

Assiut University

Faculty of Science

May 2015

Chemistry Department

Time: 2 hr.

Final Examination For 1st year Students (General Chemistry II, 105C).

Section A

- 1- Answer only five of the following: (12.5 Marks)
 - a) Explain by equation the addition reaction of chlorine to ethyne.
 - b) On which atom is the formal charge in the hydroxide ion?
 - c) Write the resonance hybrid of the acetate ion.
 - d) Illustrate the type of bond on the following: HBr, ethylene.
 - e) Complete: Propyne + HBr →......
 - f) Write a structural formula that shows all bonds of the following: i) CH₃CCl₂CH₃ ii)(CH₃)₂C(C₂H₅)₂
 - iii) C₄H₆
- iv) C_2H_2
- v) C₄H₁₀
- 2- Answer the following questions (12.5 Marks)
 - a) Ozonolysis of an alkene produces equal amount of acetone and acetalaldehyde, respectively. Deduce the alkene structure (3Marks).
 - b) Draw the Newman projection of the most stable conformation of propane. (3Marks)
 - c) Explain the free radical polymerization of ethylene to give polyethylene (4 Marks).
 - d) In which compound is carbon more oxidized acetaldehyde or acetic acid (2.5 Marks).

انظر خلف الورقة من فضلك (Section B)

Examiner: Prof. Ali Ahmed Abdel-Hafez

General Chemistry (2) (C-105) (Nonorganic Chemistry Part)

Answer the following questions: (25 Marks)

First question: Answer Only Three from the following:

(12 Marks)

(a) The following system is at equilibrium. In which direction (right or left) will the position shift with the following changes:

3NO (g)
$$\longrightarrow$$
 N₂O (g) + NO₂ (g)

 $\Delta H = + 154.9 \text{ KJ}$

- (i) Lowering the temperature
- (ii) Decreasing the pressure
- (iii) Adding more N2O
- (iv) Increasing the pressure of NO
- (b) At 986 °C, $K_C = 1.6$ for the reaction:

 CO_2 (g) + H_2 (g) \rightleftharpoons H_2O (g) + CO (g). If you inject one mole of each H_2 , CO_2 , H_2O and CO simultaneously in a 20 liter box at time = 0 and allow them to equilibrate at 986 °C. What will be the final concentrations?

- (c) What is the pH value of a solution prepared by dissolving 0.0155 mole Ca(OH)₂ in water to give 735 ml aqueous solution?
- (d) A solution of 0.45 g of urea (CH $_4$ N $_2$ O) in 22.5 g of water gave a boiling point elevation of 0.17°C. Calculate the molal elevation constant of water.

Second question: Answer Only Three from the following:

(13 Marks)

- (a) A buffer solution consists of 0.24M NH₃ and 0.2M NH₄Cl. What is the pH of this buffer? $(K_b=1.8x10^{-5})$
- (b) Calculate the solubility of Ag_2SO_4 in 1M aqueous Na_2SO_4 solution. $(K_{sp} = 1.4 \times 10^{-5})$
- (c) A solution is prepared from 10.6 g of unknown solute and 90 g of water. The vapor pressure of the solution at 60 °C is 0.187 atm. Use Raoult's law to find the molecular weight of the solute. The vapor pressure of water at 60 °C is 0.197 atm.
- (d) Find the osmotic pressure at 15 $^{\circ}$ C of a solution of naphthalene ($C_{10}H_8$) in benzene containing 14 g of naphthalene per liter of solution.

