) $E[X|Y = y] = \frac{y}{2}$ (ii) $V[X|Y = y] = \frac{y^2}{12}$, 0 < y < 1.

(3) (a) The pdf of a random variable X is given by $f_X(x) = \begin{cases} \frac{1}{3}e^{-\frac{x}{3}}, & x > 0, \\ 0 & o, w \end{cases}$ and if the

random variable Z is such that $Z = \begin{cases} 0, & X \notin A \\ 1, & X \in A \end{cases}$, where $A = \{x: 0 < x < 3\}$, then find the pmf of Z.

- (b) Suppose that X and Y are independent random variables where $X \sim gamma(\alpha_1, \beta)$ and $Y \sim gamma(\alpha_2, \beta)$. Find the pdf of $Z = \frac{X}{X+Y}$
- (4) (a) If $X_1, X_2, ..., X_n$ is a random sample of size n from a normal distribution with unknown parameters μ and σ^2 . (i) Find the moments estimators and maximum likelihood estimators for the unknown parameters. (ii) Show that the sample mean \overline{X} is a MVUE for μ .
- (b) A civil engineer is analyzing the compressive strength concrete. Compressive strength is normally distributed with $\sigma^2=1000$ (psi)². Random sample of 12 specimens have a mean compressive strength of $\overline{x}=3250$ psi. Construct 95% confidence interval on mean compressive strength. (use $z_{0.975}=1.96$)
- (5) Two observations are taken on a discrete random variable with pmf $p(x|\theta)$, where $\theta = 1$, or 2 given as

pxto 0	1	2
$p_{X \Theta}(x_1 \theta)$	0.3	0.2
$p_{X \Theta}(x_2 \theta)$	0.7	0.8

and the prior of θ is defined as

$$p_{\Theta}(\theta) = \begin{cases} 0.4, & \theta = 1, \\ 0.6, & \theta = 2, \\ 0, & o.w \end{cases}$$

Find the Bayes estimate for θ .

Helpful Formulas:

$$X \sim IG((\mu, \lambda) \Rightarrow M_X(t) = e^{\frac{\lambda}{\mu} \left[1 - \left(1 - \frac{2\mu^2 t}{\lambda}\right)^{\frac{1}{2}}\right]}$$

$$\overline{x^2} - \overline{x}^2 = \frac{(n-1)S^2}{n}$$

$$X \sim gamma(\alpha, \beta) \Rightarrow f_X(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, \qquad x > 0.$$

$$X \sim N(\mu, \sigma^2) \Rightarrow f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}, \quad -\infty < x < \infty.$$

Best wishes,,,

Prof. Abd EL-Baset Abdullah Ahmad

Final Exam

Faculty of Science

2024-06-01 , Time: 2 hours

THE EXAM IS IN TWO PAGES: 50 Questions

Q1- Choose true for the correct sentence and false for the wrong sentence (10 Marks).

- 1. Neural network is old field in computer science.
- 2. The aim of neural network is "Min loss function"
- 3. It is recommended to make large neural network to solve the classification problem.
- 4. Deep learning can be used in discovering new science.
- 5. The first layer in any deep learning network is maxpool.
- 6. The core of TensorFlow is using the concept the computational graph.
- 7. TensorFlow is better than pyTorch.
- 8. Large dataset is one of many reasons (أحد اسباب) for advancing the deep learning methods.
- 9. We can use personal laptop in training large neural network.
- 10. The activation function ReLU has a role in advancing the deep learning technique.

Q2. Assume that we next matrix. What are the results of max pool with 2x2 filter and stride 2. (5 marks)

[1124

5678

3210

1234]

What is the maxpool for this matrix?

Q3. (10 marks)

Assume that we have the next matrix

A =	[1	1	1	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0]

, and we have the filter

$$F = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

What is Conv2D for the matrix A with the filter F?

PLEASE SEE THE NEXT PAGE

Q4. (12 marks)

- a) Write a function that express the output Z as function of X, W1, W2, W3
- b) Write the loss function using this neural network and the next table.
- c) Represent this network by Python Code.

X1	X2	Z
0	0	1
1	0	1
0	1	1
1	1	0

Q5 Solve the next problem with stochastic Gradient Descent (Two iterations) (8 Marks) $Min \ w_1 \ Sin \ (w_1 w_2)$

Q6. Write about the real applications of GAN and autoencoder networks. (5 marks).

End of Questions.

Best Wishes,

Ibrahim Elsemman

Computer Science Department Faculty of Science Assiut University Final Exam

b) Syntax Analysis c) Semantic Analysis d) code generation

Course: Compilers theory Code:

4th level

Time: 2 Hours

संग	2023/2024	Marks:		
•	No. of page	s: 4 - No. of questions: 3	er a	ill questions
Que	estion 1 selec	et the correct answer		
[1]	Which one of	f the following regular expressions repr	res	ents the language: the set of all binary
;	strings having	two consecutive 0s and two consecutive	e l	s?
	a) (0 1)*	*0011(0 1)* (0 1)*1100(0 1)*		
	b) (0 1)*	*(00(0 1)*11 11(0 1)*00) (0 1)*		
	c) (0 1)*	*00(0 1)* (0 1)*11(0 1)*		
	d) 00(0	1)*11 11(0 1)*00		
[2]	The RE in wh	nich any number of 0's is followed by ar	ny	number of 1's followed by any number
	of 2's is?			
	a) (0 1 2	2)*		
	b) 0*1*2*	5		
	c) 0* 1	2		
	d) (0 1)*	2*		
[3]	Which of the	following rules is NOT a correct conte	ext-	-free rule, where non-terminals are {A,
	B}, and termin	nals are {a, b}		
а	$A \to a \mid Ba$	No.	,	$a \rightarrow Ba$
	$AB \to a$		(t	Both b and c
		utput of lexical analyzer?		
	a) A set of RE	3		
	b) Syntax Tre	e		
	c) Set of Toke	ens		
	d) String Cha	racter		
	Parsing is also			
	a) Lexical An	alysis		

[6] Construct a NDFA for the following regular expression.

