Assiut University
Faculty of Science
Department of Physics

Term: 2nd 2018
Date: 13-5-2014

Time allowed: 3 hours

Physics of Nano materials and its applications Cod :458 P

Answer the following questions:

Q1: Chose the correct answer in th following. (10 marks)

1- Nano materials are: (a) Small volume materials

- (b) Having grain size about 100 nm and down,(c) Having grain size of 1 nm.
- 2- Properties on nanoparticles differ from bulk materials:(a) due to the large surface area to volume ratio,(b) less number surface atoms. (b), (c) impurities.
- 3- When a metal particle having bulk properties, is reduced in size, the density of states:(a) increases. (b) decreases.(c) remains same.
- 4- Nanosized particles are chemically very active because:
- (a) of their small size. (b) number of surface atomss is less.
- (c) the number of surface atoms is more.
- 5- In the fabrication of nanoparticles, macro-crystalline structures are broken down to nanocrystalline structures in: (a) chemical vapour deposition. (b) ball milling. (c) electro deposition.
- 6- The surface area to volume ratio of a sphere with radius 1 cm is R1 and that of a sphere with radius 5 cm is R2. Then $R_1 =R_2$:
- (a) 3 (b) 1/3 (c) 5.
- 7- The mechanical strength of nano material becomes:
- (a) Larger (b) smaller (c) does n't change.
- 8- Only (the classical models, quantum mechanical models, or both); can describe the motion and energy of the nanomaterials.
- 9- In nano-materials: with decrease of size, the inter-atomic spacing:
- (a) increases (b) decreases (c) first increases and then decreases.
- 10 The density of states for the two dimensional material is described by:
- (a) parabolic function , (b) step function , (c) Delta function.
- Q2- (a) Given the following data for GaAs: $m_e = 0.067 m_0$, $m_h = 0.45 m_0$, $\epsilon = 0.067 m_0$
- 12.4: Calculate 1- The effective mass. 2-ExcitonBohr radius (5marks).
- (b) Write about quantum confinement effect in nano materials. (5marks).

- a- Write True (T) or False (F) in the following: (5 marks)
- (1) Tuning the size of semiconductor nanocrystal is a method for tunning the band gap ,hence the wavelength of light absorbed or emitted by the crystal.
- (2)- Quantum confinment effect causes the enrgy gap to increase, therefore more energy is needed in order to be absorbed by the material.

en aum continement effect in name materials france/

- (3)- High surface area to volume ratio provides a strong driving force to speed up thermodynamic processes that minimize free energy.
- (4)- As the size on nanocale reduced, the fraction of atoms on the surface of the nanocrystal grows larger and larger.
- (5) When the frequency of Plasmon oscillation is the same as the frequency of light that it generates it (i. e., the incident light), the plasmon is said to be in resonance with the incident light.
- (b) Explain how an atomic force microscope works and mention the modes of operation . (5 marks).

Q4-

Write about the following:

a comment of the first considers.

(10marks)

- 1- Ball milling (mechanical attrition) method.
- 2- Sol-Gel technique for synthesis of nano materials.
- 3- Ultrasonication method for synthesis of nano materials.

Q5 write about:

- 1- Basic types of low-dimentional semiconductors, according to dimensionality.
- 2- Types of defects in solid nanomaterials.

Is if milling injechanical attrition morbi

2- The Scanning tunneling microscope. (10 marks)

With my best wishes/Prof.dr. Aly Othman

P. Sol-Gel technique for synthesis of nano materials

B. Elitersonication method for synthesis of anno materials

In materials at the solid nanomaterials and annothing the solid nanomaterials.

