May, 27, 2023 Time: 2 hr. # Final Examination For 1st Year Students (General Chemistry 105C) | Q1. Shade the correct answer A ,B, C or D | (One Mark each) | |--|---------------------------| | 1. The carbocation with adjacent double bond is known A) Stable carbocation B) allylic cation C) A and | | | 2. The addition of HBr to 1,3-dienes is:A) Electrophilic B) Nucleophilic C) Free radical | als D) None | | 3. Curved headed arrow is used to indicate: A) Homolytic bond fission B) Point of reactions C) Reversible reactions D) None | tants to products | | 4. Hydrogenation of 2-butyne in presence of lindler's c A) One mole of H₂ B) two moles of C D) None | 49 | | 5. Hydration of propene gave:A) Propane B) propyne C) propanal | D) None | | 6. CH ₃ CONH ₂ is called: A) Methylamine B) ethylamine C) urea | D) None | | 7. CH ₃ SCH ₃ is called: A) Dimethylthiol B) dimethylsulphone C) dimethyl | Isulphate D) None | | 8. Methylformate is the isomer of:A) Formic acid B) formaldehyde C) formamide | D) acetic acid | | 9. Many radicals are: A) Stable B) unstable C) high reactive | D) B and C | | 10. The correct order of increasing stability is: A) ⁺ CH ₃ , CH ₃ CH ₂ ⁺ , (CH ₃) ₂ CH ⁺ , (CH ₃) ₃ C ⁺ B) (CH ₃) ₃ C ⁺ , (CH ₃) ₂ CH ⁺ , CH ₃ CH ₂ ⁺ , ⁺ CH ₃ C) CH ₃ CH ₂ ⁺ , ⁺ CH ₃ , (CH ₃) ₂ CH ⁺ , (CH ₃) ₃ C ⁺ D) (CH ₃) ₂ CH ⁺ , (CH ₃) ₃ C ⁺ , ⁺ CH ₃ , CH ₃ CH ₂ ⁺ | | | 11. Which alkenes don't have geometric isomerism: A) 1-butene B) 2-butene C) 3-bromo-2-butene | e D) A and C | | 12. The order of increasing acidity of the following: A) Propene, propyne, ethyne, ethene B) ethyne, propene C) propene, ethene, propyne, ethyne | propyne, ethene, D) None | | 13. The correct o | rder of increasing C-I | I bond length is: | | | | |------------------------------|--|---|------------------------|--|--| | A) SP^3 -H, SP^2 | ² -Н, SР-Н | B) SP^2 -H, SP^3 -H, SP -H | | | | | C) SP^2 -H, SP - | H, SP ³ -H | D) None | | | | | 14.The order of i | ncreasing angle betwe | * × v | | | | | A) SP. SP ³ SP | B) SP ² , SP, SP ³ | C) Sp ³ Sp ² Sp | D) None | | | | | | | • | | | | | isomers obtained fr | om mono brominat | ion of methyl | | | | cyclopropane | | * | | | | | A) 2 | B) 3 | C) 4 | D) 5 | | | | 16. The rate deter | mining step in two ste | eps reaction is: | | | | | $A) E_a^{-1} < E_a^{-2}$ | B) exothermic, $+\Delta H$ | C) endothermic, - | ΔH D) None | | | | 17. Which carbon | n atom has the greates | st % P character? | | | | | A) Ethene | B) ethyne | C) ethane | D) None | | | | 18. Electrophilic | addition reaction of a | lkenes: | | | | | | e endothermic step | | othermic steps | | | | | rmation of carbonium | | | | | | 19. How many δ | and π bonds in acety | | | | | | A) 2 δ , 1π | | $C) 3\delta, 1\pi$ | D) None | | | | | • | | D) None | | | | | and 2° hydrogen's in 2 | • | | | | | A) 12,2 | B) 12,1 | C) 11,2 | D) 12,3 | | | | 21. Propyne + H_3 | O ⁺ gave: | | | | | | A) Propanol | B) propanal | C) propane | D) None | | | | 22. 2- Butene + O | ₃ (Zn/ H ₂ O) gave: | | | | | | A) Ethene | B) 2-hydroxybutane | C) butanol | D) None | | | | 23.Propene + BH ₃ | 3 (H ₂ O ₂ / NaOH) gave: | | | | | | | B) 2-propanol | C) propanal | D) None | | | | 24.Propyne + NaN | NH ₂ gave: | · · · · · · · · · · · · · · · · · · · | | | | | A) Propene | | C) propylamine | D) None | | | | 25. How many str | ucture isomers are po | ssible in compound C | .Ho• | | | | A) 2 | В) 3 | C) 4 | D) 5 | | | | $26.K_c = 0.040$ for 1 | the system below at 45 | 50 °C: | * | | | | | $\rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$ | | | | | | (8) | ction at 450 °C equals | $(R = 0.082 \text{ Latm mol}^{-1})$ | -1 K ⁻¹) | | | | A) 0.40 | B) 0.64 | | (6.7×10^{-4}) | | | | , | , 0.0 | <i></i> | , V. (A 10 | | | | 27. The pH of a buffer solution prepared by dissolving 0.20 mole of cyanic acid (HCNO) and 0.80 mole of sodium cyanate (NaCNO) in water to make 1.0 liter of solution equals $(K_a = 2.0 \times 10^{-4})$ | | | | | |--|--|---|---|-----| | A) 0.97 | B) 3.10 | C) 4 | | 30 | | | ıydroxide is redu | ced. It is due to:
B) | on, the dissociation Hydrolysis | of | | C) Oxidation | | • | Reduction | | | 29. For PbCl ₂ (K of 3.0 × 10^{-2} A | $K_{\rm sp} = 2.4 \times 10^{-4}$), we M Pb(NO ₃) ₂ is additional states and the states of | ded to 400 mL of 9 | f PbCl ₂ form when 0.1
$0.0 \times 10^{-2} M$ NaCl? | 0 L | | A) Yes, becau | • | • | No, because $Q < K_{sp}$ | | | C) No, becau | se $Q = K_{sp}$ | D) | Yes, because $Q < K_{sp}$ | | | 30. At a constant | external pressur
$2NO_{(g)} + O_{2(g)} =$ | | gas to the equilibrium | : | | A) Shifts the | equilibrium to th | e left B) | Increases the K _p value | e | | C) Shifts the | equilibrium to th | e right D) | Has no effect | | | 31. Which one of | the following is | not a conjugate ac | id-base pair? | | | A) NH ₃ and N | H_4^+ | B) | NH ₃ and NH ₂ | | | C) HS and H | $_{2}S$ | D) | H ₃ O and OH | | | 32. Using molar | concentrations (M
CH ₃ OH _(g) ⇌ CO | | t of K _c for the reaction | 1? | | A) M^{-2} | 16// | $C) M^2$ | D) <i>M</i> | | | 33. What is the net ionic equation for the reaction that occurs when small amounts of hydrochloric acid are added to a HOCI/NaOCI buffer solution? | | | | | | A) $H^+ + H_2O$ | \rightarrow H ₃ O ⁺ | B) | $H^{+} + OCl^{-} \rightarrow HOCl$
$H^{+} + HOCl \rightarrow H_{2}OCl^{+}$ | | | C) HOCl → | $\mathbf{H}^{+} + \mathbf{OCl}^{-}$ | D) | $H^{+} + HOCI \rightarrow H_{2}OCI^{+}$ | | | 34. If K_{sp} for HgS
A) 8.0×10^{-3} | $6O_4$ is 6.4×10^{-5} , tB) 6.4×10^{-5} | he solubility of th C) 8.0×10^{-6} | is salt in mole per m³ i
D) None of th | | | 35. When 0.15 g of a solute is dissolved in 15 g of solvent, the boiling point of the solution becomes 0.216°C higher than that of the pure solvent. Find the molecular weight of the substance, if molal elevation constant for the solvent is 2.16 °C. | | | | | | A) 1000 | B) 100 | C) 1.01 | D) 10.1 | | 36. The pH value of NH₄NO₃ solution that is 0.071 mol/L equals: $(K_b \text{ for NH}_4\text{OH} = 1.8 \times 10^{-5} \text{ and } K_w = 1 \times 10^{-14})$ - A) 5.2 - B) 12.7 - C) 7.0 - D) 9.2 - 37. Which one of the following statements is correct? - A) K_c never has units. - B) K_c does not depend on temperature. - C) When Ke is very large, there are more products formed. - D) The value of K_c gives us the rate of reaction. - 38. Which of the solution following pairs is not a buffer solution? - A) NH₄OH + NH₄Cl B) $H_3BO_3 + Na_2B_4O_7$ C) $NH_4OH + Na_2CO_3$ - D) CH₃COOH + CH₃COONa - the change shows 39. The figure concentration of species A and B as a function of time. The equilibrium constant K_c for the reaction $A_{(o)} \rightleftharpoons 2B_{(o)}$ is: - A) $K_c > 1$ B) $K_c < 1$ C) $K_c = 1$ D) data insufficient - 40. The molar solubility of magnesium carbonate is 1.8×10^{-4} mol/L. What is K_{sp} for this compound? - A) 1.8×10^{-4} - B) 3.6×10^{-4} C) 1.3×10^{-7} D) 3.2×10^{-8} - Q2: Answer (T) for True sentences or (F) for False sentences: (One mark