(a|b)*aba(a|b)*

[7] The following grammar after removal of the left recursion will look like

expr → expr addop term|term

addop → +|-

term → term mulop factor | factor

 $\text{mulop} \rightarrow *$

factor →(expr) | number

A)

exp → term exp'

exp'→ addop term exp'|E

addop $\rightarrow +$ term → factor term'

term' → mulop factor

term'|E

mulop →*

factor →(expr) | number

B)

expr → expr addop

term|term

addop → +|-

term → term mulop factor |

factor $mulop \rightarrow *$

factor →(expr) | number

[8] The set of all strings over $\Sigma = \{a,b\}$ in which strings consisting a's and b's and ending with in bb is

a) ab

b) a*bbb

c) (a|b)* bb

C)

factor

expr → term expr (+|-) term term → term * factor |

factor →(expr) | number

d) All of the mentioned

[9] When two parse trees are derived from the same grammar rules but both parse trees are different, this means, the grammar is

- a) Ambiguous
- b) Not LL(1)
- c) Not LR(0)
- d) Non ambiguous

Department of قســـم الرياضيـــ **Mathematics Faculty of Science** الامتحان النهائي للمستوى الرابع للفصل الدراسي الثاني ٢٠٢٣ /٢٠٢م

الدرجة الكلية : • ٥ درجة التاريخ: ٥٦ / ٢٠٢٤ م

اسم المقرر: تحليل عددى (٢) رمز المقرر: ٢٤٤ر

Answer **five questions only** of the following:

1-a) Solve the following system

$$10x_1 + x_2 + 2x_3 = 13$$

$$x_1 + 10x_2 + 3x_3 = 14$$

$$3x_1 + 2x_2 + 10x_3 = 15$$

By the method of iteration.

- b) Show that the process of iteration converges for the above system.
- c) What is the maximum error after applying 13 iteration?.
- 2) Derive the recurrence relation of Chebyshev polynomial:

$$T_{n+1}(x) = 2x T_n(x) - T_{n-1}(x), \quad n = 1, 2, \dots,$$

Then prove that:

$$(i) \int_{-1}^{1} \frac{[T_i(x)]^2}{\sqrt{1-x^2}} dx = \frac{\pi}{2}, \quad \forall i \ge 1$$

$$(ii)T_i(x)T_j(x) = \frac{1}{2}[T_{i+j}(x) + T_{i-j}(x)]$$

For any positive i and j with i > j.

3) Derive Adams Bashforth two steps method:

$$y_{n+1} = y_n + \frac{h}{2}(3f_n - f_{n-1})$$

Then use this method to approximate y when x=0.3 for the particular solution of

$$y' = x + y$$
, $y(0) = 1$, $(h = 0.1)$

4) Use the least squares method to find the approximate solution of the B.V.

Problem:
$$y'' + y = x^2 + 2$$
, $y(0) = 0$ and $y(1) = 1$,
in the from $z(x) = a_0 + a_1 x + a_2 x^2$

5) If the nonlinear system:

$$x_1^2 - 10x_1 + x_2^2 + 15 = 0$$
, $x_1x_2^2 + x_1 - 10x_2 + 6 = 0$

is transformed into the fixed-point problem:

$$x_1 = g_1(x_1, x_2) = \frac{x_1^2 + x_2^2 + 15}{10}, \quad x_2 = g_2(x_1, x_2) = \frac{x_1 x_2^2 + x_1 + 6}{10}$$

- (i) Show that, $G = (g_1, g_2)^t$ mapping $D \subset R^2$ into R^2 has a unique fixed-point in $D = (x_1, x_2)^t$, $0 \le x_1, x_2 \le 2.5$
- (ii) Apply functional iteration to find $x^{(1)}$ and $x^{(2)}$ $\left(x^{(0)} = (1.9, 1.1)^t\right)$
- (iii) How many iterations have to be carried out to find the roots to within 10^{-7} ?

6- a) Prove that:

- (i) If $g \in c[a,b]$ for all $x \in (a,b)$, then g has a fixed point in [a,b].
- (ii) If in addition, that g exists on (a, b) and a positive constant k < 1 exists with $|g'(x)| \le k$ for all $x \in (a,b)$, then the fixed point in [a,b] is unique.
- b) Solve by shooting method the B. V. P.

$$y'' + y = 0$$
, $y(0) = 0$ and $y(1) = 1$,

Start with the initial approximations

$$\alpha_0 = 0.3$$
 and $\alpha_1 = 0.4$ to $y'(0)$, $(h = 0.25)$

Good Luck

Prof. A. El-SAFTY

كلية العلوام في الرياضيات علية العلوام في الرياضيات الفي الثاني غذجة رياضية (434ر) التاريخ :30-5-2024

للفرقة الرابعة علوم شعبة الرياضيات لعام (2023-2024)

الزمن: 3 ساعات

أجب عن أربعة أسنلة فقط مما يلي:- (العظمي 50 وكل سؤال عليه 5. 12درجة)

1-أذكر الخمس مراحل الاساسية للنمذجة الرياضية وناقش أحداها بالتفصيل.

2-استخدم النمذجة الرياضية في استنتاج:

1-المعادلة الموجية في بعد واحد من خلال وتر مهتز.

2-معادلة التوتر السطحي وأوجدها لفقاعة الصابون.

3-استنتج شرط استقرار مائع ثقيل فوق مائع خفيف تحت تأثير عجلة الجاذبية الارضية .

4- استخدم طريقة K-B لايجاد الحل التقريبي لنظام فيزيائي تذبذبي عندما يعتمد التردد الطبيعي للنظام على الزمن .

5- اعتبر فئة النتائج الاتية:

x	0.00	1.00	2.00	3.00	4.00
V	0.99	0.03	-1.02	-1.94	-3.4

أوجد معاملات كثيرة حدود من الدرجة الاولي مرة ومن الدرجة الثانية مرة أخرى مستخدما المصفوفات وطريقة المربعات الصغري ثم علق على النتائج.

مراجعة أد جمال مختار محمود

اعداد: ا د محمود حامد عبيد الله

with our best wishes

Assiut University Faculty of Science Time: 2 hours, Marks: 50

2nd Semester -Final 2024 **Special Topics in Computer** Science 2 (MC455)

Important

No. of pages: 2 – Solve in Bubble Sheet.

remarks

· 2 marks for each point.

Question no. 1: Determine whether of these statements are true (T) or false (F)

(20 points)

- 1) Measurement destroys the superposition.
- 2) The coefficients can always be rescaled by some factor to normalize the quantum state.
- 3) A qubit state has twice the probability of being $|1\rangle$ vs. $|0\rangle$, then the qubit state is $\sqrt{\frac{1}{3}}|0\rangle + \sqrt{\frac{2}{3}}|1\rangle$.
- 4) If 90 identical qubits in the state, $\sqrt{\frac{1}{3}}|0\rangle + \sqrt{\frac{2}{3}}|1\rangle$ then about 60 qubits will be measured as $|1\rangle$.
- 5) The outcome of a qubit measure is $|0\rangle$ so its initial state could be $|1\rangle$.