Z. The Scanning tunneling microscope. (Ill marks)

SULLA PROPERTY OF PROPERTY OF SAME OF THE SAME OF THE

and the first of the second state of the second

Balling in Lawrence

السؤال الخامس

ا- اذكر مميزات وعيوب استحدام الليزر في الصناعة

ب. اذ كانت النسبة بين تعداد المستوى االثاني الى تعداد المستوى االاول $N_2/N_1 = 1 / e^{1/4}$ عند درجة حرارة $N_2/N_1 = 1 / e^{1/4}$ عند درجة حرارة $N_2/N_1 = 1 / e^{1/4}$ احسب طول موجة وتردد الانتقال بين المستوين ثم احسب فرق الطاقة بالالكترون فولت $N_2/N_1 = 1 / e^{1/4}$ عند رجات) $N_2/N_1 = 1 / e^{1/4}$ عند المسلقة المطلمة على بعد $N_2/N_1 = 1 / e^{1/4}$ عند المسلقة المطلمة على بعد $N_2/N_1 = 1 / e^{1/4}$ عند المسلقة الفاصلة بين الفتحتين اذا علمت ان المسلقة بين الشاشة والفتحتين من الهدبة المركزية . احسب المسافة الفاصلة بين الفتحتين اذا علمت ان المسافة بين الشاشة والفتحتين $N_2/N_1 = 1 / e^{1/4}$ وما هو الوضع الزاوي للهدبتين الرابعة و الخامسة وما نوعهما .

السوال السادس

١- اذكر فقط انواع التجاويف الرنانة ثم اشرح بالتفصيل تجويف فابيري بيرو (٤ درجات)

ب- احسب عدد الانماط الليزرية المتكونة داخل تجويف كروي متحد المركز اذا علمت ان قطر كل من المراتين 1m وطول موجة شعاع الليزر المتكون بداخله 600 mm قم احسب تردد التجويف ج-احسب رتبة المدار النهائي في طيف ذرة الهيدروجين نتيجة للانتقال من مستوى الطاقة الخامس اذا كان تردد

(۳ درجات) 5.45x10¹⁴ Hz

انتهت الأسئلة والله الموفق

h=6.625x10⁻³⁴ j.sec ثابت بلانك

شابت بولتزمان j/k⁰ أبت بولتزمان

شحنة الالكترون C و1.6x10⁻¹⁹ C

سرعة الضوء C=3x10⁸ m/sec

 $R=10.97x10^6 \ m-1$ ثابت رایدبرج

امتحان الفصل الدراسي الثاتي ٢٠١٧ – ٢٠١٨ الفرقة: رابعة علوم المقرر: فيزياء الليزر وتطبيقاتها (٤٧٦ ف) الزمن: ثلاث ساعات تاريخ الاختبار ٢٠١٨/٥/٢٠ م الممتحن: د. محمد العسيلي

جامعة أسيوط كلية العلوم قسم الفيزياء

أجب عن حمسة أسئلة فقط مما يأتي:-

السوال الأول

ا ـ استنتج العلاقة بين معاملات ايتشتين

ب- احسب النسبة بين معاملات اينشتين لليزر النيتروجين ذات الطول الموجي 337.1 nm عند درجة حرارة $\rho(v)$ ثم احسب كثافة الاشعاع $\rho(v)$ السؤال الثاني

ا ـ اذكر فقط خصائص اشعة الليزر ثم اشرح بالتفصيل كيفية حساب اتساع المنحنى الطيفي باستخدام ظاهرة دوبللر (٦ درجات)

ب- إذا كان طول موجة شعاع ليزر الكربون 10.6 μm أحسب اتساع المنحنى الطيفى الناتج من ظاهرة دوبلر عند درجة حرارة 500k ثم احسب التغير في الطول الموجى الناتج من تأثير دوبلر علماً بان كتلة ذرة الكربون 13 وحدة كتل ذرية

السؤال الثالث

ا-اذكر فقط انواع الليزرات ثم اشرح بالتفصيل ليزر الهليوم - نيون (٤ درجات)

ب غشاء رقيق معامل انكساره mm 1.35 استخدم لمقياس ميكلسون فسمح بمرور 150 هدبة احسب سمك الغشاء اذا كان طول موجة شعاع الليزر المستخدم λ=550nm واذا استبدل الغشاء بشريحة زجاجية لها نفس السمك ومعامل انكسارها 1.5 فما هو عدد الهدب التي تسمح بمرورها الشريحة الزجاجية (٣ درجات) ج سقطت حزمة من ليزر الهليوم نيون ذات الطول الموجي 632 nm فتحة قطرها 0.03 mm احسب زاوية انفراج الشعاع في حالتي الترابط المكاني التام والترابط المكاني الجزئي (٣ درجات)

السؤال الرابع

ا ـ اشرح بالتفصيل كيفية حساب معامل كسب الاشارة الصغيرة ومعامل تكبير شعاع الليزر (٢ درجات) بـ سقط شعاع ليزري على مادة سمكها 0.5 cm احسب معامل امتصاصها اذا علمت ان شدة الشعاع الساقط ثلاثة اضعاف شدة الشعاع النافذ.

