

Faculty of Science Physics Department Date: 13 June, 2019

Time: 3 hours

Final Examination in (X-ray Diffraction & Applications 352P)
Teaching Staff: Prof. Dr. Abdulaziz Abualfadl

Constants: $h=6.626 \times 10^{-34} J.s$, $1 \text{ eV} = 1.6 \times 10^{-19} J$, $k_B = 1.38 \times 10^{-23} J/K$, $e=1.6 \times 10^{-19} C$, $c=3 \times 10^8 m/s$, $N_A = 6.02 \times 10^{23}$ atom/mole, $m_e = 9.1 \times 10^{-31}$ kg, $m_n = 6.7 \times 10^{-27}$ kg

Answer 5 questions from the following: [10 marks for each]

- 1- (a): How the laue technique particularly convenient for checking the orientation of crystals. Show why laue method cannot be used for crystal structure determination?.
- (b): Calculate the three smallest Bragg angles that arise from the diffraction of 150 keV electrons in face-centered cubic (fcc) copper with lattice parameter at room temperature equal 3.615 A°?
- 2- (a)- Define or Explain the following terms: i)- Bravai Lattice, ii)- Basis, iii)- Primitive Unit Cell, iv)- Diad Inversion Axis $(\overline{2})$ v)- Glide Plane.
- (b)- A crystal has a cubic unit cell of 4.2 °A. Using a wavelength of 1.54 °A. What is the angle (2 θ) for the (101) peak?
- 3- (a)- Describe, briefly, the determination of the crystal structure using a single crystal, give a schematic diagram of the experimental tools to show the produced diffraction pattern of the transmitted X-ray beam.
- (b)- Determine unit cell dimension when Bragg's angle of 30° is observed during first order reflection in a cubic crystal having Miller indices (121). Given the wavelength of the X-ray used is 1.418 A°.
- 4- (a)- Find the atomic packing factor for body centered cubic (B.C.C) crystal.
- (b)- The lattice parameter of a crystal is 1.5 A° and the angle for the first order reflection in (111) plane is 60°. Determine the energy of the X-rays in eV.
- 5- (a)- Discuss in brief the factors affecting X-ray spectrum.
- (b)- What is the relationship between the lattice vectors (lengths and angles) in the 7 basic crystal systems? And what is a screw transformation? Describe a screw transformation that transforms one of the basis points to another.
- 6- (a) What are the advantages and disadvantages of using neutron diffraction for structure determination?
- (b)- Explain and derives Bragg's law of X-ray diffraction from a crystal. Then draw the [111], [220] directions within a cubic unit cell and sketch the planes (100) and (110).

 انتهت الأسئلة مع أطيب الأمنيات بالتوفيق

Assiut University

Faculty of Science

Department of Physics

Term: fall 2018 - 2019

Date: June. 15. 2019

Time: 3 hours

Final Exam/ Course Title: Electromagnetic theory & Electrodynamics (P312)

The exam in 2 pages (50 marks)

Answer the THREE following questions:

Question (I) True or false and comment in details (with derivations if required):

(10 Marks, 1 mark per each)

- 1. The divergence of the magnetic flux density B is 0 as well as the curl of the electric field intensity E is 0.
- **2.** In the case of a time-varying magnetic density B(t) that penetrates a moving closed path with an area S and length L, the electromotive force is equal to $\oiint (\partial B/\partial t) \cdot dS$.
- **3.** In a circuit composed of a filamentary loop and a parallel-plate capacitor, the displacement current is equivalent to the conduction current passed in the loop.
- **4.** In a conductive material, the vectors of conduction and displacement current density are perpendicular in directions.
- 5. The choice of the vector and scalar potentials A and V is unchangeable (or unique) for the same E and B.
- **6.** The absolute charge q of a moving or fixed charge distribution having a density ρ_v over a volume t at a retarded time t_r is the same for an observer, that is $\bigoplus \rho_v(\hat{r},t_r)dt=q$.
- 7. The radiation field of a moving charge depends on the velocity of the charge.
- **8.** The gradient of the magnitude of the position vector $r = \sqrt{x^2 + y^2 + z^2}$ is the unit vector \hat{r} .
- 9. $\nabla \cdot \hat{r}/r^2 = 0$ where \hat{r} is the unit vector of a position vector r.
- 10. If the electric field $E=1800\cos(10^7\pi t-\beta z)\,\widehat{a}_x\,\mathrm{V/m}$ and the magnetic field $H=3.8\cos(10^7\pi t-\beta z)\,\widehat{a}_y\,\mathrm{A/m}$ of a uniform plane wave propagating at a velocity $1.4\times10^8\,\mathrm{m/s}$ in a perfect dielectric, the relative permeability $\mu_r{\sim}4$.

