Dec. 23, 2019 Time: 3 Hours

Photochemistry and Reactive Intermediates (313C)

Final Exam. For The 3rd level Students

Note: Support your answer with Chemical Equation Answer on the Following <u>Two</u> Sections:	s whenever possible. (50 Marks)
Section A: Photochemistry:	(25 Marks)
Answer on the Following Questions:	
I]- Answer only <u>Four</u> of the following:	(2 X 4 = 8 Marks)
1- Describe the different sources of light with spec	eial reference to solar light?.
2-Explain the product Quantum yield method us	ed for determination the reaction
mechanism in Photochemistry.	
3-Discuss briefly Franck -Condon principle and the	ne possible mechanisms of
Photochemical cleavage of organic compounds.	
4-Discuss the photoisomerization process during	the processes of vision.
5- Indicate the mechanism of heating by Microwa	ve Radiations.
(25 Macks) (25 Macks)	Section (B): Reactive Inter
II] – Mark right ($\sqrt{}$) or wrong (X) on only Four of	the following statements,
and Explain your answer:	(2 X 4 = 8 Marks)
1- Quartz filter transmitting ≥ 300 nm radiation	s can be used in Visible light
photolysis of organic compounds.	ser in this was an are (2)
2- Photochromism is the change of color by the	absorbed wavelength ()
3- Ungerade → Gerade transition is a Symmet	try allowed transition. ()
4- Photodimerization of 1- butene has a Produc	ct Quantum Number
more than one.	
5- U.V. radiations have lower frequency than	visible light. ()

III] Complete only <u>Four</u> of the following reactions and discuss the reaction mechanism: [9 Marks]

Section (B): Reactive Intermediates:

(25 Marks)

Answer on the Following Questions:

1] Write on two only of the following (use equations) (9 Marks)

- a. The trifluromethyl and cyclopropyl radicals are σ radicals, while the ethyl and cyclohexyl radicals are π radicals. (Explain this statement)
- b. Compare between the addition of both singlet and triplet carbenes to olefins.
- c. A carbon radical has seven electrons in its valence shell, while carbocation has only six. (Explain this statement)

2] Suggest the suitable mechanism and products for <u>Only Four</u> of the following reactions. Write the name of the suggested mechanism, indicate each step using arrows.

(16 Marks)

Good Luck

Prof. A. A. Abdel-Wahab & Prof. Dr. M.A. Abdel-Rahman

Assiut University
Faculty of Science
Chemistry Department

Academic year 2019/2020

Time allowed: 3 hours

Final Exam. for Course no. C-333 (Radiochemistry)

Answer the following two questions: -

Question No. 1

(30 Marks)

A- From the following data given below;

Co - 57 271.80 d ε γ 122, 136, 14,... e⁻

Sketch the decay scheme of Co-57.

Write the complete decay equations of Co-57.

How many Co-57 atoms are present in 1 mCi of Co-57 activity?

Insert spin and parity of the parent and the daughter nuclei.

What is the specific activity of carrier free Co-57?

B- Define the following items:

Compton scattering, Sievert, Exposure dose, Specific ionization, Mass stopping power of a material, Internal conversion, Equivalent dose.

C- How much time it would take for the decay of 8/9 of a sample of Ge-68 ($T_{1/2} = 280 \text{ d}$).

D- Calculate irradiation time necessary to produce 600 mCi (22.2 GBq) of Mo-99 by irradiating 4 g of U-235 in the nuclear reactor whose thermal neutron flux is 2×10^{14} n/cm²/s (Assume the formation cross section of Mo-66 is 20 *mb* ($T_{1/2}$ of Mo-99 is 67 hr.).

E- Calculate the activity of a Na-22 source which gives a dose of 64 μSv/h at 1 m. Na-22 emits one gamma photon of energy of 1.28 MeV/disintegration.

F- The dose rate of 2 m from a particular gamma source is 400 μ Sv/h. At what distance will it give a dose rate of 25 μ Sv/h.

Question No. 2

(20 Marks)

A- Define the following items:

Nuclear reaction cross section, Excitation function of a nuclear reaction, Annihilation process, Photoelectric effect, Neutron capture, and Isomeric transition process.