اقلب الصفحة

المستوى: الرابع علوم الشعبة:ف. ك الزمن: 3 ساعات

دور مايو 2018م امتحان نهاية الفصل الدراسى الثانى فى مادة أطياف ذرية وجزيئية (432 ف) التاريخ: 29 / 5 / 2018م

درجة كل سؤال (10 درجات)

أجب عن خمسة أسئلة فقط ممايأتي:_

- 1- اشرح قاعدة هوند ومنها أحسب الحد الطيفى الأساسى لكل من الكروم والكوبلت والنحاس علماً بأن العدد الذرى لكل منهم هو 24، 27، 29 على الترتيب.
 - 2- اشرح التركيب الدقيق للخط الطيفي الأول في سلسلة بالمر في ذرة الهيدروجين
 - 3- وضح تأثير مجال مغناطيس قوى على خط طيفى في الذرة مفسراً ذلك كلاسيكياً.
 - 4- اشرح تركيب وطاقة وطيف الجزئ ثنائى الذرية كدوار تذبذبى.
 - 5- اشرح تركيب وطاقة وطيف الجزئ ثنائى الذرية كمذبذب غير توافقى.
 - 6- من الجدول التالي:-

	Wave numbers of line spectra in cm ⁻¹	
J	R(J)	P(J)
0	21199.81	
1	21202.88	21193.25
2	21205.74	21189.97
3	21208.52	21186.41
4	21211.12	21182.66
5	21231.58	21178.88

أوجد كل من: -

J=3 عند العدد الكمى (B_{v} `, B_{v}) عند العدد الكمى

ب- الفصل بين رأس الحزمة وأصل الحزمة

ج- موقع رأس الحزمة من الطيف

د/ على محمود حافظ

انتهت الأسئلة مع اطيب الامنيات بالنجاح

جمهورية مصر العربية _ أسيوط - ت: ٢٠٨٨٢٣٣٨٨٠٠ فاكس: ٨٠٢٢٤٢٠٨٠٠

Final Exam-Second Term: (2017/2018) - Course Title: Physics of Low Temperature P- 422- Time: 3h - Prof. Dr. Ahmed Sedky

Answer the following questions:

Q1(10 marks):

(a) In terms of G-L theory, discuss only the main difference between type (I) and type (II).

(b) Calculate the T_c and $H_c(0)$ for type (I) if $H_c = 7616$ Oe at 12 K, and 4284 Oe at 16 K.

(c) Prove that BCS energy gap at 0 K is given by $3.52K_BT_c$.

- جامعة أسيوط - كلية العلوم - فسم الفيزياء جمهورية مصر العربية - أسيوط - ت: ٢٠٨٨٢٣٣٨٢٧. فاكس: ٢٠٨٨٢٤٢٧٠٨.

Q2(10 marks):

(a) Calculate the T_c of type (II) superconductor if $H_{c2}(0) = H^2_{c}(0)$.

(b) Explain how you can determine the flux creep activation energy of flux bundles.

(c) Write the type of structure, T_c , J_c (0) and H_c (0) values for Y:123 and Hg: 1223 systems.

جامعه اسبوط - كليه العلوم - قسم الفيزياء جمهورية مصر العربية - اسبوط - ت: ٢٠٨٨٢٣٣٨٨٠٠ فاكس: ٨٠٢٠٤٢٠٨

03(10 marks):

(a) Prove that type (I) superconductor can carry surface sheath.

(b) Explain how you can determine the flux flow resistance along a flat strip in mixed state of type II.

(c) Write only the physical meaning of London depth and then calculate London depth at 25 K for a superconductor if λ (0) = 0.51 μm and T_c = 100 K.

Q4(10 marks):

(a) Write short account about BCS electron-lattice interaction for Cooper pair.

(b) Clarify in details how you can determine the resistivity of superconductor.

(c) If $\lambda_L = 1.2$ nm and $K_{GI} = 0.955$, calculate by nm the space of vortex lines when ρ_f increased up to $2\rho_n$.

Q5(10 marks):

(a) Determine only the expected size of BCS Copper pair in superconductors.