====If
$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ ======

- 6) Y is unitary and Hermitian.
- 7) $Y|0\rangle = i|1\rangle$
- 8) $Y|+\rangle + i|-\rangle = |0\rangle$
- 9) $YZ|0\rangle = ZY|0\rangle$
- $10) \frac{1}{\sqrt{2}} (|+\rangle |-\rangle) = |1\rangle$

Question no. 2: Choose the correct answer

(30 points)

- 11) Appling the quantum gates: $ZHX|0\rangle = \dots$
 - a) $|+\rangle$
- b) $|-\rangle$
- c) |1)
- $d) |0\rangle$
- 12) Appling the quantum gates: $ZHX|+\rangle =$

- $a) \mid + \rangle$
- b) $|-\rangle$
- c) |1)
- $d) |0\rangle$
- 13) The matrix $|1\rangle\langle 0|$ equals
- $a) \ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad b) \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$
- c) $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ d) $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
- 14) The two-qubit state $\frac{1}{\sqrt{2}}$ (.....) is entangled.
- a) $|01\rangle + |00\rangle$
- b) $|01\rangle + |11\rangle$
- c) $|00\rangle |11\rangle$ d) $\frac{1}{\sqrt{2}}(|00\rangle + |01\rangle + |10\rangle |11\rangle)$
- 15) Alice and Bob decide to compare the bit shown to determine if Eve was intercepting. They find that they do not agree. For this bit, what basis must Eve have used for her measurement?
 - a) X
- c) H
- d) Not possible to tell from the given information.

 Alice	Eve	Bob	Key
X	?	X	error
0	?	1	

Quantum Computation

- 16) Alice and Bob decide to compare the bit shown to determine if Eve was intercepting. They find that they do not agree. For this bit, what value must Eve have used for her measurement?

 - c) superposition of 0 and 1
 - d) Not possible to tell from the given information.

Alice	Eve	Bob	Key
Alice	2	Z	error
	9	0	

- 17) Alice and Bob decide to compare the bit shown to determine if Eve was intercepting. They find that they agree. For this bit, what basis must Eve have used for her measurement? Bob Eve
 - a) X
- c) H
- d) Not possible to tell from the given information.
- Key 1 Z Z 1
- 18) Which quantum property is preserved during teleportation?
- c) Energy
- d) Entanglement
- 19) Which quantum operation is performed after the Bell state measurement in the teleportation protocol?
 - a) Hadamard
- b) CNOT
- c) Phase
- d) Z and X
- 20) What is the number of qubits needed to teleport a qubit?
 - a) one
- b) two
- c) three
- d) four

- 21) $|\psi_1\rangle = \frac{1}{2}(.....)$
 - a) $|++1\rangle$
- b) $|1++\rangle$
- c) $|-+1\rangle$
- d) |+1+>

- 22) $|\psi_2\rangle = -\frac{1}{\sqrt{2}}(.....)$
 - a) $|+01\rangle$
- b) |10 +>
- c) $|-01\rangle$
- d) |10 ->

- 23) $|\psi_3\rangle = -\frac{1}{\sqrt{2}}|1\rangle(....)$
 - a) $|00\rangle + |11\rangle$ b) $|01\rangle + |10\rangle$
- e) $|00\rangle |11\rangle$
- d) $|01\rangle |10\rangle$

- 24) $|\psi_4\rangle = -\frac{1}{\sqrt{2}}|1\rangle(....)$
 - a) $|00\rangle + |11\rangle$ b) $|01\rangle + |10\rangle$ c) $|00\rangle |11\rangle$
- d) $|01\rangle |10\rangle$

- 25) $|\psi_5\rangle = -\frac{1}{\sqrt{2}}(.....)$

 - a) $|110\rangle + |011\rangle$ b) $|001\rangle + |101\rangle$
- c) $|100\rangle + |011\rangle$
- d) $|000\rangle + |111\rangle$

Assiut University Faculty of Science Mathematics Dept.

Course: Data mining Course code: MC464 Level: Fourth Time: 2 Hours Mark: 50

FREE PALESTINE

"اسْتَعِنْ بِاللهِ ولا تَعْجَـز" الامتحان خمس (5) صفحات - الإجابة في نفس الصفحة

1. data objects that do not comply with the general beh	aviour or the model of the data.
	()
2. A type of attribute has a finite or countably infinite	set of values.
	()
3. Data points that divide amount of data into exactly e	equal-sized consecutive subsets.
	()
4. A statistical measure which its major problem is its	sensitivity to extreme (e.g., outlier)
values.	()
5. A repository of information collected from multiple	sources, stored under a unified
schema.	()
uestion 2: Put True or False for each of the foll	owing items (10 Marks)

Q

- The similarity between the two examples x = (0,1,1,1,0,0,0,0,0,0,0) and y = (0,0,0,0,0,1,0,1,1) where the ten attributes are symmetric binary is 0.4.
- In ratio-scale attributes, the value 20 is considered the twice of 10. 2.
- In some experience, we measure the length of students, this length variable is considered 3. ration-scale variable.
- 4. The confidence c of the rule $A \rightarrow B$ is the percentage of transactions in data set containing A that also contain **B**.
- The dissimilarity between X = (blue, Code A, farmer) and Y = (red, Code A, doctor) is 5. almost **0.66**
- Data integration is the process of combining multiple data sources in a single database. 6.
- Regression tends to predict the class label when these labels represent uncountable 7. infinite values.
- A major problem with the mean as a statistical representing is its sensitivity to 8. extreme/outlier values.
- 9. Decision tree technique is used to discover association rules in a big data.
- 10. In interval-scale attributes, the value 200 is considered the twice of 100.

Question 3: Choose the correct answer (10 Marks):

- 1) The process carried out by a head of a school to place a new student transferred to this school in the excellent class or regular classes is called
- a) Classification

b) Clustering

c) Characterization

d) mining frequent pattern

 2) The entropy of this set S₁ = { a) Ent(S₁) = 0 c) Ent(S₁) = 0.159 	$\{A, A, B\}$ is	,	S_1) = 0.918 e of above	,
3) Grades corresponding to maa) Interval-scale attributec) Nominal attribute	rks of studer	b) Ratio	o-scale attribute nal attribute	.
4) In the unimodal curve, wherea) Symmetricc) Positively skewed	the curve is	b) Over	he left, then it is symmetric attively skewed	is
K-means algorithm, into 2 clu and using Manhattan distance,	sters, the in	itial centers	are $C_1(0,0)$ an	d C2(1,1),
\mathbf{Y}	1	64	81	
5) The distance between C ₁ (0, 0) a) 72 b) 70 6) The distance between C ₂ (1, 1) a) 90 b) 88 7) After the first iteration, the two a) {(1, 1)} and {(0, 0), (8, 64)} b) {(0, 0), (1, 1)} and {(8, 64)} c) {(0, 0)} and {(1, 1), (8, 64)} d) {(0, 0), (8, 64)} and {(1, 1)}	o clusters are (9, 81)} 4), (9, 81)} 4), (9, 81)}	e) 64.5 9, 81) is e) 80.4	d) 6 d) 8	
8) After the first iteration, the va a) C ₁ (6, 48.6) and C ₂ (0, 0) c) C ₁ (0, 0) and C ₂ (1, 1)	lues of new	b) $C_1(1)$	$(0,1)$ and $C_2(6,4)$, $(0,0)$ and $C_2(6,4)$	
9) After the second iteration, the a) {(0, 0), (8, 64)} and {(1, 1) b) {(0, 0), (1, 1)} and {(8, 6 c) {(1, 1)} and {(0, 0), (8, 64 d) {(0, 0), (9, 81)} and {(1, 1) }	(a), (9, 81)} (4), (9, 81)} (4), (9, 81)}	s are		
10) After the second iteration, the a) C ₁ (1, 1) and C ₂ (6, 48.6) c) C ₁ (3, 0) and C ₂ (1, 1)	b) C	1(0.5, 0.5) at	and $C_2(8.5, 72.5)$	