- B- What is the time intervals during which Ga-67 ($T_{1/2} = 3.2$ d) decay to 37% of the original activity.
- C- What kind of decay would you expect for I-125 and I-132?
- D- What is the minimum thickness of lead shielding required for reducing the radiation level from Co-60 source from 10 R min^{-1} to 10 mR h^{-1} (htv = 1.25 cm for lead).
- E- The half-lives of Mo-99 and Tc-99m are 67 hr and 6 hr, respectively, and both are in transient equilibrium in a sample. If the Mo-99 activity is 75 mCi (2.8 MBq), what is the activity of Tc-99m? (assume 87% Mo-99 decay to Tc-99m).

Constants; $m_p = 1.00727 \text{ u}$, $m_n = 1.00866 \text{ u}$, $N_A = 6.023 \times 10^{23} \text{ mole}^{-1}$, $1b = 1 \times 10^{-24} \text{ cm}^2$, $1 \text{ Ci} = 3.7 \times 10^{10} \text{ Bq}$, R = 1000 mR

Good Luck Prof. R. M. Mahfouz

		7	6	ا ن	Periods 4	ω N H	
		87 Fr 223.0197	55 CS 139.90543	37 Rb 85.4678	1.9 × 39.0983	IA H 1.00794 1.00794 3 Li 6.941 11 11 Na 22.98977	
		NI .		38 Sr 87.62	20 Ca 40.078	HA 4 86 9.01218 12 12 24.3050	A Mi
		89 † Ac 227.0278	57 * La 138.9055	39 Y 88.90585	21 Sc 44,95591		1.00794
		104 Unq 261.11	72 H 178.49	40 ZI 91 224	22 1	IVB	
	*	105 Unp 262.114	73 Ta 180.9479	41 Nb 92.90638	23 V 50.9415	< œ	Atomic number
	58 Ce	106 Unh 263.118	74 W 183.85	42 Mo 95.94	24 Cr 51.9961	VIB	ss
	59 Pr	107 Uns 262.12	75 Re 186.207	43 Tc 98.9072	25 Mn 54.9380	VIIB	4.2
92 93 U Np	60 Nd 144:24	108 Uno b (265)	76 0s 190.2	44 Ru 101.07	26 Fe 55.847		Metals
% 93	61 Pm 144.9127	109 Une^b (266)	77 II 192 <i>2</i> 22	45 Rh 102.90550	27. Co 58.93320		
94 95 Pu Am	62 Sm 150.36		78 P1 195.08	46 Pd 106.42	28 Ni 58.6934		Metalloids
95 Am	63 E1 151.965		79 Au 196.96654	47 Ag 107.8682	29 Cu 63.546	<u> </u>	-
96	64 Gd 157.25		80 Hg 200.59	48 Gd 112.411	30 2n 65:39	8	Nonmetals
97 BK	65 Tb 158.92534		81 Ti 204.3833	49 In 114.82	69.723	111A 10.341 13 13	विश्व
98	66 Dy 162.50		82 Pb 2072	\$n 118.710	66	1200 O O	R
99	67 H0 164 93032		83 84 Po 208.98037 208.98	0.0		VA 7 14.005/4 15 15 15 15 15 15 15 15 15 15 15 15 15	Room Temperature Black = Solid Blue = Liquid Red = Gas
100 Fm	68 Er 167 26		Po 208.9824	Te	Se 78.96	6 4	= Solid = Liquid = Gas
101 Md 258.10	69 Tm 168 93421		209.9871	126.09447	79.904	8 8	
102 No 259.1009	70 Yb 173.04		Rn 222.0176	i i	83.80	2 He 4.00260 10 Ne 201797 18 Ar 39.948	Noble gases
103 Lr 262.11	71 LU 174.967						

a Atomic masses are the 1989 values given in the Table of Atomic Masses and Numbers (opposite) but rounded, where appropriate, to the fifth decimal place.

b The 1989 report of the IUPAC listed no value of atomic masses for this element. The value in parenthesis is a best estimate.

