

May, 27, 2023

Time: 2 hr.

Final Examination For 1st Year Students (General Chemistry 105C)

Q1. Shade the correct answer A ,B, C or D	(One Mark each)
1. The carbocation with adjacent double bond is known A) Stable carbocation B) allylic cation C) A and	
2. The addition of HBr to 1,3-dienes is:A) Electrophilic B) Nucleophilic C) Free radical	als D) None
3. Curved headed arrow is used to indicate: A) Homolytic bond fission B) Point of reactions C) Reversible reactions D) None	tants to products
 4. Hydrogenation of 2-butyne in presence of lindler's c A) One mole of H₂ B) two moles of C D) None 	49
5. Hydration of propene gave:A) Propane B) propyne C) propanal	D) None
6. CH ₃ CONH ₂ is called: A) Methylamine B) ethylamine C) urea	D) None
7. CH ₃ SCH ₃ is called: A) Dimethylthiol B) dimethylsulphone C) dimethyl	Isulphate D) None
8. Methylformate is the isomer of:A) Formic acid B) formaldehyde C) formamide	D) acetic acid
9. Many radicals are: A) Stable B) unstable C) high reactive	D) B and C
10. The correct order of increasing stability is: A) ⁺ CH ₃ , CH ₃ CH ₂ ⁺ , (CH ₃) ₂ CH ⁺ , (CH ₃) ₃ C ⁺ B) (CH ₃) ₃ C ⁺ , (CH ₃) ₂ CH ⁺ , CH ₃ CH ₂ ⁺ , ⁺ CH ₃ C) CH ₃ CH ₂ ⁺ , ⁺ CH ₃ , (CH ₃) ₂ CH ⁺ , (CH ₃) ₃ C ⁺ D) (CH ₃) ₂ CH ⁺ , (CH ₃) ₃ C ⁺ , ⁺ CH ₃ , CH ₃ CH ₂ ⁺	
11. Which alkenes don't have geometric isomerism: A) 1-butene B) 2-butene C) 3-bromo-2-butene	e D) A and C
12. The order of increasing acidity of the following: A) Propene, propyne, ethyne, ethene B) ethyne, propene C) propene, ethene, propyne, ethyne	propyne, ethene, D) None

13. The correct o	rder of increasing C-I	I bond length is:			
A) SP^3 -H, SP^2	² -Н, SР-Н	B) SP^2 -H, SP^3 -H, SP -H			
C) SP^2 -H, SP -	H, SP ³ -H	D) None			
14.The order of i	ncreasing angle betwe	* × v			
A) SP. SP ³ SP	B) SP ² , SP, SP ³	C) Sp ³ Sp ² Sp	D) None		
			•		
	isomers obtained fr	om mono brominat	ion of methyl		
cyclopropane		* * * * * * * * * * * * * * * * * * * *			
A) 2	B) 3	C) 4	D) 5		
16. The rate deter	mining step in two ste	eps reaction is:			
$A) E_a^{-1} < E_a^{-2}$	B) exothermic, $+\Delta H$	C) endothermic, -	ΔH D) None		
17. Which carbon	n atom has the greates	st % P character?			
A) Ethene	B) ethyne	C) ethane	D) None		
18. Electrophilic	addition reaction of a	lkenes:			
	e endothermic step		othermic steps		
	rmation of carbonium				
19. How many δ	and π bonds in acety				
A) 2 δ , 1π		$C) 3\delta, 1\pi$	D) None		
	•		D) None		
	and 2° hydrogen's in 2	•			
A) 12,2	B) 12,1	C) 11,2	D) 12,3		
21. Propyne + H_3	O ⁺ gave:				
A) Propanol	B) propanal	C) propane	D) None		
22. 2- Butene + O	₃ (Zn/ H ₂ O) gave:				
A) Ethene	B) 2-hydroxybutane	C) butanol	D) None		
23.Propene + BH ₃	3 (H ₂ O ₂ / NaOH) gave:				
	B) 2-propanol	C) propanal	D) None		
24.Propyne + NaN	NH ₂ gave:	· · · · · · · · · · · · · · · · · · ·			
A) Propene		C) propylamine	D) None		
25. How many str	ucture isomers are po	ssible in compound C	.Ho•		
A) 2	В) 3	C) 4	D) 5		
$26.K_c = 0.040$ for 1	the system below at 45	50 °C:	*		
	$\rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$				
(8)	ction at 450 °C equals	$(R = 0.082 \text{ Latm mol}^{-1})$	-1 K ⁻¹)		
A) 0.40	B) 0.64		(6.7×10^{-4})		
,	, 0.0	<i></i>	, V. (A 10		

