Assiut University
Faculty of Science
Department of Physics
Second semester 2019-2020
Time: 3 Hour

Course: Atomic and Molecular Spectroscopy Code: P432 Final Exam (90%) Oral Exam (10%)

The exam is written in twelve (12) pages

First: The Final Exam

(90 Marks)

Choose the correct statement:

(Every question 2 Marks)

Please write your selections (a or b or ...) in the blank column to the right of the table.

رجاء كتابة إختياراتك (a أو b أو ...) بخط واضح في الخانة الفارغة يمين الجدول.

-	If $\ell = 4$, which one of the following is a possible quantum number for n ?			
	a- 0	b- 1		
	c- 2	d- 4		
	e- 8			
2-	If $n = 5$, which one of number m_{ℓ} ?	the following is not an allowed magnetic quantum		
	a- 0	b- 1		
	c- 2	d- 4		
	e- 5			
3-	If $n = 5$, which one of the ℓ ?	e following is not an allowed orbital quantum number		
	a- 0	b- 1		
	c- 2	d- 4		
	e- 5			
_	If $\ell = 5$, which one of the following is not an allowed magnetic quantum number m_{ℓ} ?			
	a- 0	b- 2		
	c- 4	d- 6		
	e5			
5-	1	hydrogen atom, by increasing the quantum number, een any two successive levels in the atom		
	a- increasing	b- be equal		
	c- decreasing	d- all of the above		
	e- none of the above			

	In the Bohr model of the hydrogen atom, by increasing the quantum number, the distances between successive energy levels "the difference between the radius of the successive orbitals" in the atom		
	a- increasing	b- be equal	
	c- decreasing	d- all of the above	
	e- none of the above		
7-	In the Bohr model of the hydr the potential energy of the elect	rogen atom, by increasing the quantum number,	
	a- increasing	b- be equal	
	c- decreasing	d- all of the above	
	e- none of the above		
}_	In the Bohr model of the hydren the velocity of the electron	rogen atom, by increasing the quantum number,	
	a- increasing	b- be equal	
	c- decreasing	d- all of the above	
	e- none of the above		
9-	The wave equation for hydrogen has solutions only if the three quantum numbers n , ℓ , and m_{ℓ} meet certain conditions. One of these conditions specifies that ℓ		
	a- is either zero or +1.	b- is either equal to or less than $n-1$.	
	c- is an integer.	d- is a positive integer.	
	e- has an absolute value that is either equal to or less than n.		
10-	The wave equation for hyd	rogen has solutions only if the three quantum	
	numbers n, ℓ , and m_{ℓ} meet contact m_{ℓ}	ertain conditions. One of these conditions specifies	
	numbers n, ℓ , and m_{ℓ} meet co	ertain conditions. One of these conditions specifies b- is equal to or greater than ℓ .	
	numbers n, ℓ , and m_{ℓ} meet contact that m_{ℓ}	ertain conditions. One of these conditions specifies	
	numbers n , ℓ , and m_{ℓ} meet contact that m_{ℓ} are is equal to or less than n . c- can be any integer. e- has an absolute value either	b- is equal to or greater than ℓ . d- can be any positive integer. equal to or less than ℓ .	
11-	numbers n , ℓ , and m_{ℓ} meet contact that m_{ℓ} a- is equal to or less than n . c- can be any integer. e- has an absolute value either. According to the selection	b- is equal to or greater than ℓ . d- can be any positive integer.	
11-	numbers n , ℓ , and m_{ℓ} meet contact that m_{ℓ} a- is equal to or less than n . c- can be any integer. e- has an absolute value either. According to the selection	b- is equal to or greater than ℓ . d- can be any positive integer. equal to or less than ℓ . rule, when a photon is emitted or absorbed,	
11-	numbers n , ℓ , and m_{ℓ} meet contact that m_{ℓ} a- is equal to or less than n . c- can be any integer. e- has an absolute value either According to the selection transitions can only occur between	b- is equal to or greater than ℓ . d- can be any positive integer. requal to or less than ℓ . rule, when a photon is emitted or absorbed, ween state with values of ℓ that differ by	

12-	Which of the following is required l	by the Pauli exclusion principle?	
	a- No electron in an atom can have other electron in that atom.	ve the same set of quantum numbers as any	
	b- Each electron in an atom must h	have the same n value.	
	c- Each electron in an atom must h	ave different m_ℓ values.	
	d- Only two electrons can be in any	particular shell of an atom.	
8	e- No two electrons in a collection quantum numbers.	on of atoms can have the exact same set of	
13-	In terms of an atom's electron confi	guration, the letters K, L, M , and N refer to:	
	a- different shells with n equal to 1,	2, 3, or 4 respectively.	
	b- different sub shells with & equal to	to 1, 2, 3, or 4 respectively.	
	c- different sub shells with m_ℓ equa	l to 1, 2, 3, or 4 respectively.	
	d- the four possible levels for the ma	agnetic quantum number.	
	e- the four possible quantum number	ers.	
14-	What is the maximum number of el	ectrons that can occupy the g sub shell?	
	a- 6	b- 10	
	c- 14	d- 18	
	e- 22		
15-	A hydrogen atom is in the 6h sub stallowed in this sub shell?	hell. How many different quantum states are	
	a- 22	b- 18	
	c- 14	d- 10	
	e- 6		
16-	A neutral atom has an electron con its atomic number?	nfiguration of $1s^2 2s^2 2p^6 3s^2 3p^2$. What is	
	a- 5	b- 11	
	c- 14	d- 18	
	e- 25		

ubject
om is
om is
om is
om is
what
igular
of the gular
ì

23-	Space quantization means that:		
	a- space is quantized		
	b- L_z can have only certain discrete	values	
	c- \vec{L} and $\vec{\mu}$ are in the same direction		
	d- \vec{L} and $\vec{\mu}$ are in opposite directions	S	
	e- an electron has a magnetic dipole	moment	
24-	An electron in an atom is in a state vand the z axis is:	with $\ell=3$ and $m_\ell=2$. The angle between \vec{L}	
II	a- 48. 2°	b- 60°	
	c- 30°	d- 35.3°	
	e- 54.7°		
25-	The electron states that constitute a	single shell for an atom all have:	
	a- the same value of n and the same	value of ℓ	
	b- the same value of n		
	c- the same value of ℓ and the same	value of m_ℓ	
	d- the same value of ℓ		
	e- the same set of all four quantum 1	numbers	
26-	The electron states that constitute a	single subshell for an atom all have:	
	a- the same value of n and the same	value of ℓ	
	b- the same value of n	A THE STATE OF THE	
	c- the same value of ℓ and the same	value of m_ℓ	
	d- the same value of ℓ		
	e- the same set of all four quantum	numbers	
27-	The total number of electron states	with $n=2$ and $\ell=1$ for an atom is:	
	a- 2	b- 4	
	c- 6	d- 8	
	e- 10		

28-		z axis in a Stern-Gerlach experiment. The with dipole moment $\vec{\mu}$ is proportional to:	
	$a-\mu_z^2$	b- B ²	
	c- dB/dz	$d-d^2B/dz^2$	
	e- ∫ <i>B dz</i>		
29-	A magnetic dipole $\vec{\mu}$ is placed in associated force exerted on the dipole	a strong uniform magnetic field \overrightarrow{B} . The le is:	
	a- along $\overrightarrow{\mu}$	b- along $-\overrightarrow{\mu}$	
	c- along \overrightarrow{B}	d- along $\overrightarrow{\mu} \times \overrightarrow{B}$	
	e- Zero		
30-	A magnetic dipole is placed betwee shown. The direction of the assoc dipole is:		-
	a- positive x	b- positive y	
	c- negative x	d- negative y	
	e- into or out of the page		
31-	To observe the Zeeman effect one us	ses:	
	a- a strong uniform magnetic field	b- a strong non-uniform magnetic field	
	c- a strong uniform electric field	d- a strong non-uniform electric field	
	e- strong perpendicular electric and	magnetic fields	
32-		tal-angular-momentum quantum number J gular momenta "orbital angular momentum quantum numbers $3/2$ and 4 :	
	a- 11/2	b- 11/2, 9/2, 7/2, 5/2	
	c- 5/2	d- 5, 4, 3, 2, 1	
	e-3/2,1/2,0,-1/2,-3/2		age of Contraction
33-	Suppose a hydrogen atom in a 3d field. Into how many sub states will	_{5/2} state is placed in an external magnetic it split?	
	a- 3	b- 4	
	c- 5	d- 6	
	e- None of the above		

34-	Why is it easier to analyze a mixt spectroscopy than it is to analyze a	ure of gaseous atomic species by absorption mixture of molecular species?	
	a- atomic species do not have side re		
	b- molecular species do not absorb	light.	
	c- atomic spectra have simpler na molecular spectra.	rrower lines that are easier to resolve than	
	d- atomic species have a continuous	spectrum.	
	e- atomic species have a discrete spe	ectrum.	
35-	The probability of finding an opportional to its:	electron in a hydrogen atom is directly	
	a- energy.	b- momentum.	
	c- potential energy.	d- wave function.	
	e- square of the wave function.		
36-	The most energetic photon in a approximately equal to:	continuous x-ray spectrum has an energy	
	a- the energy of all the electrons in a	target atom	
	b- the kinetic energy of an incident-l	beam electron	
	c- the kinetic energy of a K-electron	in the target atom	
	d- the total energy of a K-electron in	the target atom	
	e- the rest energy, mc^2 , of an electron	on	
37-	Two different electron beams are produce x rays. The cutoff waveler wavelength for target 2. We can con-	incident on two different targets and both ngth for target 1 is shorter than the cutoff clude that:	
	a- target 2 has a higher atomic numb	per than target 1	
	b- target 2 has a lower atomic number	er than target 1	
	c- the electrons in beam 1 have great	ter kinetic energy than those in beam 2	
	d- the electrons in beam 1 have less l	kinetic energy than those in beam 2	
	e- target 1 is thicker than target 2		
38-	In connection with x-ray emission the	e symbol K_{α} refers to:	8
	a- an alpha particle radiation		
	b- x-ray radiation from potassium		
	c- x-ray radiation associated with an	electron going from $n = \infty$ to $n = 1$	
	d- an effect of the dielectric constant	on energy levels	
	e- x-ray radiation associated with an	electron going from $n = 2$ to $n = 1$	