Faculty of Science
Assiut University
Chemistry Department

Time:3 hrs Dec.2019

rinal morganic Chemistry Exam(C-321) For Third Level S	tudents
Answer the following questions:	
Question Number One:	(16 marks)
1-(i)-Write the IUPAC name of the following:	
a) [Pdl ₂ (ONO) ₂] , b)[Co(en) ₂ NH ₃ Br]Cl , c)K[Pt(NH ₃)Cl ₃]	
(ii) What kinds of isomerism that compounds (a) and (b) above can	possess?
(iii) Write the formula of the following compounds:	
(a) Hexaamminechromium(III)hexacyanocobaltate(III)	
(b) ammonium tetrathocyanatodiamminechromate(III).	
 (iv)In the light of HSAB concept , predict which direction the follow CoF₂+HgBr₂ CoBr₂+HgF₂ HgO+H₂S HgS+H₂O All₃+3NaF AlF₃+3NaI 2- Complete the following: a) Octahedral complexes MX₅Y haveform as all six corn MX₄Y₂ have isomers such as the following example b) The depression of freezing point measurement depends on dissociates intoit will givethe expected depress particle. c) The compound Ni(NH₃)₄(NO₃)₂.2H₂O gives square planar corn structureor octahedral structuredepending on unpaired electron spins present in the complex. d) The complex [Pt(NH₃)₂Cl₂] is square planar and exists in two	ners arewhile
3- State the effective atomic number rule and calculate that for [Fe	(CN) ₆] ³⁻ .

Question Number Two

(17 marks)

- a) Explain how pure titanium can be extracted from rutile ore.
- b) Write short note on he following:
- (i) Catalytic activity of transition metals
- (ii) Metallic character and related properties for transition meatals.
- c) Calculate the uncorrected magnetic moment of $CuSO_4.5H_2O$ at 293K using Gouy method which gave $X=1.70\times10^{4-}$ (the MW is 250.18 and the density is 2.29 gcm³⁻).
- d) Give reasons for only four of the following:
- (i) Transition metals show variable oxidation states.
- (ii) Anhydrous Co²⁺ compounds have different color than hydrated ones.
- (iii) Cu(I) compounds are colorless and diamagnetic while Cu(II) compounds are colored and paramagnetic.
- (iv) V^{2+} compounds are more basic than V^{3+} and V^{4+} compounds.
- (v) Fe, Co and Ni act as good catalysts.

Question Number Three

(17 marks)

- a) Write briefly on only two of the following:
- (i) Oxides and oxy-acids of group vi-B.
- (ii) Affinity for oxygen of platinum metals.
- (iii) Oxidation states of Cu, Ag and Au compounds in aqueous solutions.
- (iv) Action of strong and weak bases on zinc- group elements.
- b) Answer only two of the following:
- (i) State the different uses of vanadium.
- (ii) Write the name and chemical formula of the different ores of Mn in the nature.
- (iii) Compare between the oxidation -reduction strength of Fe, Co and Ni in the oxidation states +2 and +3.
- c) Do as shown in brackets: (answer only two)
- (i) The aqueous solution of Fe^{3+} salts are acidic and $Fe(OH)_3$ is less basic than $Fe(OH)_2$. [explain]
- (ii) Cu group metals almost unreactive. [give reason]
- (iii) Chromyl chloride. [method of preparation]
- d) Write the chemical equations for the following:
- (i) Hydrolysis of TiCl₄ and ZnCl₄.
- (ii) Action of acids on Cr metal in absence and presence of air.

Atomic numbers: Sc=21, Ti= 22, V=23, Cr=24, Mn=25, Fe=26, Co=27,Ni=28, Cu=29, Zn=30 C= 12, N=14, Kr=36.

Good Luck

Assiut University 3rd & 4th Levels 14-1-2020

Faculty of Science First Term

No. 363 50 Marks

Botany & Microbiology Department

Chemistry & Microbiology and Microbiology

Physiology of Fungi Final Examination

I. Discuss FOUR ONLY of the following [20 marks]: -

1. Adaptation phase in yeast.

Two Hours

- 2. Different kinds of fungal tropism (count only).
- 3. Fungal photoreceptors.
- 4. How does the fungus face the extream low temperatures?
- 5. Different relationships between fungi and other organisms (count only).

