Credit hour system - First semester - Final Examination 18/1/2020 Geology and Geophysics Programs Engineering Geology and Mining Geology (G 407)

Fourth Level

Allowed time 2 hour

Part (1) Engineering Geology Exam (25 M)

Answer the following question (9M)

- a. What are the factors governing of selecting a site for dam?
- b. Explain the engineering significance of hardness of rock?

Answer two only of the following questions

Q1 (8 M)

- a. Write briefly on the rock mass properties?
- b. Mention the factors affecting slope stability?

Q2 (8 M)

- a. Discuss the engineering significance of rock color
- b. Describe the effect of geological structures to tunnel excavation?

Q3 (8 M)

- a. What are the forces acting on dam?
- b. Define the term "mass wasting" and mention the important types of mass wasting?

Part (2) Mining Geology Exam (25 M)

- 1- A- Mention the factors that determine the economic feasibility of the ore $?(5\ M)$
- 2- Mention the advantages extraction operation exposed by surface mining quarrying?
 (5 M)
- 3- Mention the importance of mining development ?(5 M)
- 4- Describe with aid of sketch: ?(10 M)
 - a- Equidistance spacing method.
 - b- Triangular grouping method

جامعة أسيوط كلية العلوم ـ قسم الجيولوجيا

امتحان التحريري للمستوى الرابع بكلية العلوم شعبة الجيولوجيا والكيمياء

المادة: خريطة مصر الجيولوجية (١٠ ؛ ج)

(Geologic Map of Egypt (410 G)

الزمن: ساعتان

الدرجة: ٥٠ درجة

دور يناير ۲۰۲۰/۲۰۱۹

Answer the following questions:

First Question: (20 Marks)

- 1) Compare in a stratigraphic table between the distribution of the rocks units of following:
 - i- The Lower (Early) Cretaceous at north and south Sinai.
 - ii- The Eocene at Fayoum and Nile Valley.
- 2) Write a brief essay on <u>two only</u> of the rocks of the following geologic times, following, explaining their important:

i- The Precambrian rocks.

ii- The Oligocene rocks

iii- The Jurasic rocks.

3) In a stratigraphic table define the different rock units of the surface Paleozoic sequences in Egypt.

Second Question: (15 Marks)

- 1- Discuss the economic and scientific important of the Eocene rocks in Egypt.
- 2- Discriminate between the Neogene (Miocene & Pliocene) rock units at Gulf of Suez and Nile Delta.
- 3- Sketch the the subsurface stratigraphic sequence of the Lower (Early) Cretaceous strata in north Western Desert.

Third Question: (15 Marks)

1- Define the geologic age and the stratigraphic relationship for <u>five only</u> of the following rock units:

i- Abu Ballas & Sabaya

ii- Maghrabi & Taref

iii- Abu Raash & Hafhauf

iv- Timsah & Um Barmil

v- Halal & Raha

vi- Desouky & Dhiffah

2- Write the geologic age of the following rock units, explaining the important of every one: i- Duwi Formation ii- Nukhul Formation ii- Bahariya Formation iv- Nubia Sand Stone v- Tarawan Formation

Good Luck! Prof. Dr. Nageh A. Obaidalla Assiut University Faculty of Science Geology Department

Final Exam First Semester 2019-2020

Petrophysics and Well logging (G459) for Geophysics Group Students

Date: 12/1/2020

p Students

Time: 2 hrs

Total 50 marks

Part I - WELL LOGGING (25 marks)