Question 4: Suppose you have the following data set with two attributes; symmetric Att. and asymmetric Att. (10 Marks)

Compute the dissimilarity matrix for each two samples of this data set

Sample No. 1	Symmetric Air.	Assymmetrife Avit.
acara de la companya	. 1	0
2.72	0	1
3.44	0	0
41 3	1	1
(1) (3) (3) (3) (3) (4) (3)	0	1

		C attitout	s, men co	mpute the	uesneu.	
•••••		185				
,		***************************************				
yn .			•••••			
					ž	
				· · · · · · · · · · · · · · · · · · ·		
		***************************************	***************************************			
			,			
			•••••			

	P			••••••••••		
ojumnesy's amanani						
			Ye,			
		311111111111111111111111111111111111111				

	n 2					
The state of the s		No.		4		

v														
••••••														
••••••														
•••••														
					8								•	
•••••	•••••••													•••••
••••••			••••••									•••••		
•••••	••••••								••••••		••••••	••••••		
	•••••		· ······					.,						
						.,								
	No		* '		e									
. *			•••••••							••••••	••••••			•••••
•••••		z					-	•••••••		•••••		•••••		
									•••••	•••••	•••••			
•••••								•••••				••••		
	•••••													
											2			
									2		*******			
••••••	••••••	***************************************									*******			••••••
••••••														
••••••												•••••		
•••••		•••••									•••••			
												. ,		•••••
_	4													
Sym	mmetri	c Diss	im M	atrix				Asyn	nmet	ric 1	Diss	sim	Mat	rix
					141				4				_	
	$1 \mid 2$	3 4	- 15					49	1	2	3,	4)	
1								21						
II.								<u>, </u>						
γ	* .			*				2						
								9						
3		, i						. 3						
1//								Δ						
Si								Τ.						
R								- 5						

Final Dissim Matrix

Question 4: Suppose you have the following data set with two decision attributes and class label "Evade" which has two values "YES" and "NO".

i kil l	Refundi	Manital Status	- Evade (Class label)
1	yes	Single	YES
21	no	Married	NO
\$ 30	no	Single	NO
427	no	Divorced	YES
5	no	Married	NO
6	yes	Divorced	NO
7	no	Married	YES
(e) (b)	no	Married	NO
9	no	Single	YES

Classify the following example X based on this data set, using **Bayesian classifier**, X = (Refund = "yes". Marital Status = "Married") (10 Marks)

Show your answer through using these calculations like,

$P(YES) = \dots$	
P(NO) =	
,	أكمل بذكر باقى المعادلات المستخدمة ولا يتم النظر للحسابات بدون ذكر المعادلات
	<u>-</u> .
* 1	
	· · · · · · · · · · · · · · · · · · ·

s	

End of Exam, with my best wishes:

Dr- Abdel-Rahiem Ahmed Hashem Mohammed
د. عبدالرحيم احمد هاشم محمد

Assist University
Faculty of Compute and Information.

MSc. Degree Exam 2023/2024th June.2024

الامتحان لطلاب المستوى الرابع

Course: Computer Architectures
Time: 2 Hours Marks: 50

كليه العلوم

Answer the following q	uestios
Choose the correct answ	rer (50 pts)
1 The formatic usual	ly used to store data
1. The format is usual	
	b) Decimal
c) Hexadecimal	d) Octal
Answer:	
	used to store data in a computer is
a) ASCII	b) EBCDIC
c) ANCI	d) USCII
Answer:	
3. A source program is usual	ly in
a) Assembly language c) High-level language	b) Machine level language
	d) Natural language
Answer:	
The Control of the Wilson	enerally made of semiconductors?
The state of the s	b) Hard-disk
c) Floppy disk	d) Cd disk
Answer:	
	to store the intermediate results.
a) Accumulators	b) Registers
c) Heap	d) Stack
Answer:	
6 are numbers and e	ncoded characters, generally used as
operands.	
a) Input	b) Data
c) Information	d) Stored Values
Answer:	
7 bus structure is us	ually used to connect I/O devices.
a) Single bus	b) Multiple bus
c) Star bus	d) Rambus
Answer:	
8. The I/O interface required t	o connect the I/O device to the bus consists of
	
a) Address decoder and regis	sters
b) Control circuits	
c) Address decoder, registers	s and Control circuits
d) Only Control circuits	
Answer:	

9 is generally used to	increase the apparent size of physical
memory.	
a) Secondary memory	b) Virtual memory
c) Hard-disk	d) Disks
Answer:	
10. The time delay between two	o successive initiations of memory operation
a) Memory access time	b) Memory search time
c) Memory cycle time	d) Instruction delay
Answer:	,
11. The decoded instruction is	stored in
a) IR	b) PC
c) Registers	d) MDR
Answer:	•
12. Which registers can interact	ct with the secondary storage?
a) MAR	b) PC
c) IR	d) R0
Answer:	,
	rogram which gets initialized first?
a) MDR	b) IR
c) PC	d) MAR
Answer:	
	he processor is/are connected to Memory
Bus?	
a) PC	b) MAR
c) IR	d) Both PC and MAR
Answer:	
15. ISP stands for	•
a) Instruction Set Processor	
b) Information Standard Proce	ssing
c) Interchange Standard Proto	col
d) Interrupt Service Procedure	
Answer:	
16. The internal components o	f the processor are connected by
a) Processor intra-connectivity	
b) Processor bus	· · · · · · · · · · · · · · · · · · ·
c) Memory bus	
d) Rambus	6
Answer:	
17 is used to choose k	petween incrementing the PC or performing
ALU operations.	
a) Conditional codes	b) Multiplexer
c) Control unit	d) None of the mentioned
View Answer	
Answer:	· .
19 The registers Allland the	interconnection between them are

