Assiut University Faculty of Science Department of Physics

Final Exam (Grade 50/100) General Physics I (P100) **Exam Duration: 2 hours**

First semester 2017-2018

Date: 26/12/2017

Part I: Only select the correct answer for the following statements and kindly fill the table at the end of this part with your selections: (18 Marks)

- 1. The equation for the change of position of a train starting at x = 0 m is given by $x = \frac{1}{2}at^2 + bt^3$, where t is the time in seconds. The dimensions of a and b are respectively:
 - A) $L.T^2$: $L.T^3$
- B) T^3/L : T^4/L
- C) $L/T^3 : L/T^4$
- D) L.T⁻²; L.T⁻³
- 2. Which of the following quantities has the same dimensions as a force times distance, F.x? Note: $[F] = MLT^{-2}$; $[a] = [g] = LT^{-2}$; [x] = [h] = L and $[v] = LT^{-1}$.
 - $A)\frac{1}{2}mv^2$

- D) mgt
- 3. The graph below shows the velocity versus time graph for a ball. Which explanation best fits the motion of the ball as shown by the graph?
 - A) The ball is falling, is caught, and is thrown down with greater velocity.
 - B) The ball is rolling, stops, and then continues rolling.
 - C) The ball is falling, hits the floor, and bounces up.
 - D) The ball is rising, hits the ceiling, and falls down.

- 4. An object has a constant acceleration of 3 m/s². The position versus time graph for this object has a slope:
 - A) that decreases with time
- B) that is constant
- C) that increases with time
- D) of 3 m/s
- 5. The angle between $\vec{A} = (25 m)\hat{i} + (-45 m)\hat{j}$ and the positive x axis is:
 - A) 299°
- B) 61°
- C) 119°

- D) 29°
- 6. Two bullets; one is shot horizontally from a gun and the other is dropped vertically from the same point at the same instant, neglecting the air resistance:
 - A) the dropped one strikes the ground first.
- B) both bullets strike the ground at the same time.
- C) the shot one strikes the ground first
- D) we can not decide which one strikes first.

7. A heavy weight is supported by two cables that exert tensions of magnitude T_1 and T_2 , as shown in the figure. Which statement is correct?

- A) $T_1 = T_2$.
- B) $T_1 > T_2$.
- C) $T_{1v} = T_{2v}$.
- D) $T_1 < T_2$.
- 8. The total force needed to drag a box at constant speed across a surface with coefficient of kinetic friction $\mu_{\mathbf{k}}$ is least when the force is applied at an angle heta such that
 - A) $\tan \theta = \mu_k$
- B) $\cos \theta = \mu_k$
- C) $\sin \theta = \mu_k$
- D) cot $\theta = \mu_k$
- 9. An object moves in a circle at constant speed. The work done by the centripetal force is zero because:
- A) the displacement for each revolution is zero B) the centripetal force is perpendicular to the velocity.
- C) there is no friction.

- D) the average force for each revolution is zero.
- 10. An object is constrained by a cord to move in a circular path of radius 0.5 m on a horizontal frictionless surface. The cord will break if its tension exceeds 16 N. The maximum kinetic energy the object can have is:
 - A) 4 J
- B) 8 J
- C) 16 J

- D) 32 J
- 11. A simple pendulum consists of a 2.0-kg mass attached to a string. It is released from rest at X as shown. Its kinetic energy at the lowest point Y, that is 1.85 m below X, is about:

- A) zero
- B) 0.90 J
- C) 36.26 J
- D) 6.02 J
- 12. Which of the following five graphs is correct for a particle moving in a circle of radius r at a constant speed of 10 m/s?

В

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12
Your Ans.											,	

<u>Part II</u>: Solve the following problems then circle the correct answer:

(20 Marks)

1. Suppose $A = B^n C^n$, where A has dimensions LT, B has dimensions $L^2 T^{-1}$, and C has dimensions LT^2 . Then the exponents n and m have the values:

	2	1
Α.	'	_
<i>L</i> X •	3,	3

в. 2; 3

C. $\frac{4}{5}$; $\frac{-1}{5}$

D. $\frac{1}{5}$; $\frac{3}{5}$

2. A stone is released from rest from the edge of a building roof 190 m above the ground. Neglecting air resistance, the speed of the stone, just before striking the ground, is:

A. 43 m/s

B. 61 m/s

C. 120 m/s

D. 190 m/s

3. A 5.0-kg cart is moving horizontally at 6.0 m/s. In order to change its speed to 10.0 m/s, the net work done on the cart must be:

A. 40 J

B. 90 J

C. 400 J

D. 160 J

4. A block is pushed up a frictionless 30° incline by an applied force as shown. If F = 25 N and M = 3.0 kg, what is the magnitude of the resulting acceleration of the block?

	B 16 m/s"		
A. 2.3 m/ s^2	B. 4.6 m/s ²		
		C. 3.5 m/s ²	
		C. 3.3 III/ 3	D. 5.1 m/s ²

5. A light rigid rod is 77.0 cm long. The rod hangs straight down as shown (without friction) at rest with a small ball of mass m attached to its bottom end. What minimum horizontal velocity should be given to the ball so that it can swing around in a full circle?