39-	The transition shown gives rise to an x-ray. The correct label for this is:			
	tins is:		or and the same of	
	a- <i>K</i> _α	b- <i>K</i> _β	•	
	c- L _{\alpha}	d - L_{eta}		
	e- K _L		-	
40-	The Pauli exclusion principle is obey	yed by:		
	a- all particles		b- all charged particles	
	c- all particles with spin quantum 1/2	numbers of	d- all particles with mass	
	e- all particles with spin quantum no	umbers of 1		
41-	Which of the following transition allowed for the hydrogen atom:	s for quantu	nm numbers (n,ℓ,m_ℓ,m_s) are	
	$a-(2,0,0,1/2) \rightarrow (3,1,1,1/2)$	b- (2, 0, 0, 1	$/2) \rightarrow (3, 0, 0, 1/2)$	
	c- $(3, 2, -2, -1/2) \rightarrow (3, 1, 1, 1/2)$	d- (3, 1, -2,	$(1/2) \rightarrow (3, 1, -1, 1/2)$	
	$e^{-}(1,0,0,-1/2) \rightarrow (3,2,1,1/2)$	0		
42-	A metastable state is important for assures that:	r the genera	tion of a laser beam because it	
	a- spontaneous emission does not occ	cur more ofte	en than stimulated emission	
	b- photons do not split too rapidly			
	c- more photons are emitted than ar	e absorbed		
	d- photons do not collide with each of	other		
	e- photons do not make upward tran	isitions		
43-	In a helium-neon laser, the laser lig state.	ht arises from	m a transition from a state to a	
	а- Не, Не	b- Ne, Ne		
	c- He, Ne	d- Ne, He		
	e- N, He			
44-	A laser must be pumped to achieve:			
	a- a metastable state	b- fast respo	onse	
	c- stimulated emission	d- populatio	n inversion	
	e- the same wavelength for all photo	ns	3	

45-	Photons in a laser beam are produced by:		
	a- transitions from a metastable state	b- transitions to a metastable state	
	c- splitting of other photons	d- pumping	
	e- transitions from a state that decays rapidly		

Second: The Oral Exam

(10 Mark)

Choose the correct statement:

(Every question 1 Mark)

Please write your selections (a or b or ...) in the blank column to the right of the table.

رجاء كتابة إختياراتك (a أو b أو ...) بِخط واضح في الخانة الفارغة يمين الجدول.

	a- increasing	b- be equal
	c- decreasing	d- all of the above
	e- none of the above	
-	In the Bohr model of the hydrogen atom, by increasing the quantum number, the total energy of the electron	
	a- increasing	b- be equal
	c- decreasing	d- all of the above
	e- none of the above	
-	In the Bohr model of the hydrogen atom, by increasing the quantum number, the kinetic energy of the electron	
	a- increasing	b- be equal
	c- decreasing	d- all of the above
	e- none of the above	*
1-	The wave equation for hydrogen numbers n , ℓ , and m_{ℓ} meet certain that n	has solutions only if the three quantum conditions. One of these conditions specifies
		b- can be any integer.
	a- can be any real number.	
	a- can be any real number. c- can be any non-negative integer.	d- can be any negative integer.

5-	The Pauli exclusion principle:		32 11 251-11	
	a- Any two electrons in an atom can	occupy the	same quantum state.	
	b- All electrons in an atom can occu	py the same	quantum state.	
	c- No two electrons in an atom can o	ccupy the sa	ame quantum state.	
	d- The position and momentum of a the same time.	a particle ca	n both be measured precisely at	
	e- The position and momentum of a at the same time.	particle ca	nnot both be measured precisely	
6-	The quantum number m_s is most electron in an atom?	closely assoc	ciated with what property of the	
	a- Magnitude of the orbital momentum	angular b	- Energy	
	c- z component of the spin momentum	angular d	- Radius of the orbit	
	e- z component of the orbital angula	r momentui	n	
7-	An electron is in a quantum state for momentum is $6\sqrt{2} \ \hbar$. How many angular momentum are there?	· ·		
	a- 4	b- 5		
	c- 17	d- 8		
	e- 9		**3	
8-	An electron in an atom is in a state and the z axis is:	with $\ell = 5$. The minimum angle between $ec{L}$	
	a- 0°	b- 155.9°		
	c- 24. 1°	d- 36.7°		
	e- 90.0°			
9-	In the relation $\mu_z = -m_\ell \mu_B$, the qu	ıantity μ_B i	s:	
	a- the component of the dipole mo	ment along	b- the Bohr magneton	
	c- the permeability of the material		d- a friction coefficient	
	e- none of the above		£	

10-	How many electrons can	be put in a subshell with quantum number n and ℓ :	
	a- 2n ²	b- 2 <i>n</i>	
	c- 2(2 ℓ + 1)	d-2n+1	
	e- 2 <i>l</i> + 1		

Electron charge e	1.6×10 ⁻¹⁹ C	Plank's constant h 6.626 × 10 ⁻³⁴ Joul.sec
Electron mass m _e	9.1×10 ⁻³¹ kg	Light velocity c 3×10 ⁸ m.sec ⁻¹
Proton mass m _p	1.672×10 ⁻²⁷ kg	Coulomb constant k 9×10 ⁹ J.m.C ⁻²
Bohr radius a_o	0.529×10 ⁻¹⁰ m	Rydberg constant R 1.097 × 10 ⁷ m ⁻¹
Bohr magneton μ_B	9.274×10 ⁻²⁴ J.T ⁻¹	magnetic permeability μ_o $4\pi \times 10^{-7}$ T.m/A (H/m
mass of a carbon atom	1.994×10 ⁻²⁶ kg	mass of an oxygen atom 2.6567×10 ⁻²⁶ kg
mass of a floor atom	31.55×10 ⁻²⁷ kg	mass of a hydrogen atom 1.672×10 ⁻²⁷ kg
The bond length of CO	1.3 ×10 ⁻¹⁰ m	Ionization energy of the hydrogen atom E _o 13.6 eV

Assuit University

Grade: Four

Faculty of Science

Course: 492 f

Physics Department

Time: 3 Hours

Second Term Exam 2020

Answer only five of the following questions:

(50 Marks: 10Each)

Question 1:

Write a short account on the following:

- a) The specific heat of solids.
- b) The thermal conductivity of solids.

Question 2:

Explain in detail the measurements of the thermal expansion of solids.

Question 3:

Discuss in detail the thermoelectric and thermomagnetic coefficients.

Question 4:

Write a short account on the following:

- a) The conduction of heat in semiconductors.
- b) Interatomic bonds and the crystal lattice.

Question 5:

Discuss in detail the free electron therapy of metal.

Question 6:

Explain in detail the vibration spectra and the specific heat of materials.

Course: General Entomology (240)

Time:

hours 2020

Multiple Choice:

1- Insects tha	t pass	through	the	egg,	larva,	pupa,	and	adult	stages	in	their
life cycle have	e										

- A. Incomplete metamorphosis
- B. No metamorphosis
- C. Complete metamorphosis
- D. Gradual metamorphosis
- 2- What order contains butterflies and moths?

A. Lepidoptera

C. Hymenoptera

B. Homoptera

D. Isoptera

3- Which insect order is most closely related to Diptera?

A. Hymenoptera

C. Plecoptera

B. Orthoptera

D. Zygentoma

4- The order Hemiptera contains:

A. Bed bugs and stink bugs

C. Chewing and sucking lice

B. Roaches and mantids

D. Crickets and grasshoppers

5- Which order is **NOT** holometabolous?

A. Siphonaptera

C. Thysanoptera

B. Hymenoptera

D. Neuroptera

- 6- What does the word "bug" refer to:
 - A. An insect in the Homoptera or Hemiptera order.
 - B. An insect in the Coleoptera order.
 - C. An insect in the Diptera order.
 - D. A creepy crawly thing.

7- Which order is exclusively herbivorous	as?
A. Trichoptera	C. Phasmatodea
B. Odonata	D. Thysanoptera
8- Which order is exclusively parasitic?	
A. Diplura	C. Siphonaptera
B. Zoraptera	D. Diptera
9- Sucking mouthparts are NOT found i	n:
A. Fleas	C. Lice
B. Flies	D. Ants
10- All ametabolous insects are:	
A. Predatory	C. Wingless
B. Endognathous	D. All of these
11 In material of the Mannastone would	he classified as
11- Immatures of the Neuroptera would	
A. Scavengers	C. Parasites
B. Herbivores	D. Predators
12- What do the orders Dermaptera and	Isoptera have in common?
A. Winglessness	C. Chewing mouthparts
B. Herbivory	D. All of these
13- Chewing mouthparts NEVER occur	in:
A. Fleas	C. Earwigs
B. Beetles	D. Bees
14- Which order is exclusively hematople	pagous (blood feeders)?
	C. Thysanoptera
A. Siphonaptera	
B. Neuroptera	D. Hymenoptera

w.