II.	Com	plete	the	following	ng sentences	[5 marks]:
	AND AND MAKE AND				The second second	

1. Differences in fungal cell walls depend up on,
, and
2. Factors affecting on fungal growth includes, and
3. The medium volume in culture vessels must be for,
4. Nutritional factors includes,, and
5. Some fungi unable to grow on the glucose but grow on starch because
6. Effect of light on fungi include,

III. Compare between the FIVE ONLY of the following [15 marks]: -

- 1. Synthesis for another and assist relationships.
- 2. Agatating and surface cultures.
- 3. Effect of CO₂ and water on fungal growth.
- 4. Different effects of fungicide on the fungal cell.
- 5. Effect of phosphorus and copper on the fungal nutrition.
- 6. Fungi and plant in symbiotic relationship.

IV. Answer FOUR ONLY of the following [10 marks]: -

- 1. Arrange the (carotenoids, melanin, glycolipids and chitin) molecules in the fungal cell.
- 2. Draw and count only the growth curve of Aspergilii.
- 3. Arrange the most resistance fungal parts (multicellular and pigmented conidia; vegetative mycelium; unicellular and hyline conidia; multicellular and pigmented ascospores; and hyaline conidia) to environmental stress and give the resons.
- 4. To obtain the pure fungal strain you must follow many steps (count only).
- 5. pH value devides the fungi into many groups (mention these groups).

Assiut University
Faculty of Science
Chemistry Department

Academic year 2019/2020

Time allowed: 2 hours

Final Exam. for Course no. C-301 (Radiochemistry)

Answer the following two questions: -

Ouestion No. 1

(30 Marks)

A- From the following data given below;

Na - 22 2.60 y β⁺ 0.54,... γ 1.28 MeV

Sketch the decay scheme of Na-22.

Write the decay equations of Na-22.

How many Na-22 atoms are present in 1mCi of Na-22 activity?

Insert spin and parity of the parent and daughter nuclei.

What is the specific activity of carrier free Na-22.

B- Define the following items:

G-value, Linear attenuation coefficient, EC process, Absorbed dose, LET,

Cross section of a nuclear reaction, and Photoelectric effect.

- C- Calculate the number of Co-60 atoms ($T_{1/2} = 5.3$ y) produced in a 10-mg of cobalt metal exposed for 2 minutes to a thermal neuron flux of 2 × 10¹³ n/cm²/s in a reactor ($\sigma = 37$ b).
- D- A sample of 1.00×10^{-10} g of Mo-99 ($T_{1/2} = 67$ h) is freshly prepared at t = 0.
 - i) What kind of equilibrium exists between Mo-99 and Tc-99m?
 - ii) Calculate the time of maximum growth.
 - iii) At that time what will be the activity of Tc-99m present?

Question No. 2

(20 Marks)

- A- How long will it take for 10-mCi (370 MBq) sample of P-32 ($T_{1/2}$ = 14.3 d) and 100-mCi (3.7 GBq) sample of Ga-67 ($T_{1/2}$ = 3.3 d) to have the same activity.
- B- Define the following items: -

Inelastic collision of neutrons with matter, Annihilation process, Sievert, and Anti-neutrino

C- Calculate the mass attenuation coefficient for 1 MeV gamma-ray for NaI.

(a_u for Na and I atoms are 2.32 and 12.03 b/atom, respectively).

D- The reaction 33 S (n,p) 33 P is exoergic by 0.533 MeV. The mass of 33 S is 32.971458 u. What is the mass of 33 P?

E- Calculate the maximum kinetic energy of the β^- emitted in the radioactive decay of He-6.

Constants; $m_p = 1.00727$ u, $m_n = 1.00866$ u, $N_A = 6.023 \times 10^{23}$ mole⁻¹, $1b = 1 \times 10^{-24}$ cm², $1 \text{ Ci} = 3.7 \times 10^{10}$ Bq, $m_{\text{Li-6}} = 6.0151223$ u.

Good Luck Prof. Dr. R. M. Mahfouz

	Metals Metalloids Nonmetals IIIA IVA
0 oids	Nonmetals Black = Red =
	8lack = 8lue = Red = Red = Red = 12011 1400634 15 P 1

90 91 92 93 94 95 96

Th Pa U Np Pu Am Cm
232,0381 231,0359 238,0289 237,0482 244,0642 243,0614 247,0703

Sm 150.36

9

Yh 173.04

LU 174.967

a Atomic masses are the 1939 values given in the Table of Atomic Masses and Numbers (opposite) but rounded, where appropriate, to the fifth decimal place.

b The 1989 report of the IUPAC listed no value of atomic masses for this element. The value in parenthesis is a best estimate.