Answer the following questions:			
1 - Define FOUR ONLY of the following term Geothermal gradient - Electron densit	n s: (4 marks) y - SSP - Hydr	ogen index - Irreducil	ole water saturation
2 - Show with diagrams <u>ONE</u> of the following a) Neutron logging tool.	ng: (3 marks) b)	Gamma-ray scintillatio	on detector.
 3 -Explain how well logs used in <u>THREE ON</u> a) Type of clay minerals detection, c) Lithology identification from caliper, 	b) Hvdrocar	bon source and non-so	ource rocks discrimination, for permeability prediction.
4 - Put (\lor) inside the brackets against the \circ	orrect answe	er(s): <i>(3 marks):</i>	
i) Which of the following indicate that aa) Low gamma-ray. ()c) Low resistivity. ()	rock is perme b) SP defle d) High por	ction. ()	
 ii) The effect of shale and gas on the neural Similar effect, each causing the tool to b) Opposite effect, shale causing the tool to c) Similar effect, each causing the tool to d) Opposite effect, shale causing the tool 	read high po I to read low a read low por	and gas causing it to re osity. ()	* * * * * * * * * * * * * * * * * * *
 iii) Which of the following can cause the a) An increase in formation water salinit c) An increase in formation porosity. (e) An increase of temperature. (resistivity of ty. ())	a rock to decrease? b) A decrease in tort d) A decrease in wat	
 5 - Illustrate shortly <u>TWO ONLY</u> of the followay a) Electrochemical origin of SP in wells, c) Gamma-ray log shape as facies indicated 	b	rks):) Composition and fund	ctions of logging cable,
Part I	I -PETROPHY	SICS (25 Marks)	100 m 100 m 100 m 100 m
			Por -
I. Define the following:		(5 marks)	
Salinity - Hardness - Poisson's ratio - C	leavage – Bul	uk modulus	
Salinity - Hardiless - Poisson's ratio	ica vage		
II. Write on FOUR ONLY of the following:		(20 marks)	
1- The resistivity of clay and types of Cor	ductivity.		
2- Absolute permeability and Initial Oil			
3- Porosity on Carbonate rocks and Koze	ny correlation		
4- Factors affected on Resistivity and Qu	artoze sedime	ent	
5- Factors affecting on the magnitude of	Permeability	and Initial Gas	
6- Oil – water system and the resistivity	of shale		. 4
0 0			
	الأسيئلة	٠٠٠٠٠ انتهت	<<<<>>>>>>>
>>>>>>>			& Dr. Mohamed F. Khalil
Good Luck!!			

جامعة أسيوط كلية الغلوم قسم الجيو لوجيا

First Semester, Fourth Level Final Examination

	First Sen	lester, Fourth Level F	Illai Examina	ition	
Time: 1 hours	Total marks: 25	GPR	(G453)		January, 2020
	Pa	rt One: GPR	(25 marks)		
QUESTION 1:	Choose the correct a	inswer:			(15 marks)
1) In common-mid-	point GPR survey the	nost important controllin	g parameter is		
a) Antenna sepa	ration b	offset from object	C	c) travel time	
2) Radar tomograph	y as one of the transill	umination measurements	is similar to		
a) Common mic	I noint h	common offset		c) wide angle	evelocity
3) The most commo	only used antenna orier	tation is			
a) PK-EF		U) FR-DD		c) PR-XP	
4) GPR system with	n low transmitter freque	ency can produce			
a) Low attenuat	ion	b) short wavelength		c) low resolu	ition
5) Soil with high di	electric constant strong	ly cause		\ 1	1 1 1 1 1
a) High electric	al conductivity	b) slow propagation ve	elocity	c) short pen	etration depth
6)describe	es the ability of a mater	ial to pass free electric ch	narges under the	influence of	an applied field.
a) Dielectric per	rmittivity	b) electric conductivit	ty	c) magnetic	permeability
7)	plays no role in the	e electromagnetic energy	behavior.	a) magnatia	permeability
a) Dielectric pe	ermittivity	b) electric conductivi	ty	c) magnetic	permeability
8) The dielectric co	instant of sediments is	governed by its	••••	c) clay cont	tent
a) Iron and iron	oxides content	b) water content	falastromagnet	ic energy in a	medium are dielectric
9) The frequency-	dependent properties th	at control the behavior of	1 electromagnet	ic chergy in a	i incurani are areresire
	ctrical conductivity, an	d magnetic permeability.			
a) True	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	b) False			
	lectrical conductivity c	h) Defrect EW wave	c	c) Transn	nit EW waves
a) Reflect EM	waves	b) Refract EW wave	n is high	0) 11411511	
	er frequency is high, so	that the signal attenuatio b) False	11 13 111611.	*	
a) True	tout of a goil is we	ry high, so that the signal	l attenuation is l	nigh.	
	constant of a soff is ve	b) False		8	
a) True	enter frequency is 200	MHz, then the sampling i	interval is		
13) If the antenna co	enter frequency is 200	b) 0.733 ns		c) 0.633 ns	3
a) 0.833 ns	ing in a GPR survey is	strongly dependent on		••••	
a) Dialactric of	onstant and frequency	b) Dielectric constant	nt and depth	c) Dielecti	ric constant and velocit
a) Dielectric of	y grid and coordinate s	ystem is strongly depend	ent on		
a) Double the	wavelenoth	b) half of the wavele	ength	c) quarter	of the wavelength
a) Double tile	wa voiciigui				
OHESTION 2:	Answer all the below	w questions:			(51)
a) Describe in de	tail three different GPI	R system field arrangeme	nts.		(5 marks)
b) Discuss in det	ail the fundamental ste	ps for any reflection GPF	R survey design.		(5 marks)