Question (II): (10 Marks)

- 1. Using cylindrical coordinates (ρ, ϕ, z) , assume the potential vector is $A = 50 \rho^2 \hat{a}_z$ Wb/m in free space. Find (a) the current density J. (b) the total current crossing the surface $0 \le \rho \le 1$, $0 \le \phi \le 1$, z = 0. (4 Marks)
- 2. In free space, if the charge density $\rho_v=200\epsilon_0/r^{2.4}$, calculate the scalar potential V assuming that $r^2E_r\to 0$ when $r\to 0$ and also that $V\to 0$ when $r\to \infty$. (3 Marks)
- 3. Assuming a complex permittivity of a dielectric where the wavenumber of a propagating EM wave can be written as $k=\beta-j\alpha$, derive expressions for attenuation (or gain) coefficient α and β coefficient. (3 Marks)

Question (III): (15 Marks, 5 marks per each)

- **1.** Describe how the Green theory can solve the equation of the vector potential $\nabla^2 A = -\mu_0 J$. (5 Marks)
- **2.** Prove that the scalar potential of a point charge moving with a constant velocity v is given by

$$V = \frac{1}{4\pi\epsilon_0} \frac{q}{R\sqrt{1 - (v/c)^2 \sin^2\theta}}$$

where R=r-vt and heta is the angle between the vector $extbf{\emph{R}}$ and the velocity $extbf{\emph{\emph{v}}}$. (6 Marks)

3. In region 1, z < 0, we have $\epsilon_1 = 2 \times 10^{-11}$ F/m, $\mu_1 = 2 \times 10^{-6}$ H/m, and $\sigma_1 = 4 \times 10^{-3}$ S/m. In region 2, z > 0, we have $\epsilon_2 = \epsilon_1/2$, $\mu_2 = 2\mu_1$, and $\sigma_2 = \sigma_1/4$. If the electric field in the region 1 at a point P(0,0,0) is $E_1 = \left(30\widehat{a}_x + 20\widehat{a}_y + 10\widehat{a}_z\right)\cos(10^9t)$, find the tangential component E_{t2} , the normal component E_{n2} , and the tangential current density J_{t2} in region 2. (4 Marks)

Answer ONLY ONE question from the following questions:

Question (IV): (15 Marks, 5 marks per each)

- **1.** Using the generalized Coulomb electric field, calculate the electric and magnetic fields of a point charge moving with constant velocity <u>and comments on the distribution of fields.</u>
- **2.** Prove that normal components of magnetic flux density B on either side of a boundary separating two media are equal while the tangential components of H may NOT be equal.

3.

- (a) Using Maxwell equations, derive an expression for the Poynting vector explaining its Physical meaning.
- (b) Let the intrinsic impedance $\eta=250+j30~\Omega$ and the propagation constant $jk=0.2+j2~\mathrm{m}^{-1}$ for a uniform plane wave propagating in the z-direction in a dielectric having some finite conductivity. If the amplitude of the phasor electric field is $|E_s|=400~\mathrm{V/m}$, find the time-average value of the Poynting vector.

Question (V): (15 marks, 5 marks per each)

- 1. Using the retarded potentials, derive Jefimenko's equations.
- 2. Obtain an expression for the propagation constant in good conductors and explain the skin effect.
- 3. A lossy dielectric has an intrinsic impedance of 200 \angle 30° Ω at a particular frequency. If, at that frequency, the plane wave propagating through the dielectric has the magnetic field component

$$H = 10e^{-\alpha x}\cos(\omega t - x) \hat{a}_v A/m$$

Find E and α . Also, determine the skin depth and the electric field polarization.

Hints: In below, length and volume elements; gradient, divergence, curl, and Laplacian operators in spherical (on left-hand side) and cylindrical (on right-hand side) coordinates.