	Property of the Contraction	6h	****	, constitution of	and the second	The state of the s				N						
T	a della replacazione della secolo della	5s 5d 5g		elibrojin cajdagaja 20 ertas p. consta					+ + +	6h11/2 561/2 561/2 5d6/2	2 000 574 200 200 200 200 200 200 200 200 200 20	lh ₁₁ 2d _{3/2} 3s _{1/2} 1g _{7/2} 2d _{5/2}	12 42.8 6			\$70 66 64 56
	entre de tit en betaut de mende displanaben par Amerika (men et apar,	4p	and reduces	等数3.00m(100)等级代款。 专品:40C(100) 建加油的			Con of a contract of		allinger	580/2 401/2 416/2 419/2	200 200 200	189/2 201/2 156/2 203/2	10 2 4			50 40 88
The second secon		38	+	di di din her bezirreggi di di dina her bezirreggi di di dina negati di dina d	enderschiller 72 v. de Anto 3 (to v. de Anto 3)		March States (Suppose States ((VALUE)		1000	11 _{7,12}	8 4 2 6		\$ 5 5 4	28 20 16
elektrost et et leige et entyttyyd i gleege		2p	-	s mallered finder and state the conjugate		der gefagten i Spire sprigter der von der werden gefagten in de kommen en geken werden figung	to the second		Pat Wings	2D1/2 2p3/2	100 mg/mg 100 mg/mg 100 mg/mg	1p _{1/2} 1p _{3/2}	2		٠	8
Acado help		18	+): Helding consignation of the	Tapor and and the control	alle made likely Mer hade group	thends in the graph of the particular than the	erda total erdeliga glassastici zenterde		181/2	-Miles VIVED	181/2	2			

Date: December 2019

Time: 3 hours Marks: 50

Environmental Analytical Chemistry Examination (C-343)

Answer the following questions:	(50 Marks)
1- Answer only four of the following:	(12 Marks)
1- Answer only tour of the following.	(12 Ividino)
a- Write short notes on the biological importance of Iron, Zinc and Copper io	ns.
b- Draw the chemical structure for each of the following compounds:	
Nylon 610, Kodel, parathion and carboxin.	
c- Complete the following equations:	
i) Benzene + $\{O\}$ $\frac{Enzymatic}{Epoxidation}$ $\frac{Nonenzymatic}{rearrangement}$	
ii) Reactive Hydrocarbons $\xrightarrow{O_3}$	
iii) HgCl ₂ — Methylcobalamin —	
iv) Vinyl Chloride $\xrightarrow{Polymerisation}$	
v) $K_2Al_2Si_6O_{16} + 2 H_2O + CO_2$	
d- Describe the simplified representation of various regions of the atmosphere	ð.
e- What are the procedures for sampling gaseous pollutants.	
2- Answer only two of the following:	(10 Marks)
a- Describe with diagram the main differences between Gas Chromatography	(GC) and High
Performance Liquid Chromatography (HPLC) as separation tools used in	environmental
analysis.	
b- Explain with equations the poisonous effect of Carbon mono oxide in environmental equations are poisonous effect of Carbon mono oxide in environmental equations.	onment.
c- Define each of the following terms:	
Acid rain - Ozone hole - Photochemical Smog - Troposphere - Lithosphe	re.
3- Answer <u>only two</u> of the following:	(8 Marks)

- a- What are the major industrial uses of Organo-Tin compounds in environment.
- b- Discuss the toxicological effects of Acrylamide and Aflatoxin on human health.
- c- Describe briefly the advantages of Graphite Furnace Atomic Absorption Spectrometry (GFAAS) used for environmental analysis.

أنظر خلفه باقى الأسئلة

4- Discuss briefly, with the aid of equations if applicable, <u>only three</u> of the following sentences: (9 Marks)

- a) The main objectives and the processes involved in the tertiary treatment unit.
- b) The inhibition mechanism of enzyme action via toxic heavy metals.
- c) Eutrophication process and its adverse effect on aquatic life.
- d) Mercury (Hg) is one of the most toxic heavy metals; however, its toxicity depends on its chemical state.