(b) Calculate the surface energy, difference in free energies and H_{c3} of type (II) if $\lambda_L = 1.2$ nm, $\xi = 0.5$ nm.

(c) In terms of entropy, derive the relation between the specific heat and H_{c} in superconductors.

7) For the following program, what will be printed? program test x1 = 1.0x2 = 2.0call calc(x2,x3) x1=2*x1write(*,*)x1,x2,x3stop end subroutine calc(y1,y2) x1=y1**2y2=x1+3return end a) 2.0 2.0 7.0 b) 4.0 2.0 7.0 c) 1.0 2.0 4.0 d) 1.0 4.0 7.0 8) What will be printed for value of variable "ans" in the following FORTRAN? x = 1.0y = 2.0ans=0.0if(x.gt.0.0.and.y.lt.10.0.and.y.ne.2.) then ans=1.0x = -1.0elseif (x.1t.0.0) then ans=2.0else ans=3.0end if write(*,*) ans end a) 0.0 b) 1.0 c) 2.0 d) 3.0 9) A function subprogram differs from subroutine in which of the following: a) function name's type must be declared, but no type declaration for subroutine name b) many variables can enter function subprogram, but one variable can enter subroutine c) one variable can enter function subprogram, but many variables can enter subroutine c) function subprogram returns many values, but subroutine returns a value

10) The variable y is declared Logical. Which of the following is a valid statement?

a)
$$y = 'Yes'$$
 b) $y = .Yes$. c) $y = .True$.

d) y = 'True'

Duestion (3): Nume	rical Methods: Circle	the correct choice:	(6 Marks)
) The Newton-Raphso	on method fails when:		
f'(x) is negative	b) $f'(x)$ is too large	c) $f'(x)$ is zero	d) never fails
		b] for a real continuous	function $f(x)$, if
f(a)f(b) > 0, then th	ere is (are):		d) none of them
a) no roots	b) at least one root		,
		b] for a real continuous	function $f(x)$, the
First approximation is a) $x_1 = \frac{af(b) - bf(a)}{f(b) - f(a)}$: b) $x_1 = \frac{bf(b) - af(a)}{f(b) - f(a)}$	c) $x_1 = \frac{bf(a) - af(b)}{f(b) - f(a)}$	d) $x_1 = \frac{af(a) - bf(b)}{f(b) - f(a)}$
1) By applying Simps	on's 3/8 rule the number	of sub intervals (divisio	ns) should be:
a) odd	b) even	c) odd or even	d) multiple of 3
5) By applying Trape	zoidal method the numb	er of sub intervals (divis	ions) should be:
a) odd	b) even	c) odd or even	d) multiple of 3
6) Linear interpolatio a) first-degree interpo c) third-degree interp	olating polynomial oolating polynomial	b) second-degree inter d) none of them	
7) Using Euler's meth	nod, solve $\frac{dy}{dx} = \frac{2x}{y}$, $y(0) =$	= 1., the value of $y(0.1)$	in two subintervals is:
Solution: Euler's me	thod form is: $y_{i+1} = \dots$	# # # \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
$x_0 = \dots, y_0 = \dots$	$\overline{x} = \dots, \overline{x} = \dots, n =$	=, $w =$	

a) 1.0000	b) 1.0050	c) 1.0075	d)1.0099
8) Using Simpson's n Solution: Simpson's		(x) dx in two subinterva	
			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$x_a - \dots, x_b - \dots$			
a) 1.0000	b) 1.5704	c) 2.0000	d) 2.0946
<i>a,</i> 2.0000	•	e 4 of 14	

Question (2): FORTRAN Simulation: Solve the following problems: (5 Marks) In the experiment of determination the focal length of convex lens, you have the data:

object distance x (m)	30	32	34	, 36	38
image distance y (m)	15	14.54	14.17	13.85	13.57

If you know that the focal length f is given by the following relation: $\frac{1}{f} = \frac{1}{x} + \frac{1}{y}$

Write a Fortran program to simulate this experiment by building the main program as:

- Values of x are declared as real array and varying by step 2 from 30 to 38 in do loop.
- Values of y are declared as real array and stored in data block.
- \bullet Focal lengths f are declared as real array and calculated at each given data in do loop.
- In the do loop, write on the screen the values of x, y and f.
- Calculate the average focal length and store it as real variable called average.
- Write on the screen the average focal length as: 'average f =' the average.