15- Which insect order is NEVER asso	ciated with plants?
A. Hymenoptera	C. Thysanoptera
B. Hemiptera	D. Siphonaptera
16- Where does a baby dragon fly grow	up?
A. In the ground	C. In trees
B. In water	D. On the ground
17- Hemiptera and Hymenoptera are sin	nilar because both have:
A. Holometabolous development	
B. Piercing-sucking mouthparts	
C. Neopterous wings	
D. All of these	
18- Which compound would be found in endocuticle?	n the exocuticle but NOT in the
A. Chitin	C. Protein
B. Quinone	D. Wax
19- To which body segment are the elyt	ra attached?
A. Mesothorax	C. Prothorax
B. First abdominal	D. Metathorax
20- Which part of the exoskeleton lies b	between the exocuticle and the wax
layer?	
A. Procuticle	C. Cuticulin layer
B. Cement layer	D. Endocuticle
21- The shell of an insect's egg is called	the:
A. Serosa	C. Chorion
B. Amnion	D. Periplasm

22- Which structure would NOT be f	ound on an insect's leg?
A. Trochantin	C. Coxa
B. Arolium	D. Tarsomere
23- Which structures of insects are pa	
A. Paraprocts	C. Aedeagus
B. Cerci	D. Valvulae
24- Which part of an insect's antenna	a articulates with its head capsule?
A. Arista	C. Flagellum
B. Pedicel	D. Scape
25- The eyes of caterpillars are calle	d
A. Tegmina	C. Hamuli
B. Ocelli	D. Stemmata
26- Which structure is unicellular?	
A. Spine	C. Gland
B. Seta	D. Pile
27- Which mouthparts lie between th	e labrum and the maxillae?
A. Hypopharynx	C. Labium
B. Mandibles	D. Palps
28- A line of weakness between	adjacent sclerites that breaks during
molting is called a(n):	
A. Apodeme	C. Ecdysial suture
B. Apophysis	D. Epistomal suture
29- Chitin is most abundant in which	part of the exoskeleton?
A. Epicuticle	C. Cuticulin layer

.

B. Procuticle	D. Epidermis
30- What is the function of the micropy	yle in an insect's egg?
A. Water balance	C. Respiration
B. Nutrition	D. Sperm entrance
31- What is the maximum number of	ocelli that may be found in an adult
insect?	
A. Zero	C. Five
B. Three	D. Twenty
32- Chitin is a very important part of t	he insect's exoskeleton because:
A. It is impermeable to water.	
B. It is rigid and inflexible.	
C. It is not digested by common enz	ymes.
D. It is flexible and elastic.	
33- Which structure lies below the from	ns and above the labrum?
A. Trochanter	C. Clypeus
B. Furca	D. Gena
34- A/an is used by f	emale insects to lay eggs.
A. Spermatheca	C. Cerci
B. Ovum	D. Ovipositor
35 belong to the ord	er Hymenoptera.
A. Grasshoppers and crickets	
B. Beetles and weevils	
C. Wasps and ants	
D. Flies and mosquitos	

36- The butterfly pupa is known as a	· · · · · · · · · · · · · · · · · · ·
A. Caterpillar	C. Cocoon
B. Chrysalis	D. Naiad
37- Which part of the exoskeleton	lies between the wax layer and the
cement layer?	
A. Exocuticle	C. Cuticulin layer
B. Endocuticle	D. None of these
38- Which suture is NOT found on the	ne head capsule?
A. Pleural suture	C. Subgenal suture
B. Epistomal suture	D. Frontal suture
39- In insects with chewing mouthn	arts, which structure lies between the
mandibles and the maxillae?	
A. Clypeus	C. Labium
B. Hypopharynx	D. Labrum
B. Hypopharynx	D. Laorum
40- Which mouthparts bear palps?	
A. Labrum and labium	C. Maxillae and mandibles
B. Labium and maxillae	D. Mandibles and labrum
41- The cibarium is best described as:	
A. Thoracic muscles that move the	wings.
B. A structure on the pretarsus.	
C. The innermost layer of the epicu	ıticle.
D. A muscular pump that sucks for	
	in the second state of the second
42- Which layer(s) of the exoskeleton	is (are) secreted by the epidermis?
A. Endocuticle	C. Epicuticle
	in Jan San Hair San

	and the second s
B. Exocuticle	D. All of these
43- Elastic regions of the exosk	releton:
A. Are generally known as s	clerites.
B. Are found only at the joir	nts.
C. Lack a well-defined exoc	uticle.
D. Contain high concentration	ons of quinones.
44- The pedicel is the name for	the:
A. 1 st leg segment	C. 1 st antennal segment
B. 2 nd leg segment	D. 2 nd antennal segment
45- Aquatic immatures of all ho	lometabolous insects are known as:
A. Nymphs	C. Larvae
B. Naiads	D. Young
46- In an abdominal segment, th	ne ventral sclerite is known as
A. Epimeron	C. Epiproct
B. Notum	D. Sternum
47- In an obtect pupa:	
A. The insect is surrounded b	y a silken cocoon.
B. The larval exoskeleton bed	comes a puparium.
C. The insect's body forms a	chrysalis.
D. All of these.	
48- In insect, the first pair of pos	st-oral appendages is called:
A. Maxillae	C. Mandibles

D. Labrum

B. Antennae

49- Which of these characteristi	es do insects and crustacear	ns have in
common?		
A. Mandibulate mouthparts	C. Jointed legs	
B. Open circulatory system	D. All of these	
50- A caterpillar does not have		
A. Mandibles	C. Prolegs	
B. Compound eyes	D. Claws	
<u>Frue/False</u> (Indicate "T" for a 51- For insects, locomotory append		()
52- Insects in the Order Odonata (c	lragonflies) have aquatic larva	ae and
undergo complete metamorphosis.		()
53- Beetle larvae are often called C	Grubs.	()
54- Honey bees are more closely	related to ants than to butt	erflies and
moths.		()
55- Diptera is the only orders with	a single pair of membraneous	wings.
		()
56- Cerci are commonly found	in ametabolous insects bu	t NOT in
holometabolous insects.		()
57- Aquatic immatures of holometa	abolous insects are known as	larvae.
		()
58- All hemipteroids have piercing	-sucking mouthparts.	()
59- The exocuticle is the outermost	t layer of the exoskeleton.	()
60- Insects never have more than ty	welve abdominal segments.	()

	Short answer: Give the correct Entomological term for:
	61- The "shell" of an insect's egg.
	62- The "simple" eyes
	63- The "egg case" of a cockroach
	64- The hardened "plate" of the exoskeleton
-	65- The "hair" on an insect's body
	66- The "front wings" of the Orthoptera
	67- The "first thoracic segment"
	List ONE function for each of the following:
	68- Halteres
	69- Epicuticle
	70- Micropyle

Matching:

Which part of the exoskeleton is responsible for each of these functions?

71 D	
71- Resistance to abrasion	A. Sclerites
72- Armor and strength	B. Apodemes
73- Sensory perception	C. Membranes
74- Muscle attachment	D. Epidermis
75- Flexibility	E. Cuticulin layer
	F. Wax layer
	G. Setae
	H. Sutures
	I. Cement layer

Match the structure in the left column with its correct location in the right column.

Left column	Right column
67- Labrum	A. Antenna
77- Scape	B. Leg
78- Coxa	C. Ovipositor
79- Valvifer	D. Mouthparts
80- Tegmina	E. Wing

The diagram below illustrates an adult **head capsule**. Write the label from (A-J) of the following parts.

With best wishes,,,,,

Prof. Dr\ Amer Tawfik

Prof. Dr\ Azza Awad

Oral question

In points what are the Characters of an insect

Faculty of Science Department of Physics

Undergraduate Final Exam
2nd semester 2019-2020 Course: Radiation Physics

Code:P444

Section: Phys. and Phys./Chem Time:3 hours

Date: July-2020

Assiut University

Question (1): Put $[\sqrt{\ }]$ or $[x]$ for each of the statement. (60 Mark	.)	`	
1) The decay constant λ is defined as "the probability that a given national state of the given nat)	
decay per unit time. 2) The radioactive equilibrium occurs when the half-life of the parent nucleus ()	
is more short-lived than the daughter nucleus. 3) Antineutrino is a neutral particle with zero rest mass.)	
4) The annihilation process is a source of photons with chergy 0.5 Throw	(
5) The electromagnetic waves (EM) include the whole electromagnetic spectrum such as γ-rays, X-rays, α particles, ultraviolet, visible, infrared,	()	
microwave, radar and radio wave. 6) In transient equilibrium, both number of atoms of parent N ₁ and daughter N ₂ decrease exponentially with time with the half-life of parent and the	()	
ratio N ₁ /N ₂ remains constant. 7) Becquerel is defined as one disintegration per second.	())
8) β^+ decay is radioactive parent nucleus transforms a neutron into a proton.)	
9) Absorbed dose is measured in units of Sievert.	()	
10) The atomic number identifies the chemical element	(
11) Isotopes are nuclides that have same Z and different A and N.			
12) Bohr Theory works very well for one-electron structures.			
 13) The condition for β⁺ decay to be possible is M(A,Z)-M(A,Z+1) > 0, where M(A,Z) and M(A,Z+1) are the atomic masses of parent and product nuclei. 14) In secular equilibrium, the number of parent nuclei remains unchanged.)
15) IC is a competing process of γ-rays.	()
16) Radioactivity is the artificial disintegration of nuclei.	()
17) The fission process is used as a source of neutrons.	()
18) Condition for α -decay to be possible is: $M(A, Z) > M(A, Z+1) + M(4,2)$.	()
19) The mass numbers of the nuclides in the $^{237}_{93}Np$ - series can be represented			
as 4n+1. 20) The atom is neutral, thus the number of positive charges (protons) in the nucleus is equal the number of negative charges (electrons) revolve around		()
the nucleus. 21) Negatively charged electrons revolve around the nucleus as a result of the attractive electrostatic Coulomb force between the positive and negative		()
charges. 22) The emitted photon has energy equals the difference in energy between the two atomic orbits.		()