collectively called as	
a) process route	b) information trail
c) information path	d) data path
Answer:	
19 is used to store da	ta in registers.
a) D flip flop	b) JK flip flop
c) RS flip flop	d) None of the mentioned
Answer:	
20. The main virtue for using si	ngle Bus structure is
a) Fast data transfers	
b) Cost effective connectivity a	nd speed
c) Cost effective connectivity a	nd ease of attaching peripheral devices
d) None of the mentioned	,
Answer: c	
	ne the difference in data transfer speeds of
various devices.	
a) Speed enhancing circuitory	b) Bridge circuits
c) Multiple Buses	d) Buffer registers
Answer:	a) 2 and 12 g
	of the processor bus we use
a) PCI bus	b) SCSI bus
c) Controllers	d) Multiple bus
Answer:	d) materio suc
	ard for their line of computers 'PC AT' called
-	
a) IB bus	b) M-bus
c) ISA	d) None of the mentioned
Answer:	14 4 4 ADILL
	ne monitor to the CPU is
a) PCI bus	b) SCSI bus
c) Memory bus	d) Rambus
Answer:	
25. ANSI stands for	
a) American National Standard	
b) American National Standard	
c) American Network Standard	I Interfacing
d) American Network Security	Interrupt
Answer:	Vq.
26 register Connected t	o the Processor bus is a single-way transfer
capable.	
a) PC	b) IR
c) Temp	d) Z
Answer:	,
27. In multiple Bus organisation	n, the registers are collectively placed and
referred as	
a) Set registers	b) Register file

c) Register Block	d) Map registers
Answer:	
28. The main advantage of mu	Itiple bus organisation over a single bus is
a) Reduction in the number of	cycles for execution
b) Increase in size of the regis	
c) Better Connectivity	leis .
d) None of the mentioned	
Answer:	
	o upped to some set
29. The ISA standard Buses ar	e used to connect
a) RAM and processor	
b) GPU and processor	
c) Harddisk and Processor	
d) CD/DVD drives and Process	sor
Answer:	
	read and the mfc signal is
a) Access time	b) Latency
c) Delay	d) Cycle time
Answer:	
31 is the bottlene	ck, when it comes computer performance.
a) Memory access time	b) Memory cycle time
c) Delay	d) Latency
Answer:	
32. VLSI stands for	
a) Very Large Scale Integration	1
b) Very Large Stand-alone Inte	
c) Volatile Layer System Interfa	
d) None of the mentioned	
Answer:	
33. A memory organisation tha	t can hold upto 1024 bits and has a minimum
of 10 address lines can be orga	anized into
a) 128 X 8	b) 256 X 4
c) 512 X 2	d) 1024 X 1
Answer:	u) 1024 X 1
	cially designed memory chips similar to
or. The trainboo requires spec	ciany designed memory chips similar to
a) SRAM	b) SDRAM
c) DRAM	d) DDRRAM
Answer:	u) bbittain
	entation of the cache memory is
a) To increase the internal men	nory of the system
	operation of the processor and memory
c) To reduce the memory sees	operation of the processor and memory
c) To reduce the memory acces d) All of the mentioned	ss and cycle time
Answer:	
	esting anada of the assert
55. To overcome the slow oper	ating speeds of the secondary memory we

make use of faster flash drives	•
a) True	b) False
Answer:	
37. The fastest data access is p	
a) Caches	b) DRAM's
c) SRAM's	d) Registers
Answer:	
	to store the copy of data or instructions
stored in larger memories, insi	
a) Level 1 cache	b) Level 2 cache
c) Registers	d) TLB
Answer:	
39. In memory-mapped I/O	
	nory share the same address space
b) The I/O devices have a sepa	
	s have an associated address space
d) A part of the memory is spec	cifically set aside for the I/O operation
Answer:	
	ng the processor with the I/O device in which
the device sends a signal when	
a) Exceptions	b) Signal handling
c) Interrupts	d) DMA
Answer:	
	igher speeds of I/O transfers is
a) Interrupts	b) Memory mapping
c) Program-controlled I/O	d) DMA
Answer:	
42. The interrupt-request line is	
a) Data line	b) Control line
c) Address line	d) None of the mentioned
Answer:	
	be used to service n different devices.
a) True	b) False
Answer:	
44 The code sent by the device	e in vectored interrupt is long.
a) upto 16 bits	b) upto 32 bits
c) upto 24 bits	d) 4-8 bits
Answer:	4,100.00
	used for the purpose of controlling the
status of each interrupt reques	
a) Mass	b) Mark
c) Make	d) Mask
Answer:	
	mpler to implement using logic circuits.
a) True	b) False
Answer:	- <u>z</u>

	function: ci + 1 = yici + xici + xiyi, is im	plemented
in	b) Full addore	
a) Half adders	b) Full adders	
c) Ripple adders	d) Fast adders	
Answer:		
48. In full adders the sun	n circuit is implemented using	
a) And & or gates	b) NAND gate	
c) XOR	d) XNOR	
Answer:		- £ 4b -
49. In a normal adder cir	cuit, the delay obtained in a generation	of the
output is		
a) 2n + 2	b) 2n	
c) n + 2	d) None of the mentioned	
Answer:	2440 0 0440 :-	
50. The final addition su	m of the numbers, 0110 & 0110 is	
a) 1101	b) 1111	
c) 1001	d) 1010	
Answer:		

امتحان نهاية الفصل الدراسي لجميع المستويات انقرر: أخلاقيات الهنة والسلامة الهنية رقم المقرر ورمزه: F300

(۳۰ ډرچة)	رة الخاطئة لما ياتي:	السوال الأول: في ورقة البابل ظلل (T) للعبارة الصحيحة أو ظلل (F) للعبار
	١١. يؤدي النهوض بالملكية الفكرية الي دفع عجلة التنمية ا	١- الميتاق الأخلاقي: مجموعة من القيم التي تسعى المؤسسة للالتزام بها اثناء العمل.
+	١٢ الخبرة والسلامة من أخلاقيات البحث العلمي	٣- من مبادئ وأخلافيات مهنه التعليم الثقة والاحترام المتبادل
	١٣ أن تضيء شمعة صغيرة خير لك من أن تلعن الظلام.	٣- اعسرف اكثر عن علامات السلامة المهنية فهي لغة عالميسة
خنذر	١٤ احرص على التدريب فهو نشاط منظم لتحسين الأداء الو	٤. التخلص من مخلفات المعامل يكون بالحرق الآمن ودفن الرماد في مدفن أمن
	١٥ الالتزام بالأخلاقيات يقوم السلوك، والاهتمام بالسلام	٥. التقرير هو عرض كتابي او شفوي مركز لموضوع معين يقدمه فرد او مجموعه
Alva Alva Alva Alva Alva Alva Alva Alva	١٦-الدفاع عن شرف المهنة ليس من مبررات إفشاء الأسرار المخ	الـ Code of Ethics تعني اخلاقيات المهنة والسلامة المهنية
0.00	١٧ اللون الأزرق في العلامات الارشادية يعني ممنوع	٧- احرص على الجودة في عملك فالجودة لها سقف
الانسان	١٨ ـ تعرف المحكوارث بأنها حوادث غير مفاجئة لقوى الطبيعة او	٨ يعد سرقه علميه استخدم افكار من موقع على الانترنت والاشارة اليه
de maneer as :	١٩. عند حدوث الزلزال يجب تدريب العاملين	حدمعرهم علامات السلامة الهنية من الهارات الهنية المكتسبة للمقرر
لازمات	٢٠ المفاجأة و الاضطراب والارتباك ليست من سمات الطوارى وا	