27. The pH of a buffer solution prepared by dissolving 0.20 mole of cyanic acid (HCNO) and 0.80 mole of sodium cyanate (NaCNO) in water to make 1.0 liter of solution equals $(K_a = 2.0 \times 10^{-4})$				
A) 0.97	B) 3.10	C) 4		30
	ıydroxide is redu	ced. It is due to: B)	on, the dissociation Hydrolysis	of
C) Oxidation		•	Reduction	
29. For PbCl ₂ (K of 3.0 × 10^{-2} A	$K_{\rm sp} = 2.4 \times 10^{-4}$), we M Pb(NO ₃) ₂ is additional states and the states of	ded to 400 mL of 9	f PbCl ₂ form when 0.1 $0.0 \times 10^{-2} M$ NaCl?	0 L
A) Yes, becau	•	•	No, because $Q < K_{sp}$	
C) No, becau	se $Q = K_{sp}$	D)	Yes, because $Q < K_{sp}$	
30. At a constant	external pressur $2NO_{(g)} + O_{2(g)} =$		gas to the equilibrium	:
A) Shifts the	equilibrium to th	e left B)	Increases the K _p value	e
C) Shifts the	equilibrium to th	e right D)	Has no effect	
31. Which one of	the following is	not a conjugate ac	id-base pair?	
A) NH ₃ and N	H_4^+	B)	NH ₃ and NH ₂	
C) HS and H	$_{2}S$	D)	H ₃ O and OH	
32. Using molar	concentrations (M CH ₃ OH _(g) ⇌ CO		t of K _c for the reaction	1?
A) M^{-2}	16//	$C) M^2$	D) <i>M</i>	
33. What is the net ionic equation for the reaction that occurs when small amounts of hydrochloric acid are added to a HOCI/NaOCI buffer solution?				
A) $H^+ + H_2O$	\rightarrow H ₃ O ⁺	B)	$H^{+} + OCl^{-} \rightarrow HOCl$ $H^{+} + HOCl \rightarrow H_{2}OCl^{+}$	
C) HOCl →	$\mathbf{H}^{+} + \mathbf{OCl}^{-}$	D)	$H^{+} + HOCI \rightarrow H_{2}OCI^{+}$	
34. If K_{sp} for HgS A) 8.0×10^{-3}	$6O_4$ is 6.4×10^{-5} , tB) 6.4×10^{-5}	he solubility of th C) 8.0×10^{-6}	is salt in mole per m³ i D) None of th	
35. When 0.15 g of a solute is dissolved in 15 g of solvent, the boiling point of the solution becomes 0.216°C higher than that of the pure solvent. Find the molecular weight of the substance, if molal elevation constant for the solvent is 2.16 °C.				
A) 1000	B) 100	C) 1.01	D) 10.1	

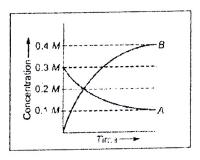
36. The pH value of NH₄NO₃ solution that is 0.071 mol/L equals:

 $(K_b \text{ for NH}_4\text{OH} = 1.8 \times 10^{-5} \text{ and } K_w = 1 \times 10^{-14})$

- A) 5.2
- B) 12.7
- C) 7.0

- D) 9.2
- 37. Which one of the following statements is correct?
 - A) K_c never has units.
 - B) K_c does not depend on temperature.
 - C) When Ke is very large, there are more products formed.
 - D) The value of K_c gives us the rate of reaction.
- 38. Which of the solution following pairs is not a buffer solution?
 - A) NH₄OH + NH₄Cl