Examiner: Dr. Hossieny Ibrahim

Assiut University
Faculty of Science
Chemistry Department

Second Semester Final Examination General Chemistry (2) (C-105) Nonorganic Chemistry Part First Level (Credit Hours System)

May 2015

Time allowed: 1 hour

Answer the following questions: (25 Marks)

First question: Answer Only Two from the following: (9 Marks)

a) A mixture of 0.5 mol H_2 and 0.5 mol I_2 was placed in a 1.0 L stainless steel flask at 430°C. Calculate the concentrations of H_2 , I_2 and HI at equilibrium. The equilibrium constant (K_c) is 54.3 at this temperature for the reaction:

$$H_2(g) + I_2(g)$$
 \longrightarrow $2HI(g)$

b) Use Le-Chatelier's principle to predict how each of the changes would affect this equilibrium.

$$2SO_2(g) + O_2(g) \implies 2SO_3(g) \qquad \Delta H^{\circ} = -198 \text{ kJ}$$

(i) adding O_2 (g) to the system

(ii) adding SO₃ (g) to the system

(iii) lowering the temperature

(iv) decreasing the pressure

c) At the start of a reaction, there are 0.249 mol N_2 , 3.21×10^{-2} mol H_2 and 6.42×10^{-4} mol NH_3 in a 3.5 L reaction vessel at 200°C. If the equilibrium constant (K_c) is 0.65 at this temperature for the reaction: $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$ Predict, which way the reaction will proceed?

Second question: Answer Only Two from the following: (8 Marks)

a) Calculate the solubility of silver chloride (in g/L) in 6.5×10^{-3} M silver nitrate solution. [Atomic weights of Ag = 107.9, Cl = 35.45 and $(K_{sp} \text{ of AgCl} = 1.6\times10^{-10})$]

b) Define each of the following terms:

Raoult's law - The molality - The osmotic pressure

c) What is the pH of:

(i) 0.0011 M solution of Ba(OH)₂

(ii) 0.5M CH₃COOH. ($K_a=1.8\times10^{-5}$)

(iii) a solution containing 0.30 M HCOOH and 0.52 M HCOONa? ($K_a = 1.8 \times 10^{-4}$)

Third question: Answer Only Two from the following: (8 Marks)

a) It is found experimentally that the solubility of calcium sulfate (CaSO₄) is 0.67 g/L. Calculate the value of K_{sp} for calcium sulfate. (At.Wt. : Ca= 40.08, S = 32.06, O = 16)

b) What is the pH value of a 0.40 M ammonia (NH₃) solution? (K_b for NH₃ = 1.8 × 10⁻⁵)

c) A solution contains 3.75 g of a nonvolatile hydrocarbon in 95 g of acetone. The boiling points of pure acetone and the solution are 55.9 °C and 56.5 °C respectively. What is the molar mass of the hydrocarbon? (For acetone the $K_b = 1.71$ °C/m)

d) A solution of unknown substance in water at 300 K gives rise to an osmotic pressure of 3.85 atm. What is the molarity of the solution? $(R = 0.082 \text{ atm.L.mol}^{-1}.\text{K}^{-1})$

---- Good Luck ----

Assiut University Faculty of Science	a yer soo aa in a Sederation soos	date: 30 Time: 60	/05/2012
Chemistry Departme	ent	Name:	
Final Exam. Of	forganic chemistry For Sci	The state of the s	Photograph Co.
Answer the follow	ing questions::	a contract of the contract of	الآسئلة في ثلاث
I Soloot the comment			el marks: 25
1- Select the correct a	nswer of the following:	.(10 m	arks)
1) If a central carbo trigonal planar a)	on atom is sp ² hybridized, trigonal bipyramidal	octahedral	e results?
a)	b)	c)	
2) The bond in betw a) Metallic	een an oxygen atom and a b) covalent	nnother oxygen atom is c) Ionic	
of electrons will r	vis structure for ammonia atrogen have ?	, how many unshared	pairs
a) 1	b) 2	c) 3	111
4) Which diagram o	f 1,4-dichlorocyclohexane	has both chlorine ato	ms equatorial?
CI CI	Linguista (1886) (1881) a severi Linguista (1886) (1886) a severi	in a manner.	
M/L	$\int a$		air sáirte gu
ĊI	à	a a	
a)	b)	c)	
5) The most stable co	onformational isomer of ci	s-1-bromo-2-chlorocy	clohexane
a) both halide a	toms in equatorial positions	S.	
b) the chlorine position.	atom in an axial position an	d the bromine atom in a	n equatorial
c) halide atoms	in equatorial positions.		

6) How many dichlorinated isomers can be formed by the halogenation of CH₃CH₂CH₂CH₃ with Cl₂ in the presence of light?

c) 2

a) 3 b) 5

7) Rank the alkenes in order of increasing boiling point.

- a) |>||>|||
- b) |>|||>||
- c) III>II>I
- 8) Addition of HCl or HBr to an unsymmetrical alkene is regioselective and follows Markovnikov's rule because:
 - a) Steric crowding favors only one product.
 - b) The two possible carbocation intermediates react at different rates.
 - c) One of the two possible carbocations is more stable than the other.
- 9) What is the idea bond angle for the carbon in HCCH?
 - a) The carbon atoms in HCCH will have a 109.5° bond angle
 - b) The carbon atoms in HCCH will have a 120° bond angle.
 - c) The carbon atoms in HCCH will have a 180° bond angle.
- 10) Which statement on the process of cationic polymerization is false?
 - a) Peroxides are used as an initiator.
 - b) The reaction terminates by the loss of a proton.
 - c) The reaction normally uses an acid catalyst.

II- Complete the following sentence:

(6 marks)

- b) Ozonolysis of this alkene (CH3)2C= CH2 gave equal amount of.......
- d) Isotopes of an element differ in the number ofin their nuclei.
- e) Polymers aremolecules withmolecular weight, built from
- a small repeating units are called..... f) C_nH_{2n} is the molecular formula of......While C_{nH2n-2} is the molecular formula of.....

III- Answer the following:

3

(9 marks)

a) What alcohol is obtained from this reaction?

$$CH_3 - C - CH - CH_2 - BH_3 \rightarrow ? - \frac{H_2O_2}{OH_2} \rightarrow ?$$

- b) What is the meaning of 3 in sp3 orbitals.
- c) Using correct arrow formalism, write the contributors to the resonance hybrid of the structure carbonate ion CO₃-. Indicate any formal charges.
- d) Provide IUPAC names for the following compounds. Don't forget E/Z or cis/trans.

- e) On what atom is the formal charge in the nitrate ion NO₃-?
- f) In which compound is carbon more oxidized, acetaldehyde CH₃CHO or acetic acid CH₃COOH, and why?

Good Luck

Prof.Dr. Ragaa Abo El- Wafa

The Answer

o) The rescord on the brid of the security or charact fine figure

I-

1 2	3	-4	5	6	7	8	9	10
100	1		1		i			

The control of the co

II-

a)	b)	7.6) tengan	d),	e) 20	f)
			f a		
- 18 43 - 44 48		alle de rie († 1958) 1965 - Nobel de rie		West Course	[d

III- at the second of the seco a) The alcohol is obtained from the reaction.

HOLENHO STREETS

The Chief on a strength of the Common Countries of the common of the countries of the count

b) The meaning of 3 in sp3 orbitals.

W. W.

10/

THE ANSHER

c) The resonance hybrid of the structure carbonate ion CO₃-

	01 9	8 1	1 0 1	Comment of the same of the sam	and the second
				하면 집에 바다 가장 하는 아니라 하는 아무리는 내가 되었다.	
TI CONTRACTOR OF THE CONTRACTO					
					.11

	nes for the following compound	
a)		
b)		

e) The formal charge in the nitrate ion NO₃-

a) The alcohol is obtained from the reaction.

f) The compound which is carbon more oxidized, acetaldehyde CH_3CHO or acetic acid CH_3COOH

b) The meaning of 3 in sp3 orbitals.

May 2015

Time allowed: 2 hours

Secon Semester Final Examination Subject: General Chemistry (C-100) Students: First level" Credit Hours System"

(1)

Section (A) (25 Marks)

First Question: Answer only three from the following:

(12.5 Marks)

- (a) State Boyle's law and derive it from kinetic gas equation.
- (b) Compare between lyophobic and lyophilic colloids.
- (c) (i) How can you prepare colloidal solution by reduction method.
 - (ii) What is meant by <u>only three</u> from the following?

 Critical temperature— Viscosity—Electro-osmosis—Oxidation
- (d) Put true ($\sqrt{ }$) or false (x) and give reason for <u>only three</u> from the following.
 - (i) Copper metal will displace hydrogen from acid solution.
 - (ii) Crystalline solids are anisotropic.
 - (iii) The vapor pressure increase as temperature decrease.
 - (iv) The hydrogen gas has Z-P curve above the ideal behavior.

Second Question: Answer only two from the following:

(12.5 Marks)

- (a) (i) 25.8 liter of a gas has a pressure 690 torr and a temp. 17°C. What will be the volume if the pressure is changed to 1.85 atm. and the temp. 345K.
 - (ii) What is the potential of a half-cell consists of zinc electrode in 0.01M ZnSO₄ solution at 25°C. ($E^{\circ} = -0.763 \text{ V}$)
- (b) (i) Two moles of NH₃ are enclosed in five liter flask at 27°C. Calculate pressure exerted by using ideal gas equation and Van der Waals equation.

 (a=2.253 L²atm.mol⁻², b= 0.0428 Lmol⁻¹, R= 0.0821 Latm.mol⁻¹K⁻¹)
 - (ii) Calculate the standard (E°) of the following cell:

Fe²⁺ (aq)+ Sn (s)
$$\longrightarrow$$
 Sn²⁺(aq) + Fe (s)
Where E° for Fe/Fe²⁺ = -0.44V, E° for Sn/Sn²⁺ = 0.14V

- (c) (i) Consider the reaction: Mn (s)+ $2Ag^+$ (aq) \longrightarrow Mn²⁺(aq) + 2Ag (s) Where E° for Ag/Ag⁺ = +0.8V, E° for Mn/Mn²⁺ = -1.18V
 - 1- Write anode and cathode reactions 2- Write cell representation
 - 3- Predict whether the reaction feasible or not
 - (ii) Two gases have molar mass 64 and 100 respectively if diffusion rate of the first is 15 mLs⁻¹, what is the diffusion rate for the second gas?

انظر خافه باق الاسئلة

Section (B) (25 Marks)

Answer the following questions:

First question:	· · · · · · · · · · · · · · · · · · ·	(12 Marks)
(a) Put Yes ($$) or No (x):	for each of the following:	(4 Marks)
(i) The molecular shap	pe of BF3 is linear.	
(ii) The hybrid orbital	s for S in SF_6 are sp^3d^2 .	
(iii) For Paschen serie	$s n_1=3, n_2=3, 4, 5, \dots$	
(iv) The oxidation num	nber of Mn in KMnO4 is +7.	
(b) Give reasons for the f	ollowing:	(2 Marks)
(i) The bond angle in I	NH ₃ is less than that of CH ₄ mole	cule.
(ii) He2 molecule does	not exist while He2+ exists.	
(c) Draw Lewis structure	es and assign formal charge to ea	ch of the following:
(i) HNO ₃	(ii) CO ₃ ⁻²	(6 Marks)
Second question:		(13 Marks)
(a) Draw the energy level	diagrams for O_2^- and N_2^+ molecu	iles. Calculate the bond
order and predict the	magnetic properties for each one	(4 Marks)
(b) Choose the correct and	swer:	(4 Marks)
(i) The Lyman series of	f hydrogen spectrum appears in.	region.
(a) ultraviolet	(b) visible	(c) infrared
(ii) The de Broglie equa	ation for the electron is	•••
(a) $\lambda = hm / C$	(b) $\lambda = h / mC$	(c) $\lambda = mC / h$
(iii) The hybridization	of C in CO ₂ molecule is	•••••
(a) SP ³	(b) SP	(c) SP ²
(iv) Bond order in N ₂ n	nolecule is the bon	d order in F2 molecule.
(a) higher than	(b) lower than	(c) equal to
(c) Using VSEPR theory,	predict the electron domain geor	netries and molecular
shapes for [PF ₆] and H		(5 Marks)

(Atomic No. B = 5, C = 6, N = 7, O = 8, F = 9, P = 15, S = 16)

Good Luck

Assiut University Faculty of Science May 2015

Time allowed: one hour

Chemistry Department

Final exam of Organic Chemistry for 1st level Faculty of Science students (105 C)

Answer the following QUESTIONS:

1. Complete the following equations:....each space with one mark.....(total 10 marks)

i.
$$C = CH \xrightarrow{HgSO_4} [?] \longrightarrow ?$$

ii.
$$\bigcirc$$
 C=CH $\stackrel{\text{2HBr/ROOR}}{\longrightarrow}$? $\stackrel{\text{?}}{\longrightarrow}$?

v.
$$\frac{\text{KMnO}_4}{\text{hot, conc., acid}} ? + ?$$

vi.
$$CH_3CH_2CH_3 + 3Cl_2 \xrightarrow{hv} ? + ?$$

provide the major products only

II. Chose the correct answer (under	line co	rrect ans	wer:	(10 marks)
i. Which of the following is the best reaction s	equence t	to accompli	sh as anti-Ma	arkovnikov
addition of water to an alkene.	•			
A) water + dilute acid	B) wa	ter + HgSC	$_4$ + H_2 SO ₄	
C) oxymercuration-demercuration	D) h	ydroboratio	on-oxidation	
E) nor	ne of the a			
ii. Which molecular formula represent				
(1) C_4H_8 ; (2) C_4H_{10} ; (3)	C ₅ H ₁₀ ;	$(4) C_5$	H_{12}	
iii. A molecule of ethene is similar to a mole	ecule of n	nethane in t	hat they both	have the
same:				
(1) Structural formula;	(2) m	nolecular fo	rmula;	
(3) number of carbon atoms;		mber of hy	drogen atom	S
iv. The compound CH ₃ COOCH ₃ is classifie				
(1) an acid; (2) an alcohol;	(3	3) an ester;	(4) a hydro	ocarbon.
v. The shape of SP ³ orbital is:	`	,		
v. The shape of of orotter io.				
•	0	\cap		
Y	δ	V		
a h	c	d		
vi. The ozonolysis of an unsymmetrical, unl	branched	alkene forn	ns:	
a. A single aldehyde b. An aldehyde a	nd a ketor	ne c. T	wo different	ketones
vii. $C_2H_4 + H_2 \rightarrow C_2H_6$			(51)	
The above reaction is an example of:				
(1) Addition; (2)	Substitu	tion;		
(2) Elimination: (4)	Condens	sation		
viii. The No. of bonding electrons in CIO	O_3^{-1} is: 8	b. 12	c. 10	d. 6
ix. Which of the following is nonpolar mole	ecule:			
a. H ₂ O b. CO ₂ c. CH ₃ CO	$_{2}H$	d. CH ₃ CO	CH_3	
x. Which will be the most polar bond?				
i. C-C ii. C-Br	iii. C–Si	i	v. C–Cl	

III. All the following sentences are wrong. Rewrite with correct manner: (5 marks)

- $1. \sigma$ Bond in methane was created by overlapping of SP3-SP3 orbitals.
- 2. Eclipsed structure of ethane is more stable than staggered structure in Neumann projection.
- 3. The most of the reactions of alkenes are nucleophilic substitution
- 4. Hydration of propene in the presence of BH₃ produced 2-propanol.
- 5. Addition of bromine to propene in the presence of water produced 1- bromopropane

Good luck

Prof. Dr. Adel M. Kamal El-Dean Prof. Dr. Yasser El-Ossaily