23) Electrons occupy allowed shells, the number of electrons per shell is limited to $2n^2$.	()
24) Nuclei consist of neutrons and protons, which are known as nucleons.	()
25) Mean life is defined as the time interval over which the number N_0 of radioactive atoms initially present in sample is reduced to N_0/e .		
26) α - particle consists of two neutrons and two protons.	()
27) The mass numbers of the nuclides in the $^{235}_{92}$ U- series can be represented as $4n+3$.	()
28) Isomers are nuclides that have same Z, N and A but nucleons existing at different energy levels.	()
29) Nuclear force is mutual attractive force between nucleons.	()
30) Radioactivity is a statistical event, in that we cannot predict if or when a certain atom will decay but can predict how many events can occur in period of time.	()
Question (2): Multiple Choice Questions (MCQ) (30 Mark	()	
 The phenomenon which abound atomic electron may receive energy and r from a state of energy E₁ to another of higher energy E₂. Excitation b) Ionization c) Binding energy 	nov	ve
 2) Nucleus spontaneously splits into two nearly equal fission fragments emission of 2 to 4 neutrons. a) Spontaneous fission b) Proton Emission c) Ionization 	wit	th
 3) α-particle consists of a) 2 neutrons and 2 protons b) 4 neutrons and 2 protons c) 2 neutrons and 4 protons d) 4 neutrons and 4 protons 		
4) The energy required to completely break up the nucleus into well separate protons and N neutrons.a) Binding energy b) Excitation c) Ionization	ed 2	Z
5) The average energy of the beta particles which is given practically in the form a) $T_{\beta^-} = T_{max}/4$ b) $T_{\beta^-} = T_{max}/3$ c) $T_{\beta^-} = T_{max}/5$)rm	
 6) Nuclear decay in which an unstable isotope nuclide (parent nucle spontaneously release excess energy with emission of particles and/or gam ray and that parent nucleus will transform into a new isotope nuclide (daug nucleus) that may be stable or unstable. a) Radioactivity b) Excitation c) Ionization 	ma	-

BEST WISHES

Instructor: Dr. Ghada Salaheldin

	7) a)	Nucleus capture orbita Electron Capture deca	al electron (usually K shell y b) Internal conversion) and neutrino is emitto c) Proton Emissio	ed. n
	8) a)	The original positron oppositely directed 0.5 Annihilation	n and electron disappea 511 MeV electromagnetic b) Proton Emission	photons known as.	
	9) a)		s from a source and propag r electromagnetic waves. b) Internal conversion		natter in
		Neutrons are emitted by bombarding nucleu Neutron decay	during spontaneous fissions with high energy radiation	on or are artificially pon (particles or photon c) Internal conversio	s).
		The number of radioa Half-life time of decay	etive atoms is reduced to h		as
	12) a)	exponentially with tirremains constant.	mber of atoms of parent me with the half-life of p b) Transient equilibrium	parent and the ratio	decrease N_2/N_1
)decay is radioa β^-	ctive parent nucleus transfe b) β^+	orms a neutron into a μ	oroton.
		nucleus splits into two	or transformation in whice lighter nuclides and emits b) Proton Emission	from two to four neut	rons
	15) 1Ci =Bq.			
	a)	3.70×10 ¹⁰	b) 3.07×10 ¹⁰	c) 3.70×10^9	
Q	ues	tion (3) [Oral]:			
	Co	elium nuclei, which tra	rgetic sub-atomic particles vel across space at close		
2)	TI	omes from sun and supe ne number of radioacti the half-life time of de	ve atoms is reduced to ha	If in the time Known	()
3)	Tl	ne mass numbers of the 4n+2.	e nuclides in the $^{238}_{92}U$ - seri	es can be represented	()
4)	Is	obars are nuclides that	have same A and different	Z and N.	()
5)		decay is the nuclear tr elium-4 nucleus) is em	ansformation in which an itted.	energetic α- particle	()

Instructor: Dr. Ghada Salaheldin

BEST WISHES

قياسات فيزيائية باستخدام الحاسب 462 ف 27/7/2020 الزمن ثلاث ساعات

كلية العلوم حير الفيزياء قسم الفيزياء الفصل الثاني 2019-2020 الدرجة الكلية (70تحريري+10شفوي)

Group I (42 degrees)

rui	To Figure 17 or Fi		
1.	We find the roots of any polynomial with the $roots(p)$ function where p is a row vector	[1
	containing the polynomial coefficients in descending order.	L	7
2.	We can compute the coefficients of a polynomial from a given set of roots with the]	1
	poly(r) function where r is a row vector containing the roots.	L	1
3.	The $polyconv(p,x)$ function evaluates a polynomial at some specified value of the independent variable.]]
4.	The deconv(a,b) function multiplies the polynomials a and b.	Г	1
5.	The (\mathbf{q},\mathbf{r}) =diconv (\mathbf{c},\mathbf{d}) function divides polynomial \mathbf{c} by polynomial \mathbf{d} and displays the	 	
	quotient q and remainder r.	[]
6.	The polyde (p) function produces the coefficients of the derivative of a polynomial p.	1]
7.	We can write MATLAB statements in one line if we separate them by commas or		
	semicolons. Commas will display the results whereas semicolons will suppress the display.	[]
8.	We use the MATLAB command plot(x,y) to make two-dimensional plots. This		
	command plots versus where x is the horizontal axis (abscissa), and y is the vertical]]
	axis (ordinate).		
9.	If a statement, or a row vector is too long to fit in one line, it can be continued to the		
	next line by typing three or more periods, then pressing <enter> to start a new line, and</enter>]
	continue to enter data.		
10.	We can make a two-dimensional plot more presentable with the commands grid, box,		
	title('string'), xlabel('string'), and ylabel('string'). For a three-dimensional plot, we] []
	can also use the zlabel('string') command.		
11.	The command linspace(first_value, last_value, number_of_values) specifies the		
	number of data points but not the increments between data points. An alternate	_	7
	command uses the colon notation and has the format x=first: increment: last. This	L	J
	format specifies the increments between points but not the number of data points.		
12.	Newton's (or Newton-Raphson) method can be used to approximate the roots of any		1
	linear only of any degree.]]
13	We can't use a spreadsheet to approximate the real roots of linear and non-linear		
	equations but to approximate all roots (real and complex conjugates) it is advisable to]
	use MATLAB.		
14	The angular velocity ω is commonly known as angular or radian frequency and $\omega T =$	Τ.	-
.	4π	L]
15	To apply Newton's method, we must begin with a reasonable approximation of the root	Г	1
	value. In all cases, this can best be done by plotting f(x) versus x.]]
16	The frequency is denoted by the letter f and in terms of the period T, $f = 1/T$. The		
	frequency f is often referred to as the cyclic frequency to distinguish it from the radian]
	frequency ω .		

17. The cosine function leads (is ahead of) the sine function by $\pi/2$ radians or 90°, and		
the sine function lags (is behind) the cosine function by $\pi/2$ radians or 90°.	г	7
Alternately, we say that the cosine and sine functions are out-of-phase by 90°, or there	[]
is a phase angle of 900 between the cosine and sine functions.		
18. When we say that one sinusoid leads or lags another sinusoid, these are of the same	г	7
frequency since two sinusoids of different frequencies can be in the phase.	L]
19. It is customary to express the phase angle in degrees rather than in radians in a		
sinusoidal function. For example, we write	[]
$v(t) = 100 \sin\left(2000\pi t - \frac{\pi}{6}\right) \text{ as } v(t) = 100 \sin(2000\pi t - 60)$		J
20. When two sinusoids are to be compared in terms of their phase difference, these must		
first be written either both as cosine functions, or both as sine functions, and should]
also be written with negative amplitudes.		
21. Two phasors A and B where $A = a + jb$ and $A = c + jd$, are equal if and only if their		
real parts are equal and also their imaginary parts are equal. Thus $A = B$ if and only if]
a = c and b = d		
22. If the dependent variable y is a function of only a single variable x, that is, if $y = \frac{1}{2}$		
f(x), the differential equation which relates y and x is said to be an ordinary]
differential equation and it is abbreviated as ODE.		
23. Generally, in engineering the solution of the homogeneous ODE, also known as the		
]
$y_N(t)$ or simply y_N .		
24. The particular solution of a non-homogeneous ODE is be referred to as the forced	[1
response, and is denoted as $y_F(t)$ or simply y_F .		
25. The total solution of the non-homogeneous ODE is the summation of the natural and		1
forces responses, that is $y(t) = y_{Natural Response} - y_{Forced Response} - y_{N} - y_{F}$	_	
26. The most general solution of homogeneous ODE is the linear combination		
		J
where H is used to denote homogeneous and k_1, k_2, \dots, k_n are arbitrary constants.		
27. For nth order homogeneous differential equation, the solutions are		
$y_1 = k_1 e^{s_1 t}, y_2 = k_2 e^{s_2 t}, \dots, y_n = k_n e^{s_n t}$		
where s_1, s_2, \dots, s_n are the solutions of the characteristic equation		
$a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s^1 + a_0 = y_H(t)$		
and $a_n, a_{n-1},, a_1, a_0$ are constant coefficients of the ODE		
28. The ODE $ \frac{d^{m-1}x}{dx} = \frac{d^{m-1}x}{dx} $		
$a_n \frac{d^n y}{dt^n} + a_{n-1} \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_1 \frac{dy}{dt} + a_0 y = b_m \frac{d^m x}{dt^m} + b_{m-1} \frac{d^{m-1} x}{dt^{m-1}} + \dots + b_1 \frac{dx}{dt} + b_0 x$	Γ	1
is non-homogeneous differential equation if the right side, known as forcing function,	L	_1
is zero		

Group II (28 degrees)

Put [T] or [F] in front of each statement to complete the task: If the statement is incorrect, modify it and write the full script for solving the problem.

A. In the electric circuit below, the applied voltage V_s was kept constant and the voltage V_c across the capacitor was measured and recorded at several frequencies as shown on the table below

	Capacit	or voltag	ge versus	radian	frequenc	су
ω	500	600	700	800	900	1000
V_{C}	88.9	98.5	103.0	104.9	105.3	104.8
ω	1100	1200	1300	1400	1500	1600
V _C	103.8	102.4	100.7	98.9	96.5	94.9

To answer the question: Plot Vc (in dB scale) versus ω (in common log scale) and label the axes appropriately and the resulting graph is shown as.