طوارئ

اشعاعية الغطس

معفاطر

٢٤ شباك

التدخين

۲۱. حريق

(۲۰ درجات)

السؤال الثاني: في ورقة البابل ظلل حرف A او B او C او D للإجابة الصحيحة:

١٦. مقرر اخلاقيات الهنة Scientific Ethics يتناول اخلاقيات مهنة (A-العلميين -Bالاطباء-Cالهندسين -D-كل ما سبق)

٣٢ من اساسيات تجهيز مختبرات الحيمياء (A وجود شفاطات هواء ـ B ـ وجود كراسي ـ C ـ وجود سلالم ـ D ـ كل ما سبق) ٣٣......هو كمية المادة التي تؤدي لوفاة نصف مستخدميها اذا تم تناولها دهعة واحدة (LC50_D _ LEL_C _ LOL-B -LD50_A

٢٤ من الأداب العامة لمزاولة مهنه المختبرات الطبية (Aالخبرة - Bالزهو - كالدعاية الشخصية - D كل ما سبق)

٣٥ مجموعه من الوظائف التشابهة التي يمكن أن يقوم بها فرد واحد عند اللزوم (A - العمل _ B - الهنة _ C - الوظيفة — D كل ما سبق)

٣٦. من الأساليب التي يمكن اللجوء اليها في إدارة الأزمة (A المناورة والالتفاف B ـ الضغوط الاقتصادية C ـ الدبلوماسية ـ D ـ ما سبق

٣٧ من طرق علاج الشائعات (A المنطقية في التعامل - B نشر الحقائق لـ C التوعية - D حكل ما سبق)

٣٨. من الأهداف العامة التي تسعي السلامة والصحة المهنية لتحقيقها (A. حماية الممتلكات B. حماية الافراد ـ C. —العمل بأمان ـ D. حكل ما سبق)

MSDS_79 لأي مادة أو جهازهامة لسلامة (A- الجهاز _ B- المستخدم_ C | المادة _ C _ كل ما سبق) · ٤.من عوامل ادارة الازمة (A انتخاذ القرار المناسب في الوقت المناسب B ضبهً النفس - C - التدريب - D حكل ماسبق)

اك التبليغ فورا في حالة اكتشاف تحاليل ايجابية لمرض (Aالجرب - B شلل الأطفال - C - الطوليرا - D - كل ما سبق)

22 عدد الدرجات الوظيفية في الجامعات المصرية (A. عـ B. - LC - O. - LC - ك.

24. يجب ان تحتوى شنطة الاسعافات الأولية على (A ملينات في الله الله على الل

32. الرعاف هو (A-صدمة عصبية B- رعشة الجسم_ C- نزيف دموي من الانف- D كل ما سبق)

0 £ من الخطوات الرئيسية عند تنفيذ عملية مواجهة الكوارث (A-الانذار والتحذير — Bالاخلاء ـ C-الايواء ـ D-كل ماسبق) الك من نفايات المعامل (A اطباق مزارع بكتيرية _ B نفايات كيمائية إ C بقایا احیاء بریه . D کل ما سبق

2٧. من مجالات الاخلاقيات البيولوجية (A تأجير الارحام B القرصنة البيولوجية - C سرقة الجينات - D - كل ما سبق)

24 من انواع الشانعات (A_الشانعة البطيئة - B_الشائعة السريعة -C_الشائعة الاستطلاعية -D_ كل ما سبق)

14 Plagiarism يعني (A الانتحال _ B الاقتباس - C البحث - D لحكل ما سبق)

-٥- من يعد ميثاق اخلاقيات المهنة ؟ (A. فريق عمل - B. رئيس المؤسسة C انطلاب- D كل ما سبق)

مع تمنياتي بالتفوق

انتهت الأسئلة

Fa	culty of Science		
Course	Scientific Computations (2)	Time allowed:	2 hours
Code:	MC462	Marks:	2 hours 50
Level:	4	Date of Exam:	, 9/6/2024

Question # 1: (20 Marks) Answer this question in the down table

(2 marks/question)

- 1. Which of the following about the binomial distribution is not a true statement?
- a. The probability of success must be constant from trial to trial.

b. The random variable of interest is continuous.

- c. Each outcome may be classified as either "success" or "failure".
 - d. Each outcome is independent of the other.

Suppose that you have been given the following joint probabilities (answer the following 4 points)

	A1	A2
B1 .	0.50	0.20
B2	0.25	0.05

- 2. Determine P(A2).
- a. 0.25
- c. 0.75

- b. 0.70
- d. 0.30

- 3. Determine P(A2/B1).
- a. 0.1857

b. 0.3857

c. 0.2857

d. 0.4857

- 4. Determine $P(A1 \cup B1)$.
- a. 0.50
- c. 0.95

b. 1.45d. 0.25

- 5. Determine $P(A1 \cap B1)$.
- a. 0.50

b. 0.7

c. 0.75

- d. 0.25
- 6. You take a random sample of 500 students at your university and find that the median GPA is 3.25, then you are doing what branch of statistics?
- a. Descriptive statistics

b. Population statistics

c. Inferential statistics

- d. None of these choices.
- 7. Which of the following measures is affected most by extreme values?
- a. The median.

a. The mean.

b. The mode.

- c. The Range
- 8. The mathematics SAT scores of the seven students in a mathematics seminar are 533, 553, 578, 586, 619, 626, and 633. Suppose that the student with the score 633 drops the seminar and is replaced by a student with a score of 500. What will happen to the mean and median scores of the class?
- a. The mean will increase; the median will be unchanged.
- b. The median will increase; the mean will decrease.
- c. Neither the mean nor median will change.
- d. The mean and the median will decrease.
- 9. Which of the following measures is not a measure of central tendency?
- a. The median.

b. The mean.

c. The mode.