Assiut University
Faculty of Science
Geology Department

جامعة أسيوط كلية العلوم قسم الجيولوجيا

First Semester, Fourth Level Final Examination

Time: 1 hour Total marks: 25 Paleomagnetism (G453) January, 2020

Answer the following questions	
A. Put a check mark $()$ or wrong (X) with correction.) marks
1. Magnetic dip or magnetic inclination varies at different points on the Earth's surface with positive and negative value southern and northern hemisphere, respectively ()	es in th
2. According to geocentric axial dipole (GAD) model the magnetic inclination (I) is related to geographic latitude (λ) by this an $I = \tan \lambda$ ()	formula
. Paramagnetic solids contain atoms with atomic magnetic moments and interaction between adjacent atomic moments ()	
. Saturation magnetization of magnetite decreases with increasing temperature and become zero at the Curie temperature v80°C.	which i
. The Ti-rich end member Ulvospinel (Fe2TiO4) Néel temperature is -153°C where it changes from ferromagnaramagnetic ()	netic to
Formation of magnetic domains increases the magnetostatic energy because the percent of surface covered by magnetic chaduced	arges is
Stable single domain particles have less magnetic relaxation time than those in multidomain particles ()	
Thermoremanent magnetism (TRM) is a natural remanent magnetization (NRM) produced by cooling from above the mperature (Tc) in the presence of a magnetic field ()	Curie
Alternating field demagnetization technique can be applied on rocks containing hematite particles ()	
. In Fisher statistics, the confidence limit for the calculated paleomagnetic mean directions is determines by k parameter (1
Choose the correct answer	marks)
Geomagnetic secular variation refers to changes in the	
a. Direction	
b. Intensityc. Both a and b	
TO THE PERSON OF	

2. Magnetic declination, the angle from geographic north to horizontal component, ranges from to

a.	0 to 360 degree				
b.	0 to 90 degree				
C.	-90 to + 90 degree				
3 (Fe2T	is the solid solution is the solid solution	on series formed be	etween two end n	nembers magnetite	(Fe304) and Ulvospinel
a.	Titanohematite				
b.	Titanomagnetite				
c.	Pseudobrookite				
4. Fact	or(s) govern(s) the magnetic grains to for	rm magnetic domain	is is (are)		A contraction
		3	- , -		· · Lance and day
a.	Grain type				
b.	Grain shape				
C.	Saturation magnetization				
d.	Both a and b				
e.	Both b and c				
5	is the temperature at v	vhich magnetic grain	s acquire its reman	ent magnetization	
a.	Blocking temperature				
b.	Unblocking temperature				
c.	Curie temperature				
C. Fill	in the blankets				(5 marks)
	procedure for thermal demagnetization ture inmagnetic field	n involves heating	a specimen to an	elevated temperatu	re, then cooling to room
	its of progressive demagnetization expery data can be displayed.	iments are displayed	l on	diagram from wh	ich both directional and
	is one of the types of stary rocks.	natural remanent i	magnetizations acc	juired during depos	ition and lithification of
	g the course of paleomagnetic sampling sample before cutting it from the rock u		and	must be det	termined and noted for
5. α95 Ι	ndicates that we are 95% certain that	lie	s within α 95 of the	calculated mean dir	ection.
D. Ans	wer on <i>only</i> one of the two following	two questions			(5 marks)
	on: (1) composition; (2) magnetic propeons with drawings.	erties; and (3) curie t	emperature range o	f the Titanomagnetit	te series. Strengthen your
	der a synthetic sample composed of 5% s) the hysteresis loop resulted from this s				
		End of Quest	tions		
	Good luck		Dr. Ahmed Nasser	Mahgoub	
				0-3/2	