							0	C	0,	0
0.0			**	**	0.0					• • • • • • • • • • • • • • • • • • • •
	• •	* *	**		29					
		3-0	* *	**	* *	• • • • • • • • • • • • • • • • • • • •				• • • • • • • • • • • • • • • • • • • •
6.9	5.0			**	0.0	454304000000000000000000000000000000000				
	0.0	**	**	40	**	* • • • • • • • • • • • • • • • • • • •				
	**	4.0	**	**	**	******				
	w 90	~ #	2.7	2.5	0.0					
		9.5	5.0		8.0	*********				
* *	**	**		**	6.5			4 6 0 5 0 0 0 0 0 0 0 0 0 0		
	**	**	**	**	* *					
	4.4	**	**	***	is or					
			3.0	9.9	**					
* 0		* *		0.6	3.0					
			**	6.0	**		3 3 4 4 4 4 5 5 2 4 4 5 5 2			2 6 7 8 8 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8
	1 4 4			**	0.0	000000000000000000000000000000000000000				
		4.0	0.0		00					

The calculated Lagrange coefficients are:	
,	
•	
	* * * * * * * * * * * * * * * * * * * *
	500000000000000000000000000000000000000
The length in cm at weight 70 gm using Lagrange polynomial is:	
•	

Find the length in Solution:	x (cm)		0.0130	0.0251	0.0387	0.0520	
	cm at we	ight 70 g	rm maira			The second secon	
Solution:			zm using	g <u>linear i</u>	<u>nterpola</u>	<u>tion</u> .	(3 points)
The linear interpolat	ing funct	ion $p(x)$) is:				
, and annual position		- P (W)	, 121				
By substituting the d	ata point	zs (,) an	ıd (,) in	to the equa	ation $p(x)$, we get:
• • • • • • • • • • • • • • • • • • • •							
		* * * * * * * * * * *					
					* * * * * * * * * * * *		
• • • • • • • • • • • • • • • • • • • •							
2) Find and calculate	Lagrang	ge polyn	omial ed	quation (that pass	es through	the 3 data points:
		w (gm)	50	100	150		(6 points)
	F	$\frac{w \text{ (gm)}}{x \text{ (cm)}}$	0.0130		0.0387		(- 1
Cl						J T	
Then calculate the le	ngth in ci	m at wei	ignt 70 g	m using	Lagrang	ge polynon	Hai
Solution:							
The Lagrange interp	olating p	olynomi	al functi	ion for tl	ne 3 data	points has	s the form:
where $x_0 = f(x)$							f(x)
	(0) –	$, x_1$				$,x_2$ —	$, \boldsymbol{j}(x_2) -$
The Lagrange coefficients $X_0 = X_0 = X_0$	cients in p	product	general	form are	e:		

Question (4): Physical Measurements: Solve the following proplems: (9 Marks)

**			**	**		
* *	* *	80	***	**		,
		0.0	**	* *	20	-
		5.0	**	**	4.0	***************************************
**	0.0	0.0	**		• •	
* *	***	0.0	**	• •		
	0.0	2.0	**		0.6	
**	* *	4.0	44	**	* 6	
	4.0	* 0	* *	**	**	
				2.0	0.0	***************************************
**	**	**		8.6		
	4.0	**	**	**	6.6	
**	0.0	4.0	**	**		
0.0	**	4.5	5.0	9.8	9.0	
* *	4.0	**	**	**	1.0	
0.0		**	0.6	0.0	0.6	
**	**	**	* *	**	**	
	2.6	**	**			
**	**	1 0 0	**	**	**	***************************************
4.0		((1 1 1 0 0 1	**		1 0 0	
**	**	! ! ! ! **	**	**	***	
	1 1 1 1	! ! !		! ! !	! ! !	