SPHERICAL
$$d\ell = dr\hat{\mathbf{f}} + rd\theta\hat{\theta} + r\sin\theta d\phi\hat{\phi}$$
 $d^3r = r^2\sin\theta dr d\theta d\phi$ CYLINDRICAL $d\ell = d\rho\hat{\rho} + \rho d\phi\hat{\phi} + dz\hat{z}$ $d^3r = \rho d\rho d\phi dz$

$$\nabla\psi = \frac{\partial\psi}{\partial r}\hat{\mathbf{f}} + \frac{1}{r}\frac{\partial\psi}{\partial \theta}\hat{\theta} + \frac{1}{r\sin\theta}\frac{\partial\psi}{\partial \phi}\hat{\phi}$$

$$\nabla\psi = \frac{\partial\psi}{\partial \rho}\hat{\rho} + \frac{1}{\rho}\frac{\partial\psi}{\partial \phi}\hat{\phi} + \frac{\partial\psi}{\partial z}\hat{z}$$

$$\nabla\cdot\mathbf{A} = \frac{1}{r^2}\frac{\partial}{\partial r}(r^2A_r) + \frac{1}{r\sin\theta}\frac{\partial}{\partial \theta}(\sin\theta A_\theta) + \frac{1}{r\sin\theta}\frac{\partial A_\phi}{\partial \phi}$$

$$\nabla\cdot\mathbf{A} = \frac{1}{r\sin\theta}\left[\frac{\partial}{\partial \theta}(\sin\theta A_\phi) - \frac{\partial A_\theta}{\partial \phi}\right]\hat{\mathbf{f}} + \left[\frac{1}{r\sin\theta}\frac{\partial A_r}{\partial \phi} - \frac{1}{r}\frac{\partial}{\partial r}(rA_\theta)\right]\hat{\theta} + \frac{1}{r}\left[\frac{\partial}{\partial r}(rA_\theta) - \frac{\partial}{\partial z}\right]$$

$$\nabla\times\mathbf{A} = \frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\psi}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial \theta}\left(\sin\theta\frac{\partial\psi}{\partial \theta}\right) + \frac{1}{r^2\sin\theta}\frac{\partial^2\psi}{\partial \phi^2}$$

$$\nabla^2\psi = \frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\psi}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial \theta}\left(\sin\theta\frac{\partial\psi}{\partial \theta}\right) + \frac{1}{r^2\sin\theta}\frac{\partial^2\psi}{\partial \phi^2}$$

$$\nabla^2\psi = \frac{1}{\rho}\frac{\partial}{\partial \rho}\left(\rho\frac{\partial\psi}{\partial \rho}\right) + \frac{1}{\rho^2}\frac{\partial^2\psi}{\partial \phi^2} + \frac{\partial^2\psi}{\partial z^2}$$

End of exam, Best wishes! Dr. Hesham Fares

Assiut University

Faculty of Science Department of Physics

Term: Spring 2018- 2019

Date: 12 June, 2019

Time: 3 Hours

Course Title: Mathematical Physics - Code P316 - Final Exam. (50%)

Answer the following question: (all questions carry the same weight 10 points)

1- Find the Fourier cosine series of the function: $f(x) = \pi^2 - 3x^2$ in the interval $(-\pi,\pi)$, also find the function $x(\pi^2-x^2)$ in the same interval and then prove that:

(i)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}$$

(ii)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

2- Find the Laplace transform of only two of the following:

(i)
$$\cos(\sqrt{t})/\sqrt{t}$$

(ii)
$$F(t) = \begin{cases} \sin(t) & 0 \le t \le \pi \\ 0 & \pi \le t < 2\pi \end{cases}$$

$$0 \le t \le \pi$$
$$\pi \le t < 2\pi$$

- (iii) $e^{2t}(3\sin 4t 4\cos t)$
- 3- Express only two from the following integrals in terms of the gamma or beta functions:

$$(i) \int_0^\infty \frac{dx}{\sqrt[4]{x^3} (1+x)^3}$$

(ii)
$$\int_{0}^{4} y^{3/2} \sqrt{16 - y^2} dy$$

(i)
$$\int_{0}^{\infty} \frac{dx}{\sqrt[4]{x^3} (1+x)^3}$$
 (ii) $\int_{0}^{4} y^{\frac{3}{2}} \sqrt{16-y^2} dy$ (iii) $\int_{0}^{\pi} \frac{\sqrt{\sin x}}{\left(5+3\cos x\right)^{\frac{3}{2}}} dx$

4- Solve only two from the following:

(i)
$$\int_{0}^{1} J_{1}(\sqrt[3]{x}) dx$$
 (ii)
$$\int J_{0}(x) \cos x dx$$

(ii)
$$\int J_o(x) \cos x \, dx$$

(iii)
$$\int J_3(x) dx$$

- **5-** (i) **Prove** that $P_3(\cos \theta) = \frac{1}{8} (3\cos \theta + 5\cos 3\theta)$
 - (ii) Express $f(x)=x^3-3 x^2+2 x$ in terms of Hermit Polynomials $\sum_{n=0}^{\infty} a_n H_n(x)$

*****Good Luck *****

Prof. Dr. A. A. Ebrahim

Assiut University faculty of Science Physics Department

Final examination 2nd Term 2018/2019 Plasma Physic (P332) 3rd level (physics)

Allowable time: 3 hours Date: 25/5/2019

Total marks: 50 degree

Answer the following questions

I-a- Derive an expression for the maximum transferred energy due to the elastic collision between an electron of mass m and an atom of mass M. what does mean this expression.

b- Deduce an expression for the particle diffusion current and the diffusion coefficient in the absence and presens of a magnetic field.

II-a- Study the motion of charged particles in: a time dependent magnetic field and non-uniform magnetic field. Prove that the plasma magnetic moment is constant in these two cases.

b-i- Draw an indicative figure for the magnetic mirror

ii- Calculate the angle θ at which the particle orbit makes with the z-axis at the central plane of magnetic mirror where the minimum magnetic field equals (0.2 Tesla) and the maximum magnetic field equal (6.76 Tesla)

III-a- Deduce an expression for the plasma dielectric constant and the store energy in a plasma medium.

b- Discuss with draw the pinch effect occurs on plasma. Derive the relationship between the plasma temperature and the current in the formed narrow filament in this case

c- For a plasma of density $N=2x10^{15}cm^{-3}$ and radius of the formed filament r=17.846 cm. Calculate the required current to make the plasma temperature is reached to 100 eV, where 1 eV=1.6x10⁻¹⁹ Joule and KT in joule.

IV-a-i: Give a short account on the types of oscillations in a fully-ionized plasma and derive an expression for the plasma natural frequency f_p . Write the relation which gives the value of this frequency f_p .

ii- Use the equation of ion wave dispersion relation to get an expression for the propagation constant K_x of this wave. Show when this K_x is real and very large.

When the ion wave exhibits the characteristics of sound wave propagating in the plasma medium

b-i- Prove that the plasma dielectric constant given by $\varepsilon=[1-(\omega\rho/\omega)^2]$, where $\omega\rho$ is the plasma angular frequency and ω is the angular frequency of an electromagnetic wave propagates through the plasma medium

ii- Derive the magnetohydrodynamic (M.H.D) wave equation for quasi - neutral plasma. Calculate the approximate speed of Alfven waves in a plasma of mass density $10^{-6} \, \mathrm{kgm^{-3}}$ and a magnetic flux density= 10Tesla

Assiut University Department of Physics Nuclear Physics 1 – Code P342 – Final Exam (50 pts.)

May 27, 2019

Time: 3 hours

Answer the following question: (all questions carry the same weight 10 pts.)

Question #1

- **A.** In a scattering experiment it was found that ¹²C has a nuclear radius of 2.7 fm. The experiment is then repeated with another, unknown element and it is found the nuclear radius is twice as big. **What** is the mass number of this unknown element?.
- **B.** The Q value for the reaction ${}^{9}\text{Be} + p \rightarrow {}^{8}\text{Be} + {}^{2}\text{H is } 559.5 \text{ KeV}$. Using the masses of ${}^{9}\text{Be}=9.01218u$ and ${}^{2}\text{H}=2.014u$ to **find** the mass of ${}^{8}\text{Be}$ in MeV.
- **C. Suggest** a simple reason why the ${}^{12}_{6}$ C nuclide has a higher binding energy (more stable) than ${}^{12}_{7}$ N, even though they are isobars?.
- **D.** Calculate the ratio of the surface energy term per nucleon for ⁴²Ca to that of ²⁰⁸Pb.
- **E. Show** that the electric quadrupole moment of a nucleus vanishes for spherically symmetric charge distribution.

Question #2

- **A.** by-product of some fission reactors is the isotope 239 Pu which is an α -emitter having a half-life of 24120 *yrs*. Consider 1.0 kg of 239 Pu at t=0.
 - i. What is the number of ²³⁹Pu nuclei present at t=0?
 - ii. What is the initial activity?
- **B.** *Show* that the nucleons are not elementary particles but have an internal structure?.