Assiut University Faculty of Science Department of Geology

Date: Jan. 2020 Time allowed: two hours

Final exam

Subject: Hydrogeology and Petroleum Geology (G460), 4 th level, special
geology, geochemistry and geophysics groups, Total 50 Marks

Part I Petroleum Geology (25 Marks)

Transfer the questions to your answer sheet and answer the following questions

 -	Complete the missing answer on <u>only five</u> of the following: - (10 Marks, 2 Marks each)
1-	For hydrocarbon formation and accumulation five elements must be present. These elements are: -
	ab
	C
•	d
	e
2-	The different types of kerogen can produce dry gas, wet gas and oil at subsurface three zones based on depth and temperature, mentioned these kerogen types and the hydrocarbon zones with discussion and drawing: - a- b- c-
3-	Petroleum system is completed by elements and processes:- The elements are,, and
	Whereas, the processes are,
	whereas, the processes are, and
4	Post discovery reserve calculation of the discovered reservoir can calculated from the following equation:-
	Recoverable oil (bbl) = $\frac{7758 \text{V} \phi (1 - S_w) R}{\text{FVF}}$
	Where:-
	V is
	Φ is

	S _w is	
	R is and	
	FVF is	
5-	After drilling and testing of hydrocarbon reservoirs, the production can be	
	carried out by:-	
	a	
	d	
	b	
	C	
6-	In Gulf of Suez region there are aboutoil fields, the common ones are	9
0-	The main clastic reservoir rocks in these	
	formation and	
	fields are,formation, formation, and	10
	formation which belonging to Lower Miocene age. Whereas, the source rock	13
	areformation. which belonging to Paleocene and	••••
	formation which belonging to Cenomanian age)
	Torridation which belong as a	
	to a your choice with illustration	n
11- "	Choose the correct answer and comment on your choice with illustration	
À	on only six of the following: (9 Marks, 1.5 mark eac	h)
1	At catagensis zone of petroleum generation, the produced hydrocarbon is	
1-		
	mainly:-	
1	a- Gas	
	b- Oil	
	c- Immature hydrocarbons	
2	- Secondary migration of hydrocarbons is generally carried out in :-	
- ()	a- The source rocks	
	b- The reservoir rocks	,
	c- Metagensis zone of petroleum generation.	
	Il world are generally occurred in:	_
3	3- Most of hydrocarbon reserves all over the world are generally occurred in:	
	a- Regions of high tectonic and sedimentation	
	b- Regions of high tectonic and low sedimentation	
	4- The inclined gas-oil contact or oil-water contact are generally combined	
. 0		
	with:-	
	a- Hydrodynamic traps at the crest of anticline	
	b- Stratigraphic traps associated with unconformity	
	strationable trans non associated with unconformity	
	c- Stratigraphic traps non associated with ansembly	
	The Education netroleum especially	V
	5- Petroleum quality is measured by API%, The Egyptian petroleum especially	,
	that occurred in western desert region has:-	
	a- High API %	
	b- Low API%	
	D- LOW AT 170	

c- Moderate API%

- 6- The amount of hydrocarbon generation depends on:
 - a- Amount of the organic matter in oxidizing conditions
 - b- Amount of organic matter in reduction conditions
 - c- Presence of capillary pressure
- 7- Compound traps are generally a combined with:
 - a- Structures and sedimentation
 - b- Structures and unconformities
 - c- Structures and sealing rocks
- III- What is the differences with illustration between <u>only four</u> of the following: (6 Marks, 1.5 Mark each)
 - 1- Primary and secondary migrations of hydrocarbon with supporting evidences of both
 - 2- High and low API petroleum with examples of the produced countries as well as commercial units of oil and gas.
 - 3- Stratigraphic traps associated with unconformities and that non associated with unconformities
 - 4- Convention and non-convention sources of hydrocarbon.
 - 5- Diapiric and structure traps