Question (5): Physical Measurements: Solve two only of following: (20) 1) A simple circuit with resistance R , capacitance C in series with a battery of vol. The charge Q at any instant time t is given by: $Q = CV[1 - e^{-t/(RC)}]$ Write a FORTRAN program with Newton-Raphson method to find the cap the capacitor at $t = 0.004$ if you know that, $R = 2000$, $V = 10$ and $Q = 0.00$ Consider the initial value is 10^{-7} and the tolerance is 10^{-9} . Solution: Rearrangement of the equation to be in the form $f(x) = 0$: The variable x refers to into original equation. The derivative $f'(x) =$ The initial value $x_0 =$ The Program:	age V .
Solution: Rearrangement of the equation to be in the form $f(x) = 0$: The variable x refers to into original equation. The derivative $f'(x) =$ The Newton-Raphson form is: $x_{i+1} =$ The initial value $x_0 =$ The Program:	1
The variable x refers to	
The variable x refers to into original equation. The derivative $f'(x) =$ The Newton-Raphson form is: $x_{i+1} =$ The initial value $x_0 =$ The Program:	
The initial value $x_0 =$ The Program:	
The initial value $x_0 =$ The Program:	

1* 1.5 1.6 1.7	400000000000000000000000000000000000000

	1	1	}	!	}	
**	••			6.0	4.0	
**	**	+ 0	**	0.0	**	**************************************
0.0		**	**			
	**	4.9	**	4.5	4.0	
			**	**		
* *		**		1 0 0	**	
* *		00			**	
**	**	**		6.0	* *	
0.5	0.0		6.0	**		
0.0	20	**	o w		**	
0.0	**	2.5			**	
**	**	**	**	4.0	9 9	***************************************
**	**	**	**	2.0	**	
	4.0		0.0	**		
0.0	**	**	**		**	
	**	**	**	***	**	
••	**	**	**	••	**	
0.0	W 0	**		**	4.0	
	2.0	**	**	**		
	••	0.0	**			
		**				
e s						

2) In blackbody experiment, the following data represent the emitted radiation energy $E(\lambda)$ as a function of emitted wavelength λ at a constant temperature T.

λ	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6
$E(\lambda)$	3	7	9	10	8	6	5	4	3.5	3.4	3.3

Write FORTRAN program using Trapezoidal method to find the total emitted radiant energy. (10 points)

Sc	lut	ion	<u>:</u>			
Tl	ie v	vidt	h o	f ea	ch	trapezoid is given by:
ті	10 T	Гиол	207/	منظر	al m	nethod equation has the form:
11	ic i	Haj	JCZ	oiua	41 11)	tethod equation has the form:
		0 0 0 0				
N	ıml	ber	of i	tera	atio	n is:
Tł	ie F	Prog	grai	n:		
	:	1	1	ĭ !		
0.0	0.0	0.5	9.0	**		***************************************
0.9	0.0		5.6		0.0	***************************************
0.0	0.0	***	**	* 1	* *	
			0.0		**	
* *	0 %	0.0	**	e s	3.6	***************************************
	0.6	**	**	**		***************************************
					1	
	5.0	**		1	**	***************************************
	* 4		* 0	**	0.0	***************************************

**	. * *	8.0	0.0	0.0	4.0	
	**	**	**	**	0.0	
	9 W	9.0		w #	9.15	
4.0	* 0	**		0.0	6.0	
**	••	**	**	5.0	**	
**	**	**	. 4 4		**	
		9.0	**	**		
w 6	**	40	**		**	
0.0		**	9.0	0.0	**	
**	0.0	9.0	0.0		0.0	***************************************
			**		**	
4.5	**		4.0	**	1 0 0	
0.0	* 4	0.0	**		1 1 1 1 4 9 1	
0.0	0.0	**	• •	**		
0.5	- # 0	0.0	**	0.0		
0.0	40	**	••	**	0.4	
* *	**	**	**	0.0	1 1 1 1 1	
2.0	**	; ; ; ; ;	**	1 0 0		
**	8.9		4.0		**	
2.0	**	1 ***	***	1 00	**	
* *	* *	1 ***	 	1 0 0	1 00	
		1	!	1	1	

3)	For radioactive element, the rate of decay is given by: $\frac{dN}{dt} = -\lambda N$, where N is the
	number of radioactive nuclei of the element at any instant time t and λ is the decay
	constant. Consider the number of radioactive nuclei at the beginning of the experiment
	is 10^3 nuclei, and $\lambda = 0.5$.

Write FORTRAN program using extended Euler's method to:

- Calculate the number of radioactive nuclei N at time t = 7 s.
- If you know that the number of radioactive nuclei at any instant time t can be calculated by radioactive decay law: $N = N_0 \exp(-\lambda t)$, then:
 - O In the program, write on screen the absolute error between calculated values of N by using both extended Euler's and radioactive decay law at time t = 7 s.