Question #3

- A. The various terms in the Semi-Empirical Mass Formula.

 [NB: detailed mathematical expressions and values of constants are not required].
- **B.** The Q values for the reactions ${}^{2}\text{H}(d, n){}^{3}\text{He}$ and ${}^{2}\text{H}(d, p){}^{3}\text{H}$ are 3.27MeV and 4.03MeV, respectively.

Show that the difference between the binding energy of the 3 H nucleus and that of the 3 He nucleus is 0.76MeV and **verify that** this is approximately the magnitude of Coulomb energy due to the two protons of the 3 He nucleus. (Distance between the protons in the nucleus $1.3\times3^{1/3}$ fm).

Question #4

- A. The mass spectrometer is a very useful machine for measuring the masses of atoms (ions) and their relative abundances. **Explain** this very briefly?.
- **B.** Nucleus of mass number A=235 was divided into two nuclei if their mass ratio (2:3). **Calculate** the radii of the products?.

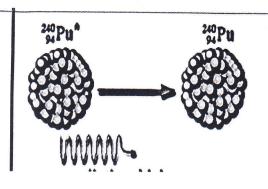
Question #5

- **A.** ²⁴²Cm decays via alpha emission to an excited state of ²³⁸Pu, which further decays to the ground state via gamma emission. The Q value of alpha decay is 4.6*MeV* and the gamma ray energy is 2.1*MeV*. **Draw** an energy level diagram of the decay processes.
- **B.** Thermal neutrons are captured by ${}^{10}_5{
 m B}$ to form ${}^{11}_5{
 m B}$ which decays by α -particle emission to ${}^7{
 m Li}$. Write down the reaction equation and **calculate**
 - (a) The Q-Value of the decay in MeV.
 - (b) The Kinetic energy of the α -particles in MeV. (Atomic masses: ${}^{10}_{5}\mathrm{B} = 10.01611u; {}^{1}_{0}n = 1.008987u; {}^{7}_{3}\mathrm{Li} = 7.01822u; {}^{4}_{2}He = 4.003879u; 1 amu = 931.5 MeV)$

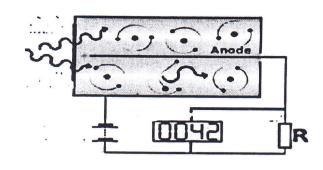
Constants:

 $R_o = 1.3 \text{ fm}, e^2 = 1.44 \text{MeV} - \text{fm}, m_e = 0.511 \text{MeV}, c^2 = 931.5 \text{MeV}, 1y = 3.15 \times 10^7 \text{ sec},$ $N_A = 6.022 \times 10^{26} \text{ atom / kg}, 1 \text{Cu} = 3.7 \times 10^{10} \text{ deacy / sec}$

****Good Luck ****

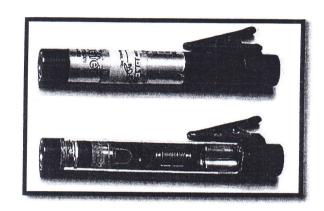

Prof. Dr. A. A. Ebrahim

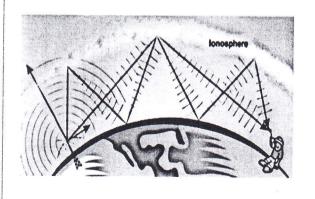
Assiut University	Radiation Physics	Le المستوي : الثالث	vel: III				
Faculty of science	P 344	10/6/2	2019				
Physics department	2018-2019	Time: 3	hours				
Question No.1: (8 deg.),,,,, Choose the correct answer-(Or answers):							
1. Nature is the:	(A) material (B) end						
	, ,	(A) material (B) radiation (C) all of the	e above				
	$: (A) p \cong n \qquad (B) p$						
	rticulate radiation:		ıa				
		: (A) X-rays (B) Beta (C) Gamm	ia.				
6. The isotope has the sam							
but a different number	of: (A) p	rotons (B) neutrons					
7. Gamma radiation origin	ates in the (A) electronic sho	ells (B) nucleus					
•	om (A) electronic she						
		eus. (A) neutron (B) proton (C) elec					
		(B) increases By: (A) one					
		ation (B) β radiation (C) Υ radiate					
		es (B) artificial (C) radioactive s	ubs				
•	ublic exposure to natural rate (B) inhalation (C) ingest						
(A) cosmic radiation	, ,	pors (in building materials) as a	result				
	Traces (A) $Uranium$ (B)						
		+ thorium (B)Radon + Thoron (C)	Ne + C				
-	a Kg. of substance by the ra						
(A) Absorbed dose	(B) equivalent dose (C) effectiv	ve dose					
15- equivalent dose weigh	ted for susceptibility to har	rm of different tissues:					
,	B) equivalent dose (C) effective		(C)				
16- The conventional unit	of the radiation absorbed	dose is: (A) joule (B) rad	(C) gray				
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
		s the correct answer-(Or ans	wers):				
	es from a source can be	considered as:					
	aves (C) particles						
E STE MANUSCRIPPE ANNO SE MINES AND SECURIOR SE PORTO AND SE MANUSCRIPPE							
		(A) light (B) material (C) end					
•••••							
3. Nonionizing radiation can be considered as: (A) particles (B) waves (C) energy							