B) $H_3BO_3 + Na_2B_4O_7$


C) $NH_4OH + Na_2CO_3$

- D) CH₃COOH + CH₃COONa
- the change shows 39. The figure concentration of species A and B as a function of time. The equilibrium constant K_c for the reaction $A_{(o)} \rightleftharpoons 2B_{(o)}$ is:
 - A) $K_c > 1$

B) $K_c < 1$

C) $K_c = 1$

D) data insufficient

- 40. The molar solubility of magnesium carbonate is 1.8×10^{-4} mol/L. What is K_{sp} for this compound?
 - A) 1.8×10^{-4}

- B) 3.6×10^{-4} C) 1.3×10^{-7} D) 3.2×10^{-8}
- Q2: Answer (T) for True sentences or (F) for False sentences: (One mark for each)
- 41. Pure liquids, solids, and solvents are not part of an equilibrium constant expression.
- 42. The decrease in boiling point is considered as a colligative property of a given solution compared to its pure solvent.
- 43. The reaction: $H_{2(g)} + I_{2(g)} = 2HI_{(g)} (\Delta H = +53 \text{ kJ mol}^{-1})$ is not affected by a change in pressure because it is an endothermic reaction.
- 44. If Q > K then the reverse reaction must occur to reach equilibrium.
- 45. The freezing point depression ΔT_f in dilute solutions is independent on the molal concentration m of the solute.
- 46. The K_{sp} values of the sulphides of the group II cations are lower than those of group IV.

Please turn over for the rest of questions

- 47. When a salt of weak acid and weak base is dissolved in water at 25 °C, the pH value of the resulting solution will always depend upon K_a and K_b values.
- 48. Boiling point elevation arises in systems where there is an equilibrium between a liquid solution phase and a second liquid phase?
- **49.** The K_{sp} for silver(I) phosphate is 1.8×10^{-18} ; the silver ion concentration in a saturated solution of silver(I) phosphate equals $4.8 \times 10^{-5} M$.
- 50. The approximate pH of $0.71 M H_2SO_4$ solution equals 0.15.

Good Luck

Examiners: Prof. Hassan A.H. El-Sherief, Prof. Ali A. Abdel-Hafez Gomau, Prof. Bahaa M. Abu-Zied, Dr. Mohamed I. Said

27th May 2023 Time allowed: 2 h

Second Semester Examination Subject: General Chemistry (C-100) Students: First Level "Credit Hours System"

Part (I) (25 marks)

Q1:	Ans	wer the following:	(14	Marks)	
	i)	56 g of N_2 are mixed with 44 g of CO_2 and the pressure of the resulting mixture is 303 kPa. What is the partial pressure of N_2 in the mixture?			
	ii) What is the number of moles of hydrogen necessary to react completely with 1.0 L oxyg to give H ₂ O at 25 °C and 86.13 kPa?				
	iii)		cure		
	iv)	Calculate the root mean square and the average kinetic energy of oxygen molec	ules a	t 18°C	
	v)	Compute the weight mass of 6.00 L of ammonia gas, NH ₃ at STP.	uics u	t 10 C.	
	vi)	Calculate the energy needed to convert 90 mL H_2O to vapor, the heat of vaporiz H_2O is 40.6 KJ/mol.	zation	of	
Q2:	Ansv	ver the following:	(5 N	Marks)	
	i) ii)	The boiling point of water is 100 °C, whereas that of H_2S is -42 °C. Explain? Which of the following substance would be expected to have the largest heat of vaporization and why?		r	
03:	Writ	(a) PH ₃ (b) HBr (c) H ₂ S (d) H ₂ O e short notes on <i>Two Only</i> of the following:			
ν.	i)	Tyndall effect	(6 M	(arks	
	,	Brownian movement			
	iii)	Peptization method for preparation of colloidal rotation			
		Part (II) (25 Marks)		•	
Q4: P	ut (1) for true sentences or (X) for false sentences:	(7 M	(arks)	
	i)	The hybridization of C in $\mathbf{H_2}$ C = $\mathbf{CH_2}$ molecule is \mathbf{sp}^2	(`	
	ii)	The emission spectra consist of a series of dark lines superimposed on	()	
		the continuous spectrum of the light source.	()	
	iii)	The splitting of a spectral line into several components in the presence of a static magnetic field is called Zeeman effect.)	
	iv)	The Lyman series of hydrogen spectrum appears in the visible region of light	(.) }	
	v)	The B_2 molecule has diamagnetic properties.	()	
	vi)	The repulsion between bonding electron pairs is greater than the repulsion	(
	vii)	between nonbonding pairs. The geometrical shape of HCN malacula is bound.	()	
	viii	The geometrical shape of HCN molecule is bent. In an antibonding molecular orbital, the nuclei are attracted to an accumulation	()	
	. ===)	of electron density outside the internuclear region.	1	`	
		The second of the international region.	(,)	
		Please turn over for the rest of questio	n	٠	