Part II Hydrogeology (25 Marks)

Answer only two of the following questions:

1. Discuss with drawing:

(12.5Mark)

- a. Biological characters of groundwater.
- b. Compare between the saturated and unsaturated zones.
- c. Agricultural uses of groundwater.
- 2. Give an account with drawing on:

(12.5Mark)

- a. The different types of groundwater aquifers.
- b. The groundwater aquifer characteristics.
- c. Water bearing formations.
- 3. Write short notes on the following:

(12.5Mark)

- a. The major and minor dissolved constituents in the groundwater
- b. Specific yield and retention.
- c. The main benefits from a grain size distribution curve in the aquifer material.

Assiut University -Faculty of Science Geology Department

جامعة استيوط كلية العلوم قسم الجيولوجيا

	Geology Department	Fain	3 Legium subfacemaj Cin gralin
	First Semester Final Examination Students: B.Sc. Students (Geology and Geo		urse No. G433 (Geochemistry) ry) Date: Jan., 20, 2020
	II- Geochemistry of sediments Examiner: Prof. Dr		me allowed: one hour . Soliman
		I à de la	man deller state miller miller i vinne miller state miller deller state i ut di bleve i und di bleve i und di bleve i und blev
Wri	ite your answers in the same sheets	الامتحان في أر الأسئلة	أكتب أجابتك في نفس ورق
Sel	elect or write the correct answer for the follow	wing: (25 mar	ks, Questions 1-15 one mark for each)
1	11. Curoditacous comis	silicate bodies B above	E. A and B above
2	2-Mention five minerals composed of lithoph		
		,	112 E320812day =110120 = 0 1 -51
3	A. They are found in reduced environments B. They are sulfates C. They are enriched in euxenic conditions	best-regerand law	le elements?"
4	4-In the Earth's crust, the following elements	are usually to	race elements:
ī	A. Si, Mg, Al, Fe		13-Tacining curbon distribution
	B. Ti, Mn, P, C, C. Zn, Ni, Cu, V		
5	5-Trace elements are classified according to to A. Lithophiles, chalcophiles, and siderophiles. Compatible and incompatible C. Transition metals, PGE, REE, D. All above E. None above.	heir behavior es	in magmatic system to:
6	6-In chemical weathering, alkaline water wit	h pH 8-15 pos	sesses a
	A. Intermediate decomposition action		
	B. Strong decomposition actionC. decomposition rate depends on the difference the pure water.	rence between	the pH of the solution and the pH of
	D. Rather weak decomposition action		

7- Write by the chemical equation the extensive dissolution of the mineral favalite in nature?

A. All carbonates, s B. barium sulfate an C. All chlorides, br	sulfides, oxides nd Ca sulfate		
9-Write by the chemica	al equation the relation	ship between hematite and goo	ethite
			<u></u>
10- At lower values of	f pH (below 5), the solu	bility of quartz is:	
A. Decreases	B. Increases	C. Stable	
oxidized and iron-carb	te is readily soluble, but conate precipitates. above statement by che	t in the presence of molecular o	oxygen, it is
		this wife to best from drawns	
A. They are LateriteB. They are composeC. They are formed	es and Bauxites sed mainly of iron and ma	ed in ionic or colloidal solution	
12 The managember	on dioxide there is in wa	ater results in:	
A. the more quartz v		., 0	
B. the more calcite			
C. Both	THE GLOOL CO.		
C. Dour			
14- In Oxic environme	ents		
A. abundant organi	ic matter is preserved in	the sediments	
B. Fe and Mn occu	ir as soluble ions	in measurable dissolved oxygen	
C. interstitial water	is of the sediments conta	III illeasarable disserved only go	
which the bacterial re	duction of dissolved sul	diagenetic sequence has reach lphate takes place with produce ments to produce sulfides.	ed the stage at etion of $\underline{H_2S}$.
C			