5- Differentiate between only two of the following: (6 Marks)

- a) Air flotation versus vacuum flotation
- b) Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) for the determination of the organic content in wastewater.
- c) Temporary and permanent hardness

6- Put $(\sqrt{})$ or (X) in front of <u>only Five</u> of the following sentences, and correct the wrong sentences: (5 Marks)

- a) Physical treatment unit is used to retain the coarse solids found in wastewater.
- b) Increasing the dissolved oxygen (DO) concentration decrease the degree of water self-purification.
- c) Excessive amounts of oil and greases in wastewater are removed by flotation unit.
- d) Refractory organic compounds can be only removed by tertiary treatment units.
- e) API separators have higher surface area and are more efficient than CPI separators in removing oil and solids.
- f) Membranes separation techniques are used to remove very fine particles even dissolved salts.

"Good luck"

Examiners: Assc. Prof. Ahmed M. Kamal & Dr. Haitham M. El-Bery

Faculty of Science - Chemistry Department	Date: 11/1/2020 Time: 2 hours
Colloids and Surface Chemistry Examination for 3rd Level Applied In Students (Chem.303).	
I. <u>Colloids</u> : (25 Marks)	
Answer the Following Questions:	
 1 - Explain what is meant by <u>Only Three</u> from the following terms: i - Associated Colloids. ii - Protective colloids. iii - Electro dialysis. iv - Tyndall effect. 	(6 Marks)
 2 - Describe a method for the preparation of <u>Only Three</u> from the fo i- Colloidal platinum. ii- Graphite sol. iii- water in Oleic acid emulsion. iv- Calcium acetate gel. 	
3- Mark (V) for the correct sentence and (x) for the wrong one: i- Pearl is an example of solid dispersed in solid. ii- Gold sol moves to the negative electrode. iii- The process of fast removing ions from a sol by diffusion throug membrane is called electroosmosis. iv- The dispersal of a precipitated material into colloidal solution by electrolyte in solution is called peptization.	*:
 4- Mark (√) on the correct answer: i- The presence of the double layer in colloids accounts for	
ii- If the sol particles in a given colloid move towards the cathode, to medium carries charge. a) no b) negative c) positive d) sometimes positive and som iii- The movement of the dispersion medium under the influence of known as a) osmosis b) electro-osmosis c) diffusion d) iv do not show Tyndall effect.	etimes negative f applied potential is
a) Suspensions b) Colloidal solutions c) Gels d) True	solution

a) Give the structure of the colloidal ion of As ₂ S ₃ sol .	(2 Marks)
\$ 1 manual m	(3 Marks)
b) Complete the following:- i) is a common thixotropic gel , and the disperse	d phase in emulsions
	enukos Statientalitas enukos
are generallycharged. ii)can be obtained by hydrolysis, whereas	sol may be obtained
	*
by reduction method. iii) Mercury sols can be obtained by, wherea	s edible jelly can be
obtained by	neam si tena walanti si maan
II. Surface Chemistry: (25 Marks)	
Answer the following questions:	
I-Show how you can estimate the value of heat of adsorption f	rom Langmuir equation.
(5 Marks)	and the second state of the second second
2- How the porosity of solids could be assessed from adsorption	n isotherm data. <u>(5 Marks)</u>
3 -On applying the BET equation for determining the S_{BET} o	f a catalyst using N_2 gas
adsorbate, the slope and intercept were 72.6 and 1.2, respec	ctively. Calculate the value
S _{BET} take into your consideration that surface area occupied	by one molecule of N_2 is 1
Å ² . (<u>5 Marks)</u>	
	(10 Marks)
common between the chemisorntion and physisorption.	
b- Write short notes on the adsorption from gas mixture.	mamuir adsorption isother
c- State the postulates and the mathematical expressions of La	angmun ausorption isother
and the community of the special state of the community o	

Dr. Mohamed N. Abd El-Hameed

Assiut University
Faculty of Science
Chemistry Department

Dațe:2/1/2020 Time: 2 hrs

Final Examination – 1st Term 2019/2020 Third Year – Industrial Chemistry (C-307) Dye Chemistry

Answer the following:

- 1- Discuss the relation between colour and constitution in dye chemistry
- 2- Write the general characters of Vat Dyes.
- **3-** Answer ONE of the following:
 - a) Industrial production of mordant Azo Dyes.
 - b) One synthetic method for preparation of INDIGO.