for each) - 41. Pure liquids, solids, and solvents are not part of an equilibrium constant expression. - 42. The decrease in boiling point is considered as a colligative property of a given solution compared to its pure solvent. - 43. The reaction: $H_{2(g)} + I_{2(g)} = 2HI_{(g)} (\Delta H = +53 \text{ kJ mol}^{-1})$ is not affected by a change in pressure because it is an endothermic reaction. - 44. If Q > K then the reverse reaction must occur to reach equilibrium. - 45. The freezing point depression ΔT_f in dilute solutions is independent on the molal concentration m of the solute. - 46. The K_{sp} values of the sulphides of the group II cations are lower than those of group IV. Please turn over for the rest of questions - 47. When a salt of weak acid and weak base is dissolved in water at 25 °C, the pH value of the resulting solution will always depend upon K_a and K_b values. - 48. Boiling point elevation arises in systems where there is an equilibrium between a liquid solution phase and a second liquid phase? - **49.** The K_{sp} for silver(I) phosphate is 1.8×10^{-18} ; the silver ion concentration in a saturated solution of silver(I) phosphate equals $4.8 \times 10^{-5} M$. - 50. The approximate pH of $0.71 M H_2SO_4$ solution equals 0.15. **Good Luck** Examiners: Prof. Hassan A.H. El-Sherief, Prof. Ali A. Abdel-Hafez Gomau, Prof. Bahaa M. Abu-Zied, Dr. Mohamed I. Said 27th May 2023 Time allowed: 2 h #### Second Semester Examination Subject: General Chemistry (C-100) Students: First Level "Credit Hours System" #### Part (I) (25 marks) | Q1: | Ans | wer the following: | (14 | Marks) | | |-------|--|---|--------|----------|--| | | i) | 56 g of N_2 are mixed with 44 g of CO_2 and the pressure of the resulting mixture is 303 kPa. What is the partial pressure of N_2 in the mixture? | | | | | | ii) What is the number of moles of hydrogen necessary to react completely with 1.0 L oxyg to give H ₂ O at 25 °C and 86.13 kPa? | | | | | | | iii) | | cure | | | | | iv) | Calculate the root mean square and the average kinetic energy of oxygen molec | ules a | t 18°C | | | | v) | Compute the weight mass of 6.00 L of ammonia gas, NH ₃ at STP. | uics u | t 10 C. | | | | vi) | Calculate the energy needed to convert 90 mL H_2O to vapor, the heat of vaporiz H_2O is 40.6 KJ/mol. | zation | of | | | Q2: | Ansv | ver the following: | (5 N | Marks) | | | | i)
ii) | The boiling point of water is 100 °C, whereas that of H_2S is -42 °C. Explain? Which of the following substance would be expected to have the largest heat of vaporization and why? | | r | | | 03: | Writ | (a) PH ₃ (b) HBr (c) H ₂ S (d) H ₂ O e short notes on <i>Two Only</i> of the following: | | | | | ν. | i) | Tyndall effect | (6 M | (arks | | | | , | Brownian movement | | | | | | iii) | Peptization method for preparation of colloidal rotation | | | | | | | Part (II) (25 Marks) | | • | | | Q4: P | ut (1 |) for true sentences or (X) for false sentences: | (7 M | (arks) | | | | i) | The hybridization of C in $\mathbf{H_2}$ C = $\mathbf{CH_2}$ molecule is \mathbf{sp}^2 | (| ` | | | | ii) | The emission spectra consist of a series of dark lines superimposed on | (|) | | | | | the continuous spectrum of the light source. | (|) | | | | iii) | The splitting of a spectral line into several components in the presence of a static magnetic field is called Zeeman effect. | |) | | | | iv) | The Lyman series of hydrogen spectrum appears in the visible region of light | (| .)