Q5: (Choo	ose the correct answer ((a), (b), (c) or (d):	•••••	•••••	(8 Marks)
	i)	The hybridization of P	in PCl ₅ is	• • • •		
	227	(a) sp^2	(b) sp ³			$d) sp^3 d^2$
	ii)	Which of the following electron of bromine (1)		of quantum i	numbers for the out	ermost
		(a) $n=3, \ell=0, m_{\ell}=0$,	(b) n=3, {	$c = 1, m_{\ell} = -2, m_{s} = +1$	1/2
		(c) n=3, $\ell = 1$, $m_{\ell} = +$	2, ms=+1/2		$\ell = 1, m_{\ell} = +1, m_{S} = +$	
	iii)	The total number of ele	ectron pairs on chlo	orine atom (C	Cl) in ClF ₃ molecule	e is
		(a) 3 The bond order in O_2^+	(b) 4	(c)		(d) 6
	,	(a) 1	(b) 1.5	(c)	2	(d) 2.5
	v)	The magnetic quantum r	number (m _ℓ) descri	bes the orbita	al's	
		(a) size	(b) shape	(c) energy	(d) or	ientation in space
	vi)	For the third line of Pas	chen series, n ₂ is	• • • • • • • • • • • • • • • • • • • •		- ,,
		(a) 4	(b) 5	(c)	6	(d) 7
	vii	The NO ₃ ion has	resonance s	tructures.		
		(a) 0	(b) 2	(c)	3	(d) 4
	viii) The geometrical shape	of BrF5 molecule	is		
		(a) square pyramidal	(b) trigonal bipy	ramidal	(c) tetrahedral	(d) octahedral
	ix)	stated that no two	electrons in the sa	me atom can	have the same set of	of 4 quantum numbers
		(a) Heisenberg	(b) Pauli		(c) Bohr	(d) Planck
Q6: A	nsw	er <u><i>Two Only</i></u> of the foll	lowing:	•••••	•••••	(10 Marks)
		Write down Lewis struc	tures for each of th	ne following:		
	formal charge for each atom in both of them. ii) Using the molecular orbital theory, draw the energy level diagrams for O_2^- and C_2 .					
	calculate the bond order and predict the magnetic properties for each of them. iii) Based on VSEPR theory, predict the electron domain geometries and the molecular					
						molecular
		shapes for NH ₃ and Br	T5	1		
	Con	stants: R=0.0821 atm L me			kPa L mol ⁻¹ K ⁻¹ and	
	Ato	1 atm =101.325 kPs mic weights: O=16, N=14	a = 760 torr = 760 m	m Hg,		
		mic numbers: H=1, B=		8, F=9, P=	15 , S= 16 ,Cl= 17 ,	Br= 35

Good Luck

Prof.Dr. Refaat M. Mahfouz and Dr. Soliman A. Soliman

27th May, 2023

Time: 2 hr.

Final Examination For 1st Year Students (General Chemistry II, 105C, Materials Science and Nanotechnology Group).