16-	There is an important and co (2marks)				
				, , , , , , , , , , , , , , , , , , , ,	
* * * * *					
17-T	he primary factors affecting	the manner of	of migration of	Manganese are	the presence or
abse	nce of O2 and CO2	How can ye	ou explain that	?	(2marks)
					.,
		* * * * * * * * * * * * * * * * * * * *			
					~;
		.,			
18- G	live possible explanations for	the following	geochemical s	ignatures in str	atigraphic
recor	rd:				(2marks)
A	. Sharp decrease in δ_{10}^{13} C ass	ociated with i	ncrease in chal	cophile elemen	ts
B	Sharp decrease in δ ¹⁸ O ass	ociated with i	ncrease in bau	xite	
******	***************************************				
• • • • • • •					

	Mg 1879 187				

19-Cmpair between Bauxites and Laterites	(3marks)

······································	

مع أطيب الأمنيات بالتوفيق - أ. د/ ممدوح فراج سليمان

بسم الله الرحمن الرحيم

جامعة أسيوط كلية العلوم

Assiut University
Faculty of science

قسم الجيولوجيا

Geology Department

إمتحان المستوى الرابع (شعبتي الجيولوجيا والجيوفيزياء)

مقرر 415 ج (جيولوجية مصر)

Course 415 G (Geology of Egypt)

الزمن ثلاث ساعات

الدرجة: 50 درجة

دور پنایر 2020

الإمتحان مكون من أربعة صفحات

Part I (PreCambrian) 10 Markes

Answer the following question

Question 1 (A-B): (10 Marks)

- 1-A: Outline the lab and field evidence led to consider the large serpentinite rocks as allochthonus masses.
- 1-B: Write briefly on the different efforts used on the classifications of the Egyptian Granites.

Part II (Cambrian to L. Cretaceous) 10 Marks

Answer the following question

Question 2 (A-C): (10 Marks)

- 1- A) In a stratigraphic table compare between the Paleozoic rocks at Gilf El Kebir Plateau and northern Western Desert. (4 Marks)
- 1- B) Give reasons:
 - i- The restricted occurrence of marine Triassic rocks in the northeastern part of Egypt. (1 Marks)
 - ii- The difficulty in the determining the geologic age of the Paleozoic rocks. (1 Marks)
 - 1- C) Discuss the lithostratigraphy of the Lower (Early) Cretaceous rocks at south Egypt and northern Western Desert. (4 Marks)

Part III (Upper Cretaceous to Quaternary) 20 Marks

Answer TWO Questions of the following:

Question 3: (10 Marks)

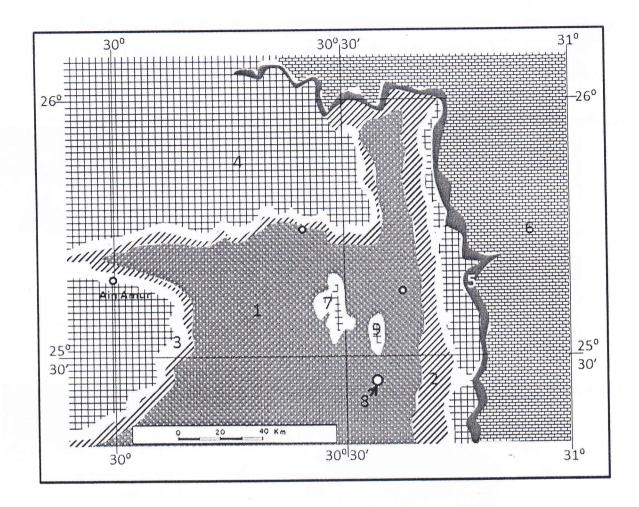
Describe in a time table the litho-, bio- and chemostratigraphy as well as the paleoenvironment and paleontology of the Paleocene-Eocene boundary interval as given in the Global Stratotype Section and Point (GSSP) at Dababiya village, south Luxor, and correlate stratigraphically the rock units of this interval in both Dababiya and Abu Ghurra. (10 Marks)

Question 4: (10 Marks)

Identify the major paleogeographic and paleoenvironmental events and their absolute ages which took place in Egypt during the Oligocene-Pliocene and which gave rise to the present geological and geomorphological landmarks of Egypt (10 Marks)