} | | | | v) | The B_2 molecule has diamagnetic properties. | (|) | | | | vi) | The repulsion between bonding electron pairs is greater than the repulsion | (| | | | | vii) | between nonbonding pairs. The geometrical shape of HCN malacula is bound. | (|) | | | | viii | The geometrical shape of HCN molecule is bent. In an antibonding molecular orbital, the nuclei are attracted to an accumulation | (|) | | | | . ===) | of electron density outside the internuclear region. | 1 | ` | | | | | The second of the international region. | (| ,) | | | | | Please turn over for the rest of questio | n | ٠ | | | Q5: (| Choo | ose the correct answer (| (a), (b), (c) or (d): | ••••• | ••••• | (8 Marks) | |-------|--|--|---|---|---|----------------------| | | i) | The hybridization of P | in PCl ₅ is | • • • • | | | | | 227 | (a) sp^2 | (b) sp ³ | | | $d) sp^3 d^2$ | | | ii) | Which of the following electron of bromine (1) | | of quantum i | numbers for the out | ermost | | | | (a) $n=3, \ell=0, m_{\ell}=0$ | , | (b) n=3, { | $c = 1, m_{\ell} = -2, m_{s} = +1$ | 1/2 | | | | (c) n=3, $\ell = 1$, $m_{\ell} = +$ | 2, ms=+1/2 | | $\ell = 1, m_{\ell} = +1, m_{S} = +$ | | | | iii) | The total number of ele | ectron pairs on chlo | orine atom (C | Cl) in ClF ₃ molecule | e is | | | | (a) 3 The bond order in O_2^+ | (b) 4 | (c) | | (d) 6 | | | , | (a) 1 | (b) 1.5 | (c) | 2 | (d) 2.5 | | | v) | The magnetic quantum r | number (m _ℓ) descri | bes the orbita | al's | | | | | (a) size | (b) shape | (c) energy | (d) or | ientation in space | | | vi) | For the third line of Pas | chen series, n ₂ is | • | | - ,, | | | | (a) 4 | (b) 5 | (c) | 6 | (d) 7 | | | vii | The NO ₃ ion has | resonance s | tructures. | | | | | | (a) 0 | (b) 2 | (c) | 3 | (d) 4 | | | viii |) The geometrical shape | of BrF5 molecule | is | | | | | | (a) square pyramidal | (b) trigonal bipy | ramidal | (c) tetrahedral | (d) octahedral | | | ix) | stated that no two | electrons in the sa | me atom can | have the same set of | of 4 quantum numbers | | | | (a) Heisenberg | (b) Pauli | | (c) Bohr | (d) Planck | | Q6: A | nsw | er <u><i>Two Only</i></u> of the foll | lowing: | ••••• | ••••• | (10 Marks) | | | | Write down Lewis struc | tures for each of th | ne following: | | | | | formal charge for each atom in both of them. ii) Using the molecular orbital theory, draw the energy level diagrams for O_2^- and C_2 . | | | | | | | | calculate the bond order and predict the magnetic properties for each of them. iii) Based on VSEPR theory, predict the electron domain geometries and the molecular | | | | | | | | | | | | | molecular | | | | shapes for NH ₃ and Br | T5 | 1 | | | | | Con | stants: R=0.0821 atm L me | | | kPa L mol ⁻¹ K ⁻¹ and | | | | Ato | 1 atm =101.325 kPs