Section A (Analytical Chemistry)

Answer only five of the following:

(25 Marks)

1. For the following gaseous reaction:

$$N_{2(g)} + 3H_{2(g)} \Leftrightarrow 2NH_{2(g)}$$
 $\Delta H = -92KJ$

What is the effect of i) Addition of more nitrogen, ii) Lowering the temperature, and iii) Reducing the volume of the mixture to one-half of its original value.

- 2. Calculate the pH of a solution that is both 1M CH₃COOH and 1M CH₃COONa? (K_a =1.8x10⁻⁵). What will be the pH after addition of HCl, which reacts with 2% of sodium acetate?
- 3. Calculate the solubility (in g/100mL) of Ag_2SO_4 in 1M aqueous Na_2SO_4 solution. ($K_{sp} = 1.4 \times 10^{-5}$) At 18°C. (Atomic weights: Ag = 107.9, S = 32 and O = 16).
- 4. For the system: $A_{(g)} + 2B_{(g)} \Leftrightarrow C_{(g)}$

The equilibrium concentrations are [A] = 0.06 mol/L, [B] = 0.12 mol/L, and [C] = 0.216 mol/L. Calculate the values of both K_c and K_p at 250 °C. (R = 0.082 L atm mol⁻¹ K⁻¹)

5. What is the solubility of Mg(OH)₂ in a buffer solution having pH=9?

$$Mg(OH)_2 \Leftrightarrow Mg^{2+} + 2OH^- \qquad K_{SP} = 1.8 \times 10^{-11}$$

6. What is the pH of 5% (w/w) H_3PO_4 solution? (d = 1.03 g/mL, $K_{a1} = 7.1x$ 10^{-3}), [H = 1, P = 31, O = 16]

Section B (Organic Chemistry)

Q1. Choice the correct answers for the following questions

(10 Points)

1. Which compound has a high boiling point?

2. Which of the following compounds is (S)-2-amino-2-methylbutanoic acid?

A)
$$H_3CH_2C$$
 (CH_3) (CH_3) (CH_3) (CH_3) (CH_3) (CH_3) $(COOH)$ $(COOH)$ $(COOH)$ $(COOH)$ $(COOH)$ $(COOH)$ $(COOH)$

3. $C_3H_8 + 5O_2 \longrightarrow$

4. CH₃CH₂CH₃ + Br₂ Light

A)
$$\underset{\mathsf{CH_3CHCH_3}}{\mathsf{Br}}$$
 B) $\mathsf{CH_3CH_2CH_2 \cdot Br}$ C) $\underset{\mathsf{CH_3CHCH_2 \cdot Br}}{\mathsf{Br}}$

5. How many structural isomers are possible for a compound that has molecular formula C_5H_{12} ?

6. The formal charge of carbon in CH₃F is

7. Which one of these compounds is more acidic?

A)
$$CH_2=CH_2$$

8. The most stable alkene is

A)
$$CH_2=CH_2$$

B)
$$(CH_3)_2C=C(CH_3)_2$$

9. The most stable carbocation is

10. The bond length between the two carbon atoms in alkynes is

Please turn over for the rest of questions

Q2: Complete the following reactions:

(10 Points)

1. H₃CHC=CH₂ HI

- 2. CH₃CHCH₃ Cl₂hv / 35°C
- 3. CH₃·CH=CH-CH₃ i) H₂SO₄ii) H₂O
- 4. 1,3-butadiene HCI
- 5. H₃C−C≡CH i) NaNH₂ii) CH₃CH₂I
- 6. 1,4-pentadiene HBr
- 7. H₃C-CEC-CH₃ H₂O
- 8. H₃CHC=CH₂ Lindlar's Catalyst

Q3: Write one method to prepare the following:

(3 Points)

1) Cyclohexene

2) 2-butyne

2) 2,3-dichloropentane

3) 2-bromopropane (2 Points)

Q4: Draw the structure of the following:

Allyl bromide

3) E-2-bromo-3-chloro-2-butene 4) cis-1,2-

dichloroethene

1)

Examiners: Ass. Prof. Mohamed I. Said, Dr. Abdelreheem A. Saddik
GOOD LUCK