Please, check the following points (8 degrees):

Ticase, effect the following points (o asgress)	
1. w=[5 6 7 8 9 10 11 12 13 14 15 16]*10;	
2. Vc=[88.9 98.5 103 104.9 105.3 104.8 103.8 102.4 100.7 98.9 96.5 94.9];	
3. dB=20*log10(Vc); semilogx(w,dB); grid; title(Vc vs. w');	
4. xlabel('w in rads/sec'); ylabel(' Vc in volts')	

B. To find the total solution of ODE

$$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 3y = 0$$

subject to the initial conditions y(0) = 3 and y'(0) = 4 where y' = dy/dt

The resulting graph is shown as

Please, check the following points (12 degrees):

	case, eneck the following points (12 arginos):	
1.	This is a non-homogeneous ODE and the total solution is just the natural response	
	found from the characteristic equation $s^2 + 4s + 3 = 0$ whose roots are $s_1 = -1$ and	[]
	$s_1 = -3$.	
2.	The total response is: $y(t) = y_N = k_1 e^{-t} + k_2 e^{-3t}$	
3.	The constant k_1 and k_2 are evaluated from the given initial conditions.	[]
	So, in that case $y(0) = 3 = k_1 e^0 + k_2 e^0$ Or $k_1 + k_2 = 5$	L J
4	And $y'(0) = 4 = \frac{dy}{dt} \Big _{t=0} = -k_1 e^{-t} - 3k_2 e^{-3t}$ Or $-k_1 - 3k_2 = 4$	[]
	$k_1 = 6.5 \text{ and } k_2 = -3.5$	
5	$y(t) = y_N = 6.5e^{-t} + 3.5k_2e^{-3t}$	
6	With MATLAB	[T]
	y=solve('D2y+4*Dy+3*y=0', 'y(0)=3', 'Dy(0)=4'); ezplot(y,[0 5])	L J

C. By using MATLAB to sketch the graph y=f(x), and verify from the graph that f(a) and f(b), where a and b defined below, have opposite signs. Then, use Newton's method to estimate the root of f(x) = 0 that lies between a and b.

 $f(x) = \sqrt{2x + 1} - \sqrt{x + 4}$ The resulting graph is shown as Hint: Start with $x_0 = (a + b)/2$ $a = 2 \ and \ b = 4$

Please, check the following points (8 degrees):

1 100	ise, effect the following points (o degrees).		П
1.	x=-5:0.05:5; fx=sqrt (2. *x+1)-sqrt(x+4); plot(x,f1x); grid	F 1	
	Warning: Imaginary parts of complex X and/or Y arguments ignored.		
2.	From the plot above we see that the positive root is very close to $x = 3$ so we take	r 1	
	$x_0 = -3$ as our first approximation		
3.	The next value x_1 is -3		
4.	Checking by MATLAB:		
	syms x; $fx=sqrt(2.*x+1)-sqrt(x+4)$; $dsolve(fx)$	[]	
	ans =		
	3		

Oral part (10 degrees)

Choose the Correct answer (1 degree for each statement)

- 1. The statement z=3-4j displays in MATLAB as, z=
- 3.0000 4.0000i
- 3.0000 4.0000*i

both of them

none of them

- 2. The statement $z=3-\cos(x)i$ displays in MATLAB as, z=
 - $3.0000 \cos(x)i$
- $3.0000 \cos(x)*i$

both of them

none of them

3. MATLAB displays the polynomial coefficients as a vector, and the roots as a vector.

row, column

row, row

column, column

column, row

4. The polynomial

$$p = x^5 - 7x^4 + 16x^2 + 25x + 52$$

the polynomial coefficients display in MATLAB as

5. The polynomial roots of polynomial p display as

root p=roots(p)

6. MATLAB functions used with polynomials are the following: multiplies two polynomials a and b

conv(a,b)

der(a,b)

deconv(a,b)

none of them

7. MATLAB functions used with polynomials are the following: divides polynomial c by polynomial d and displays the quotient q and remainder r.

[q,r]=conv(c,d)

[q,r]=deconv(c,d)

[q,r]=der(c,d)

none of them

- 8. produces the coefficients of the derivative of a polynomial p polyder(p) der(p) deconv(p) conv(p)
- 9. Newton's (or Newton-Raphson) method uses the formula

Newton's (or Newton-

$$x_{n-1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$x_n = x_{n-1} - \frac{f(x_n)}{f'(x_n)}$$

$$x_{n} = x_{n+1} - \frac{f(x_{n})}{f'(x_{n})}$$
$$x_{n+1} = x_{n} - \frac{f(x_{n})}{f'(x_{n})}$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

10. If the dependent variable y is a function of two or more variables such as y = f(x, t), where x and t are independent variables, the differential equation that relates y, x and t is said to be

Ordinary Differential Equation Simple Differential Equation

Partial Differential Equation

None of them

التاريخ: 2020/7/25	إختبار فيزياء أشباه الموصلات والأغشية الرقيقة (451 فيز)	جامعة أسيوط
النهاية العظمى:(100 درجة)	الفصل الدراسى الثانى - (2019 -2020)	كلية العلوم - الفيزياء

Answer the following questions:

<u>Section (A)</u>: Choose the correct answer from the following:

	Secretaria de la Companya de la Comp
1- Temperature dependence of charge carrier mobility in semiconductor is: (a) $\mu \alpha T^{3/2}$ (b) $\mu \alpha 1/T$ (c) $\mu \alpha T^{-3/2}$	
2- Einstein showed that the relation between diffusion coefficient (D) and	
mobility (µ) of the charge carriers (holes) can be expressed as:	
(a) $D_p = \mu_p \frac{K_B T^2}{e}$ (b) $D_p = \mu_p \frac{K_B T}{e}$	
3- 10- For an intrinsic semiconductor with energy gap, $E_g = 0.7 \text{ eV}$, $m^*_p = 6 \text{ m}^*_e$	
at 300 °K and C=4.83x10 ²¹ the position of Fermi level is equal to:	
(a) $E_f = 0.385 \text{ eV}$ (b) $E_f = 0.185 \text{ eV}$	
4- If the conductivity of intrinsic Ge at 300 K is $2.12 \Omega^{-1} \text{m}^{-1}$, electronic charge e	
= 1.6 x 10 ⁻¹⁹ C and electron and hole mobility $\mu_n = 0.36 \text{ m}^2\text{V}^{-1}\text{S}^{-1}$ and $\mu_p = 0.17$	
m ² V ⁻¹ S ⁻¹ respectively. Thus the intrinsic concentration (n _i) of charge carriers is:	
(a) $n_i = 2.5 \times 10^{19}/\text{m}^3$ (b) $n_i = 5.2 \times 10^{19}/\text{m}^3$	
5- The general expression for Fermi energy level in an intrinsic semiconductor is	
(a) $E_f = \frac{E_c + E_v}{2} + \frac{4}{3K_B T} \ln\left[\frac{m_p^*}{m_e^*}\right]$ (b) $E_f = \frac{E_c + E_v}{2} + \frac{3K_B T}{4} \ln\left[\frac{m_p^*}{m_e^*}\right]$	
p.	
6- When the complex refractive index of a semiconductor is given by a relation	
$n^* = n + ik$ at a certain wavelength λ , hence the absorption coefficient α is:	Ť
(a) $\alpha = \frac{4\pi k}{\lambda}$ (b) $\alpha = \frac{2\pi k}{\lambda}$ (c) $\alpha = \frac{4\pi}{\lambda k}$	
7- If the complex dielectric constant of nano-semiconductor compound of	
particle size 3 nm is given by $\varepsilon^* = \varepsilon_1 + i\varepsilon_2$, then real refractive index n is:	
(a) $n = \frac{1}{\sqrt{2}} \left[\left\{ \varepsilon_1 + (\varepsilon_1^2 + \varepsilon_2^2)^{1/2} \right\} \right]^{1/2}$ (b) $n = \frac{1}{\sqrt{2}} \left[\left\{ \varepsilon_1 + (\varepsilon_1^2 - \varepsilon_2^2)^{1/2} \right\} \right]^{1/2}$	
(a) $n = \frac{1}{\sqrt{2}} \left[\left\{ \mathcal{E}_1 + \left(\mathcal{E}_1^2 + \mathcal{E}_2^2 \right)^{-\gamma - 2} \right\} \right]^{-\gamma - 2} $	
8- 3- When the complex refractive index of a semiconductor is given by the	
relation $n^* = n + ik$ at a certain wavelength λ , hence the reflectivity (R) is given	
by:	
(a) $R = \frac{(n-1)^2 + (k+1)^2}{(n+1)^2 + (k+1)^2}$ (b) $R = \frac{(n-1)^2 + (k)^2}{(n+1)^2 + (k)^2}$	
9- 18- 27- The general expression for the density electrons in an intrinsic	
semiconductor with an energy gap E_g and $C = 4.83 \times 10^{21}$ is:	
(a) $n_i = CT^{2/3} \exp[-\frac{E_g}{2K_BT}]$ (b) $n_i = CT^{2/3} \exp[-\frac{2E_g}{K_BT}]$	
10- If excess carriers are injected into a semiconductor, they diffuse away from	
the point of injection (i.e., at $x = 0$) and recombine at a rate described by their	