							0							_												J	1	** •		****			, 5.	
Sol	<u>uti</u>	on:																													(1	10 p	oin	ıts)
Wr	ite	the	e or	din	ary	di	ffe	re	nt	ial	e	qu	ati	or	ı iı	ı t	he	fo	rn	n c	of $\frac{a}{a}$	$\frac{dy}{dx}$:											
$\frac{dy}{dx} =$	= .	• • • •								000			. W	h	ere	f	(x)	, y) =	= ,														
The	e va	aria	ıble	e^{x}	refe	rs 1	to					v a 5 1]	int	0 (ori	gin	al	eq	uat	tior	1.					
The	e va	aria	ıble	e y	refe	ers 1	to														int	0 (ori	gin	al	eq	uai	tior	1.					
The																										-								
The																																		
0000																																		
The	in	itia	ıl c	ond	litio	n 2	\mathfrak{r}_0	=				0 0 0	٠.,	J	0	=																		
Fine	d t	he	solı	ıtio	n a	$t \overline{x}$	=	0.01															0.5.4			0.0.0								
The	P	rog	rar	n:																														
					į																													
		**	a 9	0.0																														
				!	1 1																													
į	i	j		! !																														
			**	M D	4.6	* * *				0 0 0											* * *													
			* 0	* *																														
																0				0							. 7 . 3							
							* * 1				000								4 0 0			0.7.0								0001		2 4 9 9 7		

Draft Page
••••••••••••••••••••••••
• * * * * * * * * * * * * * * * * * * *

Draft Page	
• • • • • • • • • • • • • • • • • • • •	

Draft Page	
• • • • • • • • • • • • • • • • • • • •	

Q 1 (1 a) Lithography fabrication

Steps Used in Photolithography: rearrange the steps to produce the pattern $\, F \,$, write the process

۲

Assiut University Faculty of Science Physics Department

Final Exam

Thin Film Applications 492

06 / 05 / 2018

Time: 3 hrs

Date: 25 May 2018

Answer the following questions (5): ((each question 10 points))

Flash Evaporation

1.1 Write the following components:

A

В

C

D

E

Steps	symploe	Name of process
1		
2		
3		11.4
4		
5		
6		

(1b) What is Lithog	raphy?
---------------------	--------

($1\ c$) What is the components of photolithography ?

1 –

2 –

3 -

Steps	symploe	Name of process
1		
2		
3		11.4
4		
5		
6		

(1b) What is Lithog	raphy?
---------------------	--------

($1\ c$) What is the components of photolithography ?

1 –

2 –

3 -

1.2 Write the steps to obtain thin film deposited on the substrate E?

C

(4 c) In the electro-plating cell ,the weight of the deposited metal (W) and the average deposited metal thickness (X) are given by the following relations :

$$w = \frac{M.I.t}{z.F}$$

$$x = \frac{M.I.t}{\rho.A.z.F}$$

- t =
- Z =
- F=
- P=
- **Δ**=

Nickel is plated from a Watts bath at a current density of 4 A dm⁻².

The current efficiency is 96%.

The molar mass of nickel is 58.71 g mol⁻¹.

The density of nickel is 8.90 g cm⁻³.

The Faraday constant is 96 485 C mol⁻¹.

What will be the averaged plating thickness in 3 hours?

Q 4

(4 a) Sketch the electro-plating cell, and show how it work?

(4 b) In the electro-plating cell, the average deposited metal thickness depends on :

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.

Q5

(5 A) Identify the technique which is suitable for the preparation of the following thin films:

material	Melting point C	Method
Se	280	
Gold Au	1132	
Tungsten W	3380	
Carbon C	3799	
Cd ₂ Se ₃ alloy	1050	
NaCl	850	

(5 b) What distinguish Flash evaporation method?

(5 c) Rates of evaporation and condensation can vary dependent upon :

($4\ d$) Sketch the diagram for each of the following , then describe the function of each part : $a-Vacuum\ rotary\ pump$

b – Cold cathode vacuum guage

c - Diffusion pump

- (5 d) Sputtering
- What is the sputtering process

■ Define A, B and C

(5 E) Compare between sputtered and evaporated films?