Examiner: Prof.Dr.Soaud A.M.Metwally

Assiut University
Faculty of Science
Chemistry Department

First semester (2019/2020)

Time: 2hrs

Final Exam For 3rd Year Students (Industrial Chemistry Programme Students-Oils, Soaps and detergents (C 309))

Answer the following questions:

(50 Marks)

First question

(20 Marks)

1. Define the following terms:

(6 Marks)

- a) Fermentation.
- b) Saponification number.
- c) Acid value.
- d) Acetyl Number.

2. Draw the chemical structure of Stearo-diolein.

(4 Marks)

- a) Calculate the Iodine number for Stearo-diolein.
- b) Calculate the Saponification value for Stearo-diolein. [Mol.Wt of Stearo-diolein = 887.45; A.Wt. of iodine =127; Mol.Wt. KOH =56]
- 3. (2-Phenylethanol) is a major component of rose oils and is widely used in perfumery industry. Explain the mechanism of 2-Phenylethanol synthesis from benzene? (5 Marks)
- 4. Explain the reproductive effect of phenylethyl alcohol (PEA) which is one of the major components of perfumery industry? (5Marks)

Second question

(15 Marks)

Answer **three only** from the following questions:

(5 Marks each)

- 1. Explain in detail the different types and causes of rancidity?
- 2. Show with equations the biosynthesis of jasmones?
- 3. Illustrate the mechanism of the cleaning action of soap?
- 4. Compare between the RIFM and IFRA roles in the regulation process of the perfumes industry?

Third question

(15 Marks)

Answer three only from the following questions:

(5 Marks each)

- 1. Describe with equations the ethanol production using catalytic hydration method?
- 2. Discuss with equations the synthesis of O- and P- tertiary butylcyclohexyl acetate (OTBCHA and PTBCHA) from phenol?
- 3. Explain briefly the following statement:
- "Naturalness" concept is not supported or promoted by the fragrance industry
- 4. Show with equations the biosynthesis of terpenoids?

Good luck

Dr. Ahmed Mahmoud Sayed

Date: January 2020 Time: 3 h.

Final Exam In Spectroscopy and Stereochemistry for 3rd Level Students (311 C)

Answer the following	TWO sections:	(50 Marks)	
S 0	<u>ction (A):</u> Spectro	scopy (34 N	Marks)
Answer the following	questions:		
1 - Choose the correct	answer for the fo	#OWERCE:	(7 Marks
i- Which compound wo	ould be expected to	show intense IR	absorption at 2250 cm ⁻¹ ?
a- CH₃CH₂COOH.	b- (CH ₃) ₂ CHCN.	c- CH ₃ CH ₂ CON	NH ₂ . d- (CH ₃) ₂ CHOH.
ii- What is the relative	area of each peak	in a quartet spin-s	pin splitting pattern?
a- 1:4:4:1.	b-1:2:2:1.	c- 1:3:3:1.	d-1:1:1:1.
iii- What multiplicities a	re observed for the	signals in the off-	resonance decoupled
¹³ C spectrum of 2-c	hloropropene?		
a- 2 Singlets ar	nd a doublet.	b- A singlet	and 2 doublets.
c- 3 Singlets.		d- A singlet	, a doublet and a triplet.
iv- 1H nuclei located ne	ear electronegative	atoms tend to be	relative to ¹ H nuclei which
are not:			
a- Resonanced.	b- Shielded.	c- Deshielded.	d- None of the above.
v- Which species of th	e following is used	to bombard with t	he sample for which mass
Spectroscopy has I	oeen performed?		
a- Neutrons.	b- Protons.	c- Electrons.	d- Alpha particles
vi- If the secondary ald	cohol is completely	oxidized to keton	e, IR spectrum showed:
a- Absorptions at 35	500 and 1715 cm ⁻¹ .	b- Ab	sorption at 3500 cm ⁻¹ .
c- Absorption at nei	ther 3500 nor 1715	cm ⁻¹ . d- Ab	sorption at 1715 cm ⁻¹ .
vii- Which of the follow	ving is an example	of a conjugated di	enes?
a-	b-	c	d- d-