- d. The Range
- 10. In the notation below, X is the random variable, E and V refer to the expected value and variance, respectively. Which of the following is false?
- a. E(3X) = 3E(X)

b. E(X + 1) = E(X) + 1

d. V(X + 5) = 25 + V(X)

11. Two event A and B are such that P(A)=0.5, P(B)=0.3 and $P(A\cap B)=0.1$. then $P(A/B) = \dots$

a. 1/3

b. 0.2

c. .15

d. 1

12. The outcomes of a random experiment or a stochastic process is defined as

a. Stochastic

b. Sample space.

c. Deterministic

d. Probability

Suppose that A manufacturer of computer chips claims that less than 10% of its products are defective. When 1,000 chips were drawn from a large production, 7.5% were found to be defective.

(Answer the following 4 points)

13. The population of interest is

a. production of computer chips

b. 1000

c. 10%

d. 7.5%

14. The Sample is

a. production of computer chips

b. 1000

c. 10%

d. 7.5%

15. The value which is referred to as parameter.

a. production of computer chips

b. 1000

c. 10%

d. 7.5%

Q	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	-
A																_

Question # 2: (10marks)

The following data represent the salaries (in thousands of dollars) of a sample of 10 employees of a firm:

10, 15, 13, 11, 10, 10, 15, 20, 15, 21.

a. Calculate the mean, median, and mode.

b.	Calculate the range, variance, standard deviation, and coefficient of variation.
_	Describe the description of the second secon
C.	Describe the shape for the given set of data.
	Note: by studying the relationship between mean, median.
	on # 3: (10 marks)
	ersity found that 20% of its students withdraw without completing the introductory ics course.
Statisti	ics course. Assume that 20 students registered for the course.
a.	Using the binomial formula, find the probability that exactly four will withdraw.
	Page 3 of 4

b. Compute the expected number and the variance of withdrawals.

With best wishes for success Dr. Amira Allam

أمن الحاسب 50 درجـــة هستم علوم الحاسب كلسسية الحاسبات والمعلومات جستامسعة اسسسيوط

Question 1 Choose the correct answer

(40 points)

- 1. Two parties are exchanging messages using public key cryptography. Which of the following statements describes the proper procedure for transmitting an encrypted message?
 - a) The sender encrypts the message using the receiver's public key, and the receiver decrypts the message using the receiver's private key.
 - b) The sender encrypts the message using the sender's public key, and the receiver decrypts the message using the receiver's public key.
 - c) The sender encrypts the message using the sender's private key, and the receiver decrypts the message using the receiver's private key.
 - d) The sender encrypts the message using the sender's public key, and the receiver decrypts the message using the sender's public key.
- 2. What will be the plain text corresponding to cipher text "SCSEMG" if rail fence cipher is used with key value 2?
 - a) SSGECM
 - b) SECMSG
 - c) SSMCEG
 - d) SECGSM
- 3. In RC4 cipher: Assume we use a 4×3 -bit key of $K = [1 \ 2 \ 3 \ 6]$. Which one is the S vector after applying two rounds of Key Scheduling Algorithm?
 - a) $S = [2 \ 3 \ 5 \ 4 \ 6 \ 1 \ 0 \ 7]$
 - b) S = [2 1 3 6 4 5 0 7]
 - c) $S = [2 \ 3 \ 1 \ 0 \ 4 \ 5 \ 6 \ 7]$
 - d) $S = [1 \ 3 \ 2 \ 0 \ 4 \ 5 \ 6 \ 7]$
- 4. In RSA, euler $\Phi(n) = \underline{\hspace{1cm}}$ in terms of p and q.
 - a) p/q
 - b) p*q
 - c) (p-1)(q-1)
 - d) (p+1)(q+1)
- 5. Encrypting the plaintext 9 using the superincreasing sequence $\{3, 4, 10, 20, 42\}$ with n = 90, m = 17, will be _____
 - a) 46
 - b) 23
 - c) 152
 - d) 121

a swith a common prime p=23 and	
ers A and B use the Diffie-Hellman key exchange technique with a common prime $p=23$ and ers A and B use the Diffie-Hellman key exchange technique with a common prime $p=23$ and ers A and B use the Diffie-Hellman key $XA = 6$, user B has private key $XB = 15$. What is the	
ers A and B use the Diffie-Hellman key exchange technique with a common prime process. If user A has private key XA = 6, user B has private key XB = 15. What is the	
hared secret key?	
a) 20	
b) 19	
c) 3	
The the encrypted text corresponding to plain text "SANFOUNDRY" using columns.	
transposition cipher with the keyword "GAMES"?	
a) OSNNRUADFY	
b) SORAFUDYNN	
c) SNAUDNORFY	
TO CLE TO CALL	,
. 1 11 August an action of the first	i.
8. Encrypting the message "we are all together" using a double transposition eight was 4 columns, using the row permutation $(1, 2, 3, 4) \rightarrow (2, 4, 1, 3)$ and the column permutation $(1, 2, 3, 4) \rightarrow (2, 4, 1, 3)$,
4 columns, using the Tow permutation (7) $(3, 4) \rightarrow (3, 1, 2, 4)$, will be	
a) LEALETHRAWERGTOE	
b) EALLTHERWEARTOGE	
c) LEAGETWTAHEOIRRE	
1) ETWITA HEOIFAGI RRE	
9. In hill cipher, what will be the size of a key matrix if the plain text is "SECRET"?	
9. In hill cipher, what will be the size of a key market a	
a) 1×6	
b) 5×1	
c) 6×1	
d) 6×6	
10. The key space of triple DES when all three keys are independent, is	
a) 192	
b) 168	
c) 112	
d) 56	
d) 56 11. Suppose that an affine cipher is used to enciphers h as X and q as Y. which is the key?	
a) (5,10)	
b) (23,7)	
c) (9,12)	
d) (3,2)	
10 I DES einher the round function F is	
a) $F(R_{i-1}, K_i) = P\text{-box}(S\text{-boxes}(Expand(R_{i-1}) \bigoplus K_i)).$	
a) $F(R_{i-1}, K_i) = P\text{-box}(S \text{-boxes}(Expand}(L_{i-1}) \bigoplus K_i)).$ b) $F(L_{i-1}, K_i) = P\text{-box}(S\text{-boxes}(Expand}(L_{i-1}) \bigoplus K_i)).$	
b) $F(L_{i-1}, K_i) = F-box(S-boxes(Expand(R_{i-1}) \bigoplus K_i)).$ c) $F(R_{i-1}, K_i) = S-box(P-boxes(Expand(R_{i-1}) \bigoplus K_i)).$	
c) $F(R_{i-1}, K_i) = S\text{-box}(P\text{-boxes}(Expand(L_{i-1}) \oplus K_i)).$ d) $F(L_{i-1}, K_i) = S\text{-box}(P\text{-boxes}(Expand(L_{i-1}) \oplus K_i)).$	
d) $F(L_{i-1}, K_i) = S-box(P-boxes(Expand(D_i-1)))$	

7.