lifetime where their density falls exponentially with a distance by the equation:	
(a) $(\Delta n)_x = (\Delta n)_{x0} \exp\left[-\frac{x}{\sqrt{D_n \tau_N}}\right]$ (b) $(\Delta n)_x = (\Delta n)_{x0} \exp\left[-\frac{\sqrt{D_n \tau_N}}{x}\right]$	
Where, $L_n = \sqrt{D_n \tau_N}$ is the electron diffusion length.	
11-When the band gap of an alloy semiconductor GaAs is1.98eV, a	
wavelength (λ) of the emitted photons due to the direct recombination process of	
electron from the conduction band with hole in the valence is:	
(a) $\lambda = 526 nm$ (b) $\lambda = 256 nm$ (c) $\lambda = 625 nm$	
(a) $\lambda = 526 nm$ (b) $\lambda = 256 nm$ (c) $\lambda = 625 nm$ 1 2- The diffusion current in semiconductor at constant temperature is directly	
proportional to:	
(a) Square of the electric field (E^2) . (b) The electric field intensity (E) .	
13- Donor impurities in n-type semiconductor introduce localized defect states	
within the energy band gap:	
(a) Near the conduction band edge. (b) At the midpoint of the band gap.	
14- In n-type semiconductor the optical absorption process is ascribed to:	
(a) Optical excitation of electron from a donor level to the conduction band.	
(b) Optical excitation of electron from the valence band to a conduction band.	
15- Illumination of CdS nanosemiconductor with photons of energy $hv \ge E_g$,	
results in:	
(a) Generation of free electron-hole pairs via optical excitation process.	
(b) Recombination of electron-hole pairs via optical excitation process.	
16- Direct inter-band optical transition occurs:	
(a). When minimum of the conduction band and maximum of valence band exist	
at different points in k-space (i.e., $k_i \neq k_f$).	
(b) When minimum of the conduction band and maximum of the valence band	
exist at the same points in k-space (i.e., $k_i = k_f$).	
C : 1 - to make incomparation of some impurities into	1
17- Doping process of semiconductor via incorporation of some impurities into	
the crystal lattice sites results in:	
(a) A decrease in electrical conductivity due to the decrease in the concentration	
of free charge carrier. (b) An increase in electrical conductivity due to the increase in the concentration	
of free charge carrier.	
(c) No change in electrical conductivity. 18- The enhancement of the optical, electronic and photoelectric properties in the	
nanosemiconductor is attributed to:	
(a) The decrease in the nanoparticle size (D) accompanied by an increase in the	
(a) The decrease in the nanoparticle surface	
gurface to volume ratio (S/V) of atoms at the hallobarticle surface.	
surface to volume ratio (S/V) of atoms at the nanoparticle surface. (b) The increase in the nanoparticle size (D) accompanied by a decrease in the	
(b) The increase in the nanoparticle size (D) accompanied by a decrease in the	
(b) The increase in the nanoparticle size (D) accompanied by a decrease in the surface to volume ratio (S/V) of atoms at the nanoparticle surface. 19- The observed, broadening, reduction and red shift of the exciton absorption	

(a) Exciton-phonon scattering. (b) Exciton - electron scattering.	
(c) Exciton - exciton interaction. (d) both (a) and (b)	
20- Increase in the nanoparticle size due to improvement in the degree of	
crystallization via thermal annealing process of the polycrystalline ZnS	
nanosemiconductor results in:	
(a) An increase in the optical band gap and enhancement in the PL intensity.	
(b) A decrease (i.e., red shift) in the optical band gap associated with a decrease	
in the PL intensity.	
21- Metal resistance increases with increasing temperature due to:	
(a) A decrease in the concentration of free charge carriers.	
(b) The different types of scattering process of charge carriers.	
22- Free Exciton (Van-Mott Exciton) is characterized by:	
(a) Large radius and weak binding energy.	
(b) Small radius and strong binding energy.	
(c) It usually occurs at room temperature;	
23- One of the most important properties of semiconducting material is:	
(a) The negative temperature coefficient of its resistivity (i.e., $\rho \alpha 1/T$).	
(b) The positive temperature coefficient of its resistivity (i.e., $\rho \alpha T$).	

SECTION B: Put a sing $(\sqrt{})$ in the front of the right sentence and a sign (x) for the wrong sentence:

30- Intrinsic photoconductivity can be occurred due to optical absorption by the host atoms accompanied by photo-generation of a free electron-hole pair for each absorbed photon.	
31- Impurity photoconductivity occurs in n-type semiconductor as a result of the	
optical absorption by localized donor atom, accompanied by the creation of a	
free electron in the valence band and positive ion bounded to the donor atom for	
each absorbed photon.	
32- Presence of non radiative surface defect states in CdS nanostructure results in	
enhancement and blue shift of both the forbidden energy gap and the PL	
emission spectrum.	
33- The efficiency of amorphous silicon solar cell is higher than that of defect	
free mono-crystalline silicon cell.	
34- Increase in the temperature of GaAS semiconductor leads to broadening,	
reduction in the intensity and red shift of the Exciton absorption peak towards the	
long wavelength side of the optical absorption spectrum.	
35-The optical band gap of pure semiconductor increases with increasing	
temperature due to electron-electron and electron -phonon interaction (scattering	
process).	
36- Under the forward-biased of n-p light-emitting diode (LED), the electrons	
from conduction band of n-region recombine with the holes exist in the valence	
band of p-region.	
37- A localize center is assigned as trapping center, if the captured carriers has	
high probability of thermal re-excitation to the free state at a near allowed band	
than its recombination with a carrier of opposite sign.	
38- Free carrier life time can be defined as the time that an excited electron or	
hole spends in the conduction or the valence band respectively before its	
recombination with a carrier of opposite sign	
39- The gain of photoconductive can be defined as the ratio of the minority	
carrier life time (τ_c) and the transit time (t).	
40- When CdS semiconductor absorbed light with photons energy $hv \ge E_g$ at the	
absence of the external electric field, then the photo-generated electrons and	
holes will contribute to the photoelectric conduction.	
41- In the manufacture of photo-detectors and photodiodes, it is preferable to use	
semiconductors with high photosensitive and have a high photoelectric gain and	
photo response speed.	
42- Photodiods can't be used in street light control, optically activated switches	
and information storage.	
43- At steady state value of a photo-conductivity (where n_{st} = $G\tau$), the rise curve	
of the photocurrent is described by: $\Delta \sigma = \Delta \sigma_{st} [-\exp(-t/\tau)]$, whereas the	

decay curve is given by: $\Delta \sigma = \Delta \sigma_{st} [1 - \exp(-t/\tau)]$.	
44- When an electron is captured by an excited center in the band gap containing	
a hole, or a hole being captured by an excited center containing electron. Then	
PL emission can be assigned as defect related- PL emission.	
45- The optical and optoelectronic properties of the semiconductors are not	
affected by the structural native defects such as vacancies and interstitial in the	
crystal lattice.	
46- In direct band gap semiconducting such as CdS and GaAs, the optical band	
gap can be determined by the extrapolation of straight line portion of Tauc's plots	
$[(\alpha h \nu)^2 v s h \nu]$ to $(\alpha h \nu)^2 = 0$, and the intercept with $h \nu$ -axis gives $h \nu = E_g$.	
47- In direct band gap semiconductor after optical excitation with photon	
energy $h \nu > E_g$, PL emission occurs after relaxation process of both the photo	
generated electrons to the bottom of the conduction and holes to the top of	
valence band before recombination process.	
48- The light-emitting diode (LED), is a p-n junction diode, which emits light,	
since electrons recombine with holes within the energy gap of the device under	
the influence of an external electric field.	
49- Incorporation of impurities in photoconductor leads to reduction in its	
photosensitivity and speed of photo-response, along with extend of the photo-	
conductivity spectral curve to a long wavelength side of the absorption edge due	
to impurity absorption process.	
50- The LEDs can have a relatively long useful lifetime, however its efficiency	
decreases due to heating effect with the increase in the electric current,	
associated with reduction in the lifetime of a LEDs.	
	1777

With best regards

Prof.Dr.Mohamed Abd-elhamed Osman

جامعة أسيوط - كلية العلوم - قسم الفيزياء جمهورية مصر العربية - أسيوط - ت: ٢٠٨٨٢٣٣٨٣٧ . فاكس: ٢٠٧٨٤

Final Exam - Second Term: 2019/2020 - Course Title: Physics of low temperature Code P 422- Time: 3 h - Teaching Staff: Prof. Dr. Ahmed Sedky

Q1(16 marks): Put line under the correct answer:

1- The critical magnetic field is the field required for;

Quenching superconductivity - Improving magnetization - zero resistance

2-Thickness of superconductor for optimum order parameter is defined as;

Coherence length - London depth - G-L parameter

3- Meissner effect occurs when the material becomes;

Superconductor - Diamagnetic - Paramagnetic

4- The surface sheath of type (I) superconductor occurs when;

$$\kappa_{\rm GL} \ge 0.419 - \kappa_{\rm GL} < 0.419 - \kappa_{\rm GL} > 0.419$$

5- The G-L parameter of type (II) superconductors is;

$$\kappa_{\rm GL} \ge 0.707 - \kappa_{\rm GL} \le 0.707 - \kappa_{\rm GL} = 0.707$$

6- The sign of TEP for a superconductor is usually

Positive - Negative - Neither negative nor positive

7- Onset of diamagnetism occurs when;

γ' is zero - γ'' is maximum - γ' is maximum

8- The value of specific heat of a superconductor at T_c is;

9- According to London equation, the field at λ equal;

10- The specific heat coefficient β is inversely proportional with;

Debye temperature - Gas constant - London depth

11- Condensation energy of each flux line is given by;

$$\frac{H_c^2 \mathcal{J}_1}{8}$$

$$\frac{H_c^2 \xi^2 h}{8} \qquad \frac{H_c^2}{8\pi}$$

$$\frac{H_{\varsigma}^2}{8\pi}$$

12- Electron pairs formation occurs as a result of;

Electron-lattice interaction - Electron-Electron interaction - Both of them

13- A rapid change of Cen at Tc is ascribed to;

Electron energy - Energy gap - Phonon energy

14- The activation energy Ea due to flux creep can be obtained by plot the relation between;

$\ln f$ and $T_p - \ln f$ and $1/T_p - f$ and $\ln 1/T_p$

15- Superconductivity can be consider as;

Good conductor - Perfect conductor- Both of them

16- Nb2Ge superconductor can be considered as;