Question 5 (A-B): (10 Marks)

5-A: Select from list B the equivalent rock units to those of list A, and re-arrange the units of list A in stratigraphic order according to their ages. (5 Marks)


List A

Belayim Formation
Kiseiba Formation
Dabaa Formation
Garra Formation
Birket Qarun Formation
Mamura Formation
Ryan Formation
Tanka Formation
Bir El Temsah Formation
Kareem Formation

List B

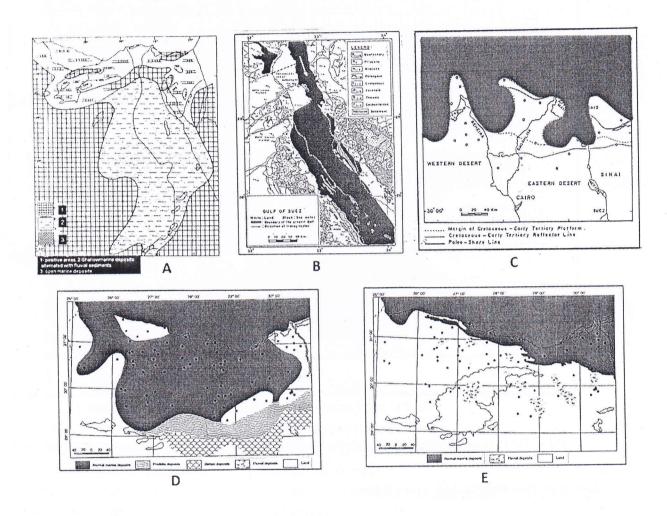
Rudeis Formation
Mokattam Formation
Um Mahara Formation
Quseir-Dakhla Formations
Syatin Formation
Tarawan Formation-Hanadi Member
Observatory Formation
El Qurn-Wadi Garawi Formation
Abu Madi Formation
Geisum Formation
Qasr El Sagha – Qattrani Formation
Dungul Formation

5-B: Look to the following map and define: a) the name of district, b) the names , lithology and age of rock units from 1 to 6, C) the name of topographic and geographic features from 7-9 (5 Marks)

Part IV (Structural Framework, Paleogeography and Paleoenvironment) (10 Marks)

Answer the following question:

Question 6 (A-C)


6-A: Write briefly on THREE of the following concepts (3.5 Marks)

i) Eastern Desert - Midyan terranes, ii) Sol Hamed-Yanbu suture, iii) Western arc or oceanic terranes, iv) Najd faults.

6-B: Answer only **ONE** of the following questions:

- i) Write the subsurface rock units of the Jurassic System at northern Western Desert. (2.5 Marks)
 - ii) Correlate between the Cenomanian rocks at north and south Sinai. (2.5 Marks)

6-C: Look to the following paleogeographic maps and define the Period, Epoch and Absolute age during which the Egyptian land was submerged in a way such as in figures A, B, C, D and E. (4.0 Marks)

Good Luck. Prof. Khaled Ouda; Prof. Ali Khudeir; Prof. Nageh Obaidalla

جامعة أسيـــوط كلية العلوم- قسم الجيولوجيا

Fourth Level Examination in Sedimentary Basins & Sequence stratigraphy (G420)

For Geology and Geophysics students

Time: Two Hours

(50 degree)

9- Jan., 2020

PART-I: Sedimentary Basins (25 degree)

Answer the following questions:

1- a. What is a sedimentary basin?

(5 marks)

- b. Mention the terminology used to describe basins prior to the development of the theory of Plate Tectonics?
- 2- a. What are the basins caused by plate divergence?

(5 marks)

- b. What is the economic significance of aulacogens basins?
- 3- a. What is the strike slip basin?