- (i) Compound $C_9H_{10}O_2$: δ 2.2 (3H, singlet), 5.0 (2H, singlet), 7.2 (5H, singlet) (ppm).
- (ii) Compound C₅H₁₀O;
 δ 1.1 (6H, doublet), 2.2 (3H, singlet), 2.5 (1H, septet) (ppm).
- 3- Using the provided tables for rules of diene and enone absorption, calculate $\lambda_{max} \mbox{ of the following compounds:} \label{eq:lambda} \mbox{(8 Marks)}$

4- Define the following terms:

(3 Marks)

- a- Auxochromes.
- b- Metastable ions.
- c- Hypthochromic shift.
- 5- Discuss the β-cleavage with Mclafferty rearrangement for ketones giving an example? (3 Marks)
- 6- You are provided with MS spectrum, this spectrum belongs to PhCH₂OCOCH₃ or PhCOOCH₂CH₃ or PhCH₂COOCH₃, Indicate your answer with the fragmentation Pattern?

7- You are provided with IR, Mass and ¹HNMR spectra of a compound having the molecular formula C₁₄H₁₀O₂. Assign the suitable structure which agrees with the provided spectra, give reasons for your assignment and show the fragmentation pattern which confirms your answer. (6 Marks)

Good Luke

Dr. Ahmed Abdou Omar

δ (ppm)

ملحوظة: الامتحان في صفحتين

Answer Four only of the below questions (2 pages):

1- Write the relationship between the following pairs of compounds "enantiomers, diastereomers, constitutional isomers or identical compounds" (4 degrees)

a)
$$H_3N$$
 H_3 H_3

2- Complete the following reactions mentioning the stereochemistry of products

 $\frac{H_2, Pd/C}{Cat. reduction} \qquad \qquad b) \qquad \frac{Br_2}{CCl_4}$

c)
$$\frac{H_2O}{\text{Sub. reaction}}$$
 d) $\frac{BH_3}{\text{THF}}$

3- Write short notes about the following

(4 degrees)

- a) Geometrical isomerism
- b) Chemical resolution of racemic mixtures
- c) A chiral auxiliary
- d) Axial chirality (Chirality without stereogenic centers)

4- Assign R or S configuration for each stereogenic center in the following compounds (4 degrees)

(4 degrees)

...... is the Fischer projection of (R) 3-bromo-1,1-dichloro-2-propanol. 5- Choose the correct answers CHCl₂ CH₂Br CH₂Br iii) $Cl_2HC + OH$ iv) HO + H CHCl₂

b) is an achiral compound.

i)
$$C=C=C$$
 H ii)

- c) An optically pure (R)-stereoisomer of a molecule A has a specific rotation of 20°. is the $[\alpha]_D^{20}$ would be observed rotation for a mixture of the (R) and (S) stereoisomer where there is an enantiomeric excess of (S) equal to 60%.
 - 16°
- ii) -12°
- d) When of D-lactose is dissolved in 1 L of water and placed in a sample cell 5 cm in length, the observed rotation is $+19.5^{\circ}$ ($[\alpha]_D^{20} = +52 \text{ deg·mL·g}^{-1} \cdot \text{dm}^{-1}$). iv) 7.5 g
 - i) 750 g
- ii) 75 g

Regards, Dr. Ahmed I. A. SOLIMAN

Woodward - Fieser rules for dienes Acyclic Base value for acyclic or heteroannular diene Base value for homoannular diene 214 Increments for 253 Double bond extending conjugation Alkyl substituent or ring residue +30 Exocyclic double bond +5 Heteroannular (transoid, Polar groups: +5 -OAc +0 -OR +6 -SR +30 -Cl, -Br Homoannular (cisoid) +5 $-NR_2$ Solvent correction +60 +0 λ max. = Tota!

Group		δ δ-c=c-c-c-c
6-membered ring or acyclic enone	and the conductive of the second seco	Increment
5-membered ring parent enone	**************************************	Base 215 nm
Acyclic dienone		Base 202 nm
	The state of the s	Base 245 nm
Double bond extending conjugation		
Alkyl group or ring residue		30
-ОН	α. β. y and higher	10, 12, 18
-OR	u. B. y and higher	35, 30, 18
-O(C=O)R	α, β. γ. δ	35 30, 17, 31
CI .	α, β, δ	6
Br	a, p	15, 12
NR ₂	α, β	25, 30
xocyclic double bond	β	95
omocyclic diene component		5