A. 5.49 m/s	B. 30.20 m/s	C. 3.88 m/s	•	D. 0.77 m/s

- 3. A 2.00-kg block is attached to a spring of force constant 500 N/m as in the figure. The block is pulled to the right of equilibrium and released from rest. Find the required elongation in the spring to result in a speed of the block of 1 m/s as it passes through equilibrium if:
- a) the horizontal surface is frictionless,
- b) the coefficient of friction between block and surface is 0.350.

Best regards,

Teaching Staff: Dr. Ahmed Tamer, Dr. Alaa Abd-Elnaiem, Dr. Amera Zain, Dr. Mohamed Abdelkareem

Part III: Solve only two of the following three problems: -

(12 Marks)

1. A 2.00 m tall basketball player is standing on the floor 10.0 m from the basket, as shown in figure. If he shoots the ball at a 40.0° angle with the horizontal, at what initial speed must be throw the basketball so that it goes through the hoop without striking the backboard? The height of the basket is 3.05 m. (consider the ball at the height of 2.00 m)

2. In the figure shown, the coefficient of kinetic friction between the block and the incline is 0.40. Disregarding any pulley mass or friction in the pulley, what is the magnitude of the acceleration of the suspended block as it falls?

2. In the figure shown, the coefficient of kinetic friction between the block and the incline is 0.40. Disregarding any pulley mass or friction in the pulley, what is the magnitude of the acceleration of the suspended block as it falls?

Assiut University

Faculty of Science

Semester: Fall 2017

Date: 18 Dec. 2017

Time Allowed: 2 hours

Final Exam - Physics (1) - Course Code: P100 - (50 Marks)

Q1) Circle the correct answer for the following questions:

/ 9

- 1) A man pulls a sled along a rough horizontal surface by applying a constant force F at an angle θ above the horizontal. In pulling the sled a horizontal distance d, the work done by the man is:
- A. Fa
- B. $Fa\cos\theta$
- C. $Fa'\sin\theta$
- D. $Fa/\cos\theta$
- E. $Fa'/\sin\theta$
- 2) When a physical quantity is conserved the numeric value of the quantity remains:
- A. equal zero throughout the physical process.
- B. equal unity throughout the physical process.
- C. the same throughout the physical process.
- D. the different throughout the physical process.
- E. none of these
- 3) The mass of a body:
- A. is slightly different at different places on Earth
- B. is a vector
- C. is independent of the free-fall acceleration
- D. is the same for all bodies of the same volume
- E. can be measured most accurately on a spring scale
- 4) A baseball is thrown vertically into the air. The acceleration of the ball at its highest point is:
- A. zero
- B. g, down
- C. g,up
- D. 2g, down
- E. 2g, up
- 5) A stone is dropped from a cliff. The graph (carefully note the axes) which best represents its motion while it falls is: Ans C

- 6) block of mass m is pulled at constant velocity along a rough horizontal floor by an applied force T as shown. The magnitude of the frictional force is:
- A. $T \cos \theta$
- B. $T \sin \theta$
- C. zero
- D. mg
- E. $mg cos \theta$

Q2) Solve the following problems then circle the correct answer:

/ 30

- 1) During a short interval of time the speed v in m/s of an automobile is given by $v = at^2 + bt^3$, where the time t is in seconds. The units of a and b are respectively:
- A. $m \cdot s^2$; $m \cdot s^4$
- B. s^{3}/m_{1} ; s^{4}/m
- C. m/s^2 ; m/s^3
- D. m/s^3 ; m/s^4
- E. m/s^4 ; m/s^5
- 2) The position y of a particle moving along the y-axis depends on the time t according to the equation $y = at bt^2$. The dimensions of the quantities a and b are respectively:
- A. L^2/T , L^3/T^2
- B. L/T^2 , L^2/T
- C. L/T, L/T^2
- D. L^3/T , T^2/L
- E. none of these
- 3) The coordinate of an object is given as a function of time by $x = 7t 3t^2$, where x is in meters and t is in seconds. Its average velocity over the interval from t = 0 to t = 4 s is:
- A. 5 m/s
- B. -5 m/s
- C. 11 m/s
- D. -11 m/s
- E. -14.5 m/s
- 4) An object starts from rest at the origin and moves along the x axis with a constant acceleration of 4 m/s². Its average velocity as it goes from x = 2 m to x = 8m is:
- A. 1 m/s
- B. 2 m/s
- C. 3 m/s
- D. 5 m/s
- E. 7 m/s
- 5) How far does a car travel in 6 s if its initial velocity is 2 m/s and its acceleration is 2 m/s² in the forward direction?

A. 36 m	
B. 48 m	
C. 24 m	-
D. 12 m	•
E. 14 m	
6) Neglectiv	
o) Neglectii	ig the effect of air resistance, a stope de
A. 3 s	ng the effect of air resistance, a stone dropped off a 175 