Non-superconductor - Conventional superconductor - high Tc superconductor

جامعة أسيوط - كلية العلوم - قسم الفيزياء جمهورية مصر العربية - أسيوط - ت: ٢٠٨٨٢٣٣٨٣٠ فاكس: ٢٠٨٨٢٣٤٢٠٠٠

Q2(44 marks): Put line under the correct answer:

1-The energy gap at 0 K for $T_c = 100$ K superconductor equals;

 $4.86\times10^{\text{-21}}\,J$ - $4.16\times10^{\text{-23}}\,J$ - $12.16\times10^{\text{-20}}\,J$

2-If $n(0) = 12.16 \times 10^{21} / \text{cm}^3$, $T_c = 150 \text{ K}$, then n(100) equals;

 $9.758 \times 10^{21} / \text{cm}^3 - 9.558 \times 10^{21} / \text{cm}^3 - 9.798 \times 10^{21} / \text{cm}^3$

3-If $T_c = 150$ K, $\lambda(0) = 0.51$ μm , then $\lambda(100)$ equals;

0.569 μm - 0.549 μm - 0.559 μm

4- If $E_c = 0.112 \text{ J}$ and $f_s(T) = 0.958 \text{ J}$, then $f_n(T)$ equals;

1.081 J - 1.061 J - 1.07 J - 1.081 J

5- If Hc₂ = 20 T, $\rho_n = 5 \times 10^{-5}$ (Ω.m), then γ for Hg:1211 equals;

 $1.011 \times 10^{-3} \, (J/Kg.K) - 0.988 \times 10^{-3} \, (J/Kg.K) - 1.211 \times 10^{-3} \, (J/Kg.K)$

6- The condensation energy at a critical field of 12 T equals;

5.732 J - 5.732 J - 5.732 J

7-If $H_c(0) = 5 \text{ T}$, $T_c = 150 \text{ K}$, then $H_c(100 \text{ K})$ equals;

2.778 T - 2.877 T - 2.768 T

8- If $\lambda(0) = 5.1 \, \mu \text{m}$, then H_{c1} equals;

 $1.267 \times 10^{-5} T - 1.207 \times 10^{-5} T - 1.246 \times 10^{-5} T$

9- If $\xi(0) = 2.1 \, \mu \text{m}$, then H_{c2} equals;

 7.474×10^{-5} T - 7.407×10^{-5} - 7.496×10^{-5}

10- If $\xi = 0.81$ μm and $\lambda = 0.6$ μm , then δ_{ns} equals;

8.36H_c - 8.66H_c - 8.96H_c

11- If G-L parameter $\kappa_{GL} = 0.511$ and $H_c = 0.21$ T, then Hc_2 equals;

0.149 T - 0.137 T - 0.152 T

12- If G-L parameter $\kappa_{\rm GL}=0.511$ and $H_{\rm c}=0.21$ T, then Hc₃ equals;

0.247 T - 0.237 T - 0.257 T

13- If $r = 0.45 \mu m$ and $H_c = 0.125 T$, then I_c equals;

 $0.025 \times 10^{-6} \, (\text{Å}) - 0.031 \times 10^{-6} \, (\text{Å}) - 0.028 \times 10^{-6} \, (\text{Å})$

14- If $v_f = 10^6$ m/s, $E_B = 10^{-2}$ eV, then BCS cooper size equals;

638.4⁵ Å - 629.42 Å - 634.38 Å

15- If the electron radius = 2.82\AA , then the inter-pair distance equals;

5.61 Å - 5.66 Å - 5.64 Å

16- If the atomic weight of Pb superconductors is 207, then T_c equals;

0.065 K - 0.712 K - 0.069 K

17- If $T_c = 110$ K for a superconductor, $\gamma = 0.0125$, then $H_c(0)$ of BCS equals;

14.569 T - 14.780 T - 14.699 T

18- If a = 3.883 Å and b = 3.891 for Y:123, the orthorhombic distortion OD equals;

0.0020 - 0.0023 - 0.0021

19- If n (0) = 12.16 x 10^{21} /cm³, condensation energy = 337 T, then Δ_0 equals;

 $1.366 \times 10^{-20} \, \mathrm{J}$ - $1.406 \times 10^{-20} \, \mathrm{J}$ - $1.386 \times 10^{-20} \, \mathrm{J}$

جامعة أسيوط - كلية العلوم - قسم الفيزياء جمهورية مصر العربية - أسيوط - ت: ٧٠٨٢٣٣٨٨٢٠٠ فاكس: ٨٠٢٠٤٢٠٠٠.

20- The value of flux quantum in SS as compared to NS is;			
Twice its value - similar value - half its value			
21- If $H_{c2} = 4.1$ T, then Hc_3 equals;			
6.937 T - 6.967 T- 6.949 T			
22- If $Hc_3 = 7$ T and $H_c = 4$ T, then K_{GL} equals;			
0.756 - 0.7115 - 0.732			
Q3(30 marks): Put $\sqrt{\text{ or } X}$:			
1- Surface energy is the difference of free energies between NS and SS.		()
2- Condensation energy is the energy required to break the Cooper pairs.		()
3- The formula of BCS energy gap invalid when T _c goes above 40 K.		()
4- When $I > I_c$, a voltage appears and linearly increases with the passing I.		()
5- The slope (dV/dI) defines the flow of flux resistance R_f .		()
6-The entropy of electrons in the NS is higher than SS.		()
7- In normal core of mixed state, $\psi(r)$ increases over a length equal ξ .	()	
8- In normal core, the field partially penetrates in the form of vortex line.	()	
9- When $F_L > F_p$, the vortex lines will move as flux flow.	()	
10- When $F_L = F_p$, the vortex will localized at the top of the well as flux free		()
11- Superconductivity is quenched when the flux is flow starts.		()
12- London equation can be written as; $\vec{B}_x = \vec{B}_a \exp(\frac{-x}{\lambda})$.		()
13- The peak of χ^{N} is due to current penetration up to the center of the sample.		()
14- According to Messiner effect, M=-H and χ = -1		()
$\frac{\rho_f}{\rho_n} = \frac{H_a}{H_{c2}} = \frac{\varepsilon^2}{d^2}$ 15- Is the relation: correct		()
15. 15 the relation,	()	,
16- Type (I) has defects which tend to pin the bundles of vortices lines	()	
17- Type (II) has no defects and the flux can move easily at Hc ₁		()
18- The super-train is made to enhance the friction between the train and its tracks.	(()	,
19-Supercond. are used in radar to increase the noise of external electromagnetic field.	()	
20- The sign of thermoelectric power (TEP) is usually negative for a superconductor.	()	
21- Zero-field cooling can be done by heating superconductor to T_c at $(H < H_c)$.		()
22- Field cooling can be done by applying field (H > H _c) on a superconductor.	().	. /
23- The current of normal metal generates a voltage and causes no dissipation.	()	
24- The Cooper pairs carries move as a super-current with highly dissipation.	()	
25- The breaking of pairs requires energy less than the binding energy of them.	()	
26- In superconductors, the energy gap is caused by electron-lattice interaction.	(, ())
27- In an insulator, the energy gap is caused by the electron-electron interaction.		()
28- The T _c of Y: 123 is about 38 K		()
29- The T _c of Bi:2223 is about 89 K	()	,
30-Flux quantum in superconductor equal 14.14×10^{-14} (Web)	1)	

جامعة أسيوط - كلية العلوم - قسم الفيزياء جمهورية مصر العربية - اسبوط - ت: ٢٠٨٨٢٣٣٨٨٧٠٠ فاكس: ٢٠٨٨٢٤٢٠٠٠

Oral Exam (10 marks):

Q1(6 marks): Put line under the correct answer:

1- Flux flow resistance R_f depends upon;

Applied fields - Current and temperature - Both of them

- 2- If $(\Delta f)_{T=0} = 0.11$ J, then coefficient of specific heat γ for Ti:2223 equals;
- $2.928 \times 10^{-5} \, (J/Kg.K) 2.528 \times 10^{-5} \, (J/Kg.K) 2.728 \times 10^{-5} \, (J/Kg.K)$
- 3- If the applied field is inclined by 90° to the surface, then;

$$H_s = H_{c2} - H_s = H_{c1} - H_s = H_{c3}$$

4- When $F_L = 0$, the flux vortex will localized in the well as;

Flux creep - Flux flow - Flux pinning

5- MgB₂ system can be considered as;

Type I superconductor - Conventional superconductor - high T_c superconductor

6- The pinning radius is usually in the order of;

Coherence length - Mean free path - London depth

Q2(4 marks): Put $\sqrt{\text{ or } X}$:

Q2(4 marks). I ut \ or A.		
1- The highest value of T _c for Hg:1223 is about 134 K	()
2- When $F_L < F_p$, the flux bundles will flow from their potential well.	()
3- The peak temperature is taken against the peak of χ	()
4- The center of each bundle is called the creep center	()

اختيار تهاية القصل الدراسي الثاني 2020/2019

غ

مقرر "فيزياء الليزر وتطبيقاته" 472 ف

ملاحظات هامة: (أ) أي شطب أوتغيير يلغي الدرجة (ب) أكل فقرة درجتان

أولا: الجزع التحريري

أجب عن $\frac{45}{600}$ من الفقرات التالية بوضع علامة صح (V) أو خطأ (X) بين الفوسين أمام كل فقرة:

- 1) من أهم عمليات المصول علي الليزرهي حدوث مايعرف "بقلب التعداد", والتي تعني زيادة تعداد المستوي السفلي للطاقة بالمقارنة مع تعداد المستوي العلوي. () ().
- 2) التوازن الحراري لنظام ليزري يعني ان الطاقة الكلية له يجب ان تبقي ثابتة. () ().
- 3) من أهم مراحل انتاج الليزر أن يكون الانبعاث التلقائي أفضل من المحفز. () ().
 - 4) في الأنبعاث التلقائي تبعث الذرة بفوتون واحد,بينما في المحفز بفوتونين. () ().
 - 5) في الضخ الليزري يتم نقل طاقة الذرات من مستوي طاقة أعلي الي اخر أقل. ()()
 - 6) الليزرات المصنعة من الغاز يصلح لها الضخ الضوئي. () ().
 - 7) الليزرات المصنعة من مادة شبه موصلة أنسب لها الضخ الكهربائي. () ().
 - 8) الليزرات المصنعة من مادة صلبة أو سائلية أنسب لها الطيف الضوئي. () ().
 - 9) الليزرات المتعددة مستويات أنطاقة افضلها ذلك ذو الثلاث مستويات. () ().