13. Which of the following is not a characteristic of a good hash function?
a) Collision resistance
b) Pre image resistance
c) Reversibility
d) Deterministic
14. Using the Playfair cipher, what will be the cipher text if the plain text is "HELLO WORLD"
the keyword is "CIPHER". (The filler letter is x)
a) PHBSGSVQBGBY
b) ECSPGSVQBGBY
c) CISXSGQVGBYB d) PHBSSGVQGBYB
,
15. Using one time pad, the key that encrypts GLASS modulo 26 to yield ciphertext QJKES is: a) KYKMA
b) KCKOA
c) WUKWK
d) JAXIT
16. Using the Caesar cipher, the encryption of the plaintext "guc" would be
a) KYG
b) DRZ
c) MKY
d) JXF
17. The Keystream bit after performing the shift of registers in A5/1 is computed by
a) $x_{18} \oplus y_{21} \oplus z_{22}$
b) $x_{19} \oplus y_{22} \oplus z_{23}$
c) $x_{17} \oplus y_{20} \oplus z_{21}$
d) $x_8 \oplus y_{10} \oplus z_{10}$
18. Vigenere table consists of
a) 25 rows and 25 columns
b) 26 rows and 26 columns
c) 26 rows and 1 column
d) 1 row and 26 columns
19. What is the minimum key length for a Vernam cipher?
a) 128 bits
b) 64 bits
c) 56 bits
d) The length of the plaintext message
-,

20 For p = 11 and q = 19 and e=17. Applying RSA algorithm, the cipher text is _____ when the message=5.

- a) C=80
- b) C=92
- c) C=56
- d) C=23

Question 2 True or False

(10 points)

- 21. The Iris pattern is stable throughout a human lifetime, so that Iris is the best for authentication.
- 22. In the DES algorithm, although the key size is 64 bits, only 56 bits are used for the encryption.
- 23.In affine cipher, the value of "a" could be equal to 6.
- 24.RC4 cipher produce a keystream bit at each step.
- 25. Each of the eight DES S-boxes maps 6 bits to 4 bit.
- **26.**The size of each DES S-box is 4×16 matrix.
- 27. For columnar transposition, if a ciphertext is 65 letters, it is easier to be broken if a 5×13 rectangle were used for the encrypting than 13×5 .
- 28.In Simple Substitution "General Case", the key must be a shift of the alphabet.
- 29.RC4 is a stream cipher with a fixed key size.
- 30.A cryptographic hash function has variable output length.

Faculty	y of Science	Assiut university			
Course	Scientific computation (1)	Time allowed:	2 hours		
Code:	MC451	Marks:	50		
Level:	4	Date of Exam:	28 May 2024		

Question # 1: Choose the correct answer (30 Marks)

Algorithm for newton forward method

Step1: Input Y as in D matrix nxn

Step2: For do Step 3 and Step 4.

Step3: For do step 4.

Step 4:

Step5: Calculate S=.....

Step6: Put sum =and ss=

Step7: for do step 8, Step 9

Step 8 : ss= ss*.....

Step9: $sum = sum + \frac{ss}{(i-1)!}$

Step 10: $f_s =$

1. First step Y put as

b) first column a) fist row

c)Matrix

d)none of them

2. Second step for will take:

a) i = 2 to n

b) i = 1 to n

c) i = 2 to n-1

d) i = 1 to n-1

3. Third step for will take:

a) j=2 to n-(i-1)

b) j = 1 to n-i

c)j = 1 to n-(i-1)

d)none of them

4. Fourth step matrix D will be formed from the relation: b) $D_{j,i} = D_{j+1,i+1} - D_{j,i}$

a) $D_{j,i} = D_{j+1,i-1} - D_{j,i-1}$

5. Fifth step S =

c) $D_{j,i} = D_{j+1,i+1} - D_{j-1,i-1}$

c) $S = (x_s - x_0)/h$

d)S= $(x_s - x_0)/n$

d)none of them

b) $S = (x - x_0)/h$ a) $S = (x_n - x_0)/h$ 6. Sixth step sum and ss will be

a) sum = $D_{1,1}$ and ss= 0

b) sum = $D_{1,1}$ and ss= 1 c) sum = 1 and ss= 1

d) sum =0 and ss= 0

7. Seventh step for loop will take

a) i = 2 to n

b) i = 1 to n

c) i = 2 to n-1

d) i = 1 to n-1

8. Eighth step complete the dots

a) (s-(i-1))

b) (s-(i-2))

c) (s-i)

d) (s-(i+2))

9. Ninth step complete the dots

a) $D_{i,i}$

b) $D_{1,i}$

c) $D_{i,1}$

d) $D_{1.1}$

<u>Tenth step</u> the f_s at x_s will be 10.

a) $f_s = sum$

b) $f_s = D_{n,n}$

c) $f_s = ss$

d)none of them

0	1	2	3	4	5	6	7	8	9	<u>10</u>
A				-						

m.file Lagrange interpolation method

11. The inputs for Lagrange method are

- a) x, y, x0
- b) $x_{0,y_{0,z}}$
- c)l,y,x
- d)none of them

12. Second dots, will be

- a) L = 0
- b) L=1
- c) L=2
- d) none of them

13. The condition in the third dots will be

- a) if(i=0)
- b) $if(i\sim=0)$
- e) if(i=j)
- d) if($i \sim = j$)

14. The missing part in Q4

- a) (x0-x(j))/(x(i)-x(j))
- b) $(x_0-x_0)/(x_0-x_0)$
- c) (x+x(j))/(x(i)+x(j))
- d) none of them

15. The missing part in Q5

- $a) \qquad l+y(i)$
- b) **l***y(i)
- c) l/y(i)
- $d) \qquad L+y(0)$

Q	11	12	13	14	15
<u>A</u>					

Question # 2: write a MATLAB code to find the approximate of the following integral using Simpson's 1/3 method (5 Mox/S)(5 Marks)

$$\int_0^1 \frac{1}{1+x^2} \ dx$$

Question #3 Perform the following using Newton Raphson (5 Marks)
Write a MATLAB program to approximating the solution of the algebraic equation $\frac{\cos(x)-5x+2}{\cos(x)}=0.$ x0 = 1, eps = 0.001

Question #4 (lo marks)

a) Write a MATLAB code to find y(0.6) following differential equation by Modified Euler Methods

$$\frac{dy}{dx} = x + y$$
, $x = 0.2$, $y(0) = 1$, $h = 0.2$

b) Write a M-file MATLAB to compute the Milne method (hint: find y(0.1), y(0.2) and y(0.3) from Eular method).