4. lo	nizing radiation can be	considered as: (A)	particles (B) we	aves (C) ener	gy		
5. El	ectrons move around		ng to: (A) Newi	on's laws (B) Einstein's laws		
6. R	adioactive decay le		ility (B)	stability			
	adiation can be defi		on of : (A) exce	ess mass (B)	excess energy		
		•••••	•••••••	•••••			
	he radioactive decay (A) electrons	(B) protons	(C) ne	eutrons	•		
	eta decay occurs wh	en Is emitte	(C) neu	tron			
	Gamma radiation ca		as:.				
	A) an energy	(B)waves	(C)partic	eies			
	Half-life is the time i	(B) activity	(C) volun	ie			
				• • • • • • • • • • • • • • • • • • • •			
12- Natural radioisotopes produced due to the presence of:. (A) solar system (B) cosmic rays (C) atmosphere							
				• • • • • • • • • • • • • • • • • • • •			

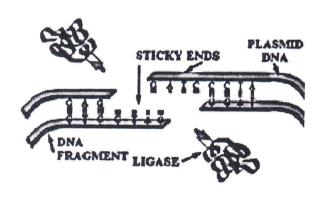
13- The deep	penetrating type	of radiation	is:						
(A) Q (A) Mass	(B) charge	(C)Y . (C) veloc	city	ise of its:					
		••••••	••••••		•••••				
14. 1 (G_y) or (A) more	fαrad Ha (B) l			G_y) of $oldsymbol{eta}$ rad or equal					
15. Regions a	at higher altitudes (B) l		cosmic r (C) less d						
		••••••							
16. DNA con (A) disease	tains information (B) n	and prediction							
••••••	•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••				
17. The mai	n factors influen	cing radiati	ion dose a	re	••••••				
(A)time		listance	(C) shield						
	•••••			•••••	••••••				
Question No.3: (25 deg.)									
	A). Comment shortly on the following images :(18 deg.)								
- % & &	→ ,0'' + ,H' → \$\$\$		• (
			¹ H Hydrogea	² H Deuterium	³ H Tridum				
		(3)							

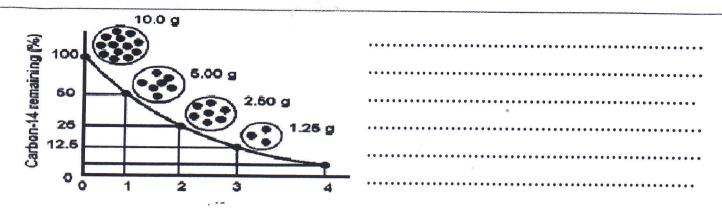
ji.




.....

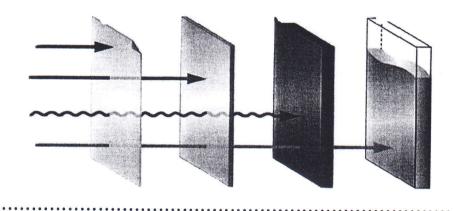
Na(Ti) i
Crystal
Phote-carbeda


Thin Al window



......

......



B). Suggest a title for the following: (7 deg.)

$$H1_1 + H_1^1 \longrightarrow H_1^2(D) + e_{+1}^0 + v + energy$$

$$H_1^1 + H_1^2 \longrightarrow He_2^3 + energy$$

$$He_2^3 + He_2^3 \longrightarrow He_2^4 + H_1^1 + H_1^1 + h.energy$$

_____ Best wishes_____انفت الاستلتمع النمنيات بالنوفيق _____ Best wishes_____

<u>Draft</u>