mic weights: O=16, N=14 | a = 760 torr = 760 m | m Hg, | | | | | | mic numbers: H=1, B= | | 8, F=9, P= | 15 , S= 16 ,Cl= 17 , | Br= 35 | | | | | | | | | ### Good Luck Prof.Dr. Refaat M. Mahfouz and Dr. Soliman A. Soliman 27th May, 2023 Time: 2 hr. Final Examination For 1st Year Students (General Chemistry II, 105C, Materials Science and Nanotechnology Group). #### Section A (Analytical Chemistry) Answer only five of the following: (25 Marks) 1. For the following gaseous reaction: $$N_{2(g)} + 3H_{2(g)} \Leftrightarrow 2NH_{2(g)}$$ $\Delta H = -92KJ$ What is the effect of i) Addition of more nitrogen, ii) Lowering the temperature, and iii) Reducing the volume of the mixture to one-half of its original value. - 2. Calculate the pH of a solution that is both 1M CH₃COOH and 1M CH₃COONa? (K_a =1.8x10⁻⁵). What will be the pH after addition of HCl, which reacts with 2% of sodium acetate? - 3. Calculate the solubility (in g/100mL) of Ag_2SO_4 in 1M aqueous Na_2SO_4 solution. ($K_{sp} = 1.4 \times 10^{-5}$) At 18°C. (Atomic weights: Ag = 107.9, S = 32 and O = 16). - 4. For the system: $A_{(g)} + 2B_{(g)} \Leftrightarrow C_{(g)}$ The equilibrium concentrations are [A] = 0.06 mol/L, [B] = 0.12 mol/L, and [C] = 0.216 mol/L. Calculate the values of both K_c and K_p at 250 °C. (R = 0.082 L atm mol⁻¹ K⁻¹) 5. What is the solubility of Mg(OH)₂ in a buffer solution having pH=9? $$Mg(OH)_2 \Leftrightarrow Mg^{2+} + 2OH^- \qquad K_{SP} = 1.8 \times 10^{-11}$$ 6. What is the pH of 5% (w/w) H_3PO_4 solution? (d = 1.03 g/mL, $K_{a1} = 7.1x$ 10^{-3}), [H = 1, P = 31, O = 16] ## Section B (Organic Chemistry) #### Q1. Choice the correct answers for the following questions (10 Points) 1. Which compound has a high boiling point? 2. Which of the following compounds is (S)-2-amino-2-methylbutanoic acid? A) $$H_3CH_2C$$ (CH_3) (CH_3) (CH_3) (CH_3) (CH_3) (CH_3) $(COOH)$ $(COOH)$ $(COOH)$ $(COOH)$ $(COOH)$ $(COOH)$ $(COOH)$ 3. $C_3H_8 + 5O_2 \longrightarrow$ 4. CH₃CH₂CH₃ + Br₂ Light A) $$\underset{\mathsf{CH_3CHCH_3}}{\mathsf{Br}}$$ B) $\mathsf{CH_3CH_2CH_2 \cdot Br}$ C) $\underset{\mathsf{CH_3CHCH_2 \cdot Br}}{\mathsf{Br}}$ 5. How many structural isomers are possible for a compound that has molecular formula C_5H_{12} ? 6. The formal charge of carbon in CH₃F is 7. Which one of these compounds is more acidic? A) $$CH_2=CH_2$$ 8. The most stable alkene is A) $$CH_2=CH_2$$ B) $$(CH_3)_2C=C(CH_3)_2$$ 9. The most stable carbocation is 10. The bond length between the two carbon atoms in alkynes is Please turn over for the rest of questions Q2: Complete the following reactions: (10 Points) 1. H₃CHC=CH₂ HI - 2. CH₃CHCH₃ Cl₂hv / 35°C - 3. CH₃·CH=CH-CH₃ i) H₂SO₄ii) H₂O - 4. 1,3-butadiene HCI - 5. H₃C−C≡CH i) NaNH₂ii) CH₃CH₂I - 6. 1,4-pentadiene HBr - 7. H₃C-CEC-CH₃ H₂O - 8. H₃CHC=CH₂ Lindlar's Catalyst **Q3:** Write one method to prepare the following: (3 Points) 1) Cyclohexene 2) 2-butyne 2) 2,3-dichloropentane 3) 2-bromopropane (2 Points) Q4: Draw the structure of the following: Allyl bromide 3) E-2-bromo-3-chloro-2-butene 4) cis-1,2- dichloroethene 1) Examiners: Ass. Prof. Mohamed I. Said, Dr. Abdelreheem A. Saddik GOOD LUCK