الليزرات ذات الاربعة مستويات طاقة لها قلب تعداد بطيئ عن غيرها. () ().	(10
تبدأ فكرة عمل الليزر عندما تكون هناك حالة من الاتزان الحراري للنظام. () ().	
قلب التعداد يمكن تحقيقه تحت شروط انعدام الاتزان الحراري للنظام. () ().	(12
اذا كان تردد الانتقالات في المنطقة المايكروية فيسمي المضخم ميزر. () ():	(13
اذا كان تردد الانتقالات في المنطقة المرئية فيسمي المضخم ليزر. () ().	(14
ضمن شروط انعدام الاتزان ان لا ينطبق عليها قانون بولتزمان. () ().	(15
التوازن الحراري لنظام ليزري أي ان عدد الفوتونات الممتصة تساوي تلك المنبعثة.	(16
)
التوازن الحراري عدد الفوتونات الممتصة تساوي تلك من الانبعاث التلقائي فقط. ()	(17
.()
لا يحدث شعاع الليزر بين مستويي الطاقة الاكثر استقرارا في الليزر الرباعي. ()	(18
.()
مستوي الطاقة الاكثر استقرارا تمكث فيه الحالات المستثارة اطول وقت عن غيره.	
.() (
ثابت استيفان - بولتزمان للاشعاع ثابت هام بالفيزياء ,وحدة قياسه (K4 .وات)/ م3.	(20
.()(
تعداد المستوي الثاني للطاقة اكبرمن غيره فان احتمالية المستحث اعلي من	,
لامتصاص فلن نحصل علي ليزر. () ().	
تعداد المستوي الاول للطاقة اكبرمن غيره فان احتمالية الامتصاص اعلي من	
ئمستحث فنحصل علي ليزر. () ().	
و تعداد المستوي الاول للطاقة مساويا لغيره فان احتمالية الامتصاص مساوية للمستحد	
	and J

22) للحصول علي شعاع الليزر, لابد من توافر رنان, يجب أن تكون مرأته محدبة .
\cdot () ()
25) في حالة الانبعاث التلقائي تبعث الذرة بفوتونين متشابهين تماما في خصائصهما
الفيزيائية. () .
2) في حالة الانبعاث المحفز تبعث الذرة بفوتونين متشابهين تماما في خصائصهما
الفيزيائية. () ()٠
27) في حالة الامتصاص تتم استثارة ذرات المادة , ولشروط خاصة , تنتقل الالكترونات
بداخلها لمستويات طاقة مختلفة. () ().
28) ينبغث فوتونات ضوئية من الذرات المستثارة في صورة اطياف أما خطية أو شريطية
طبقا للعمليات الانتقالية للالكترونات بداخلها. () ()
29) من أهم خصائص شعاع الليزر انبعاث حرارة عالية. () ().
30) يعتبر ليزر الياقوت رباعي المستوي للطاقة. () ().
31) نوع المادة الشائبة المستخدمة بالمادة الفعالة هي اكسيد النحاس. () .
32) الرمز الكيميائي لِليزر الياقوت هو: Al ₂ O ₃ . () . ().
33) مصدر الضخ في ليزر الياقوت هو" القوس الزئبقي" . () ().
34) الطول الموجي لأشعة ليزر الياقوت هو Å8850. () ().
. من أمثلة الليزرات الثنائية المستوي للطاقة هو: جاليوم – أرزنك أي (Ga As).
·() ()
36) ينشأ عن أستخدام مصدر الضخ لليزر الياقوت نوعين من الأطوال الموجية, أي منهما
له مواصفات شعاع ليزر, الأكبر شدة منهما ذات اللون البنفسجي. ().
37) ينشأ عن أستخدام غازات معينة مثل الارجون كمصدر ضخ لليزر الياقوت أفضل من
غيرها. () ().
.() ()

الذي وضع النظرية الكمية للضوء (جسيم, موجة) هو العالم سير أسحق نيوتن.	(38
• ())
كلمة ليزر لا تستخدم فقط ضمن ترددات الضوء المرئي, ولكن أيضا في أي الترددات	(39
نريبة أو البعيدة من تحت الحمراء. () ()٠	
بمفهوم الفوتونات, فأن طاقة المتذبذب الضوئي تأخذ كمات محددة مضاعفة للمقدار	(40
h), كان ذلك بفضل العالم جيمس هوك. () ·	v)
في عملية الانبعاث التلقائي, فأن طور الموجة المنبعثة من ذرة يتوافق مع طور	(41
موجة المنبعثة من ذرة اخري في اي اتجاه. () ()	ال
المقصود بعملية الضخ هو خفض المستوي الأعلي للطاقة للمادة الفعالة الي المستوي	(42
دقل فیها. ()) (ا	\$1
تتم عملية انضخ الكيمائي للمواد الزجاجية والبلورية. () ().	(43
تستخدم عملية الضخ الضوئي للمواد ذات التركيب الكيمائي. () .	
يتم الضخ بأستخدام أشعة أكس الناتجة من أنبوبة كولدج. () ().	
من خصائص مستوي الطاقة الأكثر أستقرارا (الشبه مستقر Metastable state),	
ي الليزر الثلاثي , انه يتواجد في منتصف مستويات الطاقة الأخري. () ().	
من خصائص مستويي الطاقة الأكثر أستقرارا (الشبه مستقر Metastable stat),	
في الليزر الرباعي تواجدهما بالقرب من مستوي الطاقة الرابع. () .	
تردد الفوتون من عملية أنحلال ذرة بواسطة الأنبعاث التلقائي يتوافق مع ذلك الناتج	
من أنحلال ذرة أخري. () ()٠	
) فوتونات الأنبعاث المحفر لها نفس طور وتردد واتجاه الفوتونات الساقطة علي المادة	
() () in all a loc in a the it is that	

) في عمليات تضخيم شعاع الليزر, تستخدم مرنانات, وهي عبارة عن بلورات زجاجية	(51
شفافة. () . قفافة	ı
) في عمليات المصول علي شعاع الليزر, يكون الأنبعاث التلقائي هو المصدر الرئيسي	[5]
(i).	ĺ
) في عمليات المصول علي شعاع الليزر, يمكن حدوث أنبعاث تلقائي وأخر محفز في	(52
وقت واحد. () .	
) في عمليات الحصول علي شعاع الليزر, تسمي المادة الفعالة بالمادة الشفافة عندما	53
يتساوي تعداد مستوين للطاقة بها. ().	
) في عمليات المحصول علي شعاع الليزر, أذا تساوت أحتمالية الأمتصاص مع تلك	54
للأنبعاث المحفز, تكون المادة الفعالة شفافة. () ().	
) في عمليات المصول علي شعاع الليزر, أذا كانت أحتمالية الأنبعاث المحفز أكبر من	55
أحتمالية الأمتصاص تسمي المادة الفعالة بالمادة النشطة. () ().	
) تردد الفوتون من عملية أنحلال ذرة بواسطة الأنبعاث التلقائي يتوافق مع ذلك الناتج	56
من أنحلال ذرة أخري. ().	
) فوتونات الأنبعاث المحفز لها نفس طور وتردد وإتجاه الفوتونات الساقطة علي المادة	
المادة الفعالة من عملية الضخ. ().	
) من خصائص مستوي الطاقة الأكثر أستقرارا (الشبه مستقر Metastable state),	58
في الليزر الثلاثي , انه يتواجد في منتصف مستويات الطاقة الأخري. () ().	
) من خصائص مستويي الطاقة الأكثر أستقرارا (الشبه مستقر Metastable)	59
state), في الليزر الرباعي تواجدهما بالقرب من مستوي الطاقة الرابع. () ().	
) في عمليات الضخ للحصول على اشعة الليزر, يتم أسنثارة ذرات المادة الفعالة ثم	60
٠(). () . النات المارة المار	

: (و النان الحزي النالة

أجب عن $\frac{1}{2}$ فقرة: $\frac{1}{2}$ من الفقرات التالية بوضع علامة صح $\frac{1}{2}$ أو خطأ $\frac{1}{2}$ بين المقوسين أمام كل فقرة:

(1)	تعتبر اشعه الليزر موجات كهرومغناطيسيه طوليه () ()٠
(2)	الضوء, اشعاع كهرومعناطيسي, يسير في الفراغ بسرعة 340 مترلكل ثانيه. ()
	.(
(3)	وضع اينشتاين معادلة مشهورة لطاقة الفوتون الضوئي هي ثابت بلانك مقسوما
	علي تردد الفوتون. () ().
(4)	تم اختراع الليزر في العام 1880م ()) ()٠
(5)	يتم توليد أشعة الليزر في الانابيب الزجاجية المفتوحة الطرفين () ()
(6)	لا تتفاعل موجات اشعة الليزر مع المادة () ().
(7)	يعتبر ثابت بلانك من الثوابت الهامة بالفيزياء وحدة قياسه المتر لكل سم ()
	• • • • • • • • • • • • • • • • • • • •
(8)	تتعين سرعة الضوء في الوسط المادي من علاقة ماكسويل المشهورة:
,	ي () $c=\sqrt{rac{1}{\mu arepsilon}}$ السماحية الكهربية والنفاذية المغناطيسية للوسط المادي, علي $\mu, arepsilon$
	الترتيب]

انتهت اسئلة الاختبار

مع خالص الأمنيات الطيبة بالتوفيق,,,,,