(5 marks)

- b. Write a brief account on the sedimentary fill of the strike-slip basin.
- 4- Choose the correct answer

(5 marks)

The forearc basins are:

- Strike-Slip/Transform fault basins
- Basins related to subduction

5-Describe briefly the sedimentary fill of forearc basins basin

(5 marks)

PART-II: Sequence Stratigraphy (25 degree)

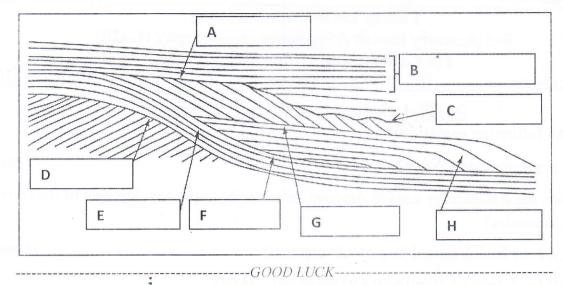
Answer the following questions (Illustrate your answer by diagrams):

A). Write on, and differentiate between TWO ONLY of the following:

(<u>15 marks</u>)

- 1. What is a parasequence and how are the bounding surfaces recognized? And how does the vertical stacking pattern of parasequences allow for the recognition of systems tracts?
- 2. What are the durations of the first and second-order stratigraphic cycles and what are their respective hypothesized causes?
- 3. The difference between retrogradational and progradational stratal pattern in response to sea level changes and sediment flux.
- <u>B</u>). 4- Provide short definitions of <u>FOUR</u> terms of the following and explain why they are important in sequence stratigraphy:

 (6marks)
 - a) Type 1 and Type 2 sequence boundary.


9 0

- b) Coastal onlap.
- c) Base level.

- d) Maximum Flooding Surfaces (MFS).
- e) Sequence stratigraphic seismic surfaces.

تكملة الامتحان بظهر الورقه (صفحه ٢)

<u>C</u>). 5 - Identify the different types of seismic reflections and terminations given in the following figure (Write in the eight empty boxes, from A to H). (4marks)

Prof. Dr. Mohamed Ahmed Soliman

Prof. Dr. Ahmed-Reda El Younsy

جامعة اسيوط كلية العلوم- قسم الجيولوجيا امتحان مادة ميكرو ' ' '

امتحان مادة ميكروسكوبية وبترولوجية الخامات (٣١عج) العام الدراسي ٢٠٢٠/٢٠١

الزمن ساعتان

المستوى الرابع (جيولوجيا)

Answer FOUR questions only of the following (50M)

Q1 (12.5 M)

- i. Write on the anisotropy and polarization colors?
- ii. Compare between cumulus and intercumulus textures?

Q2 (12.5 M)

- i. Write on the measurement of hardness of ores?
- ii. Explain the estimation of the pressure of formation of a mineral or a mineral assemblage?

Q3 (12.5 M)

- i. Write on the paragenetic sequence and zoning?
- ii. Discuss the importance of reflection pleochroism with examples?

Q4 (12.5 M)

- i. Compare between exsolution textures and color changes as quantitative and qualitative tools for the estimation of geothermometry?
- ii. Why sphalerite can be seen to have much lower reflectance than neighboring pyrite?

Q5 (12.5 M)

- i. What are the factors affecting internal reflections?
- ii. Mention the degrees of bireflectance intensity with examples?

تمت الاسئلة وبالتوفيق

جامعة اسيوط كلية العلوم- قسم الجيولوجيا امتحان مادة الخامات الاقتصادية (٣٤٤ج) ٢٠٢٠/٢٠١٩

الزمن ساعتان

المستوى الرابع (جيولوجيا)

Answer FOUR questions only of the following (50M)

Q1 (12.5 M)

Compare between:

- i- Syngenetic and epigenetic mineral deposits?
- ii- Hypothermal and epithermal mineral deposits?

Q2 (12.5 M)

- i- Discuss the various mechanisms of the formation of gold deposits?
- ii- Compare between metasomatic and metamorphic mineral deposits?

Q3 (12.5 M)

- i- Mention the common types and properties of asbestos?
- ii- Discuss the formation of massive sulfide deposits and copper-nickelsulfide association?

Q4 (12.5 M)

- i- Compare between early and late magmatic deposits?
- ii- Write on the geology and general characteristics of Platinum-Group Elements (PGE)?

Q5 (12.5 M)

- i- Compare between placers deposits and residual mineral deposits with examples?
- ii- Write on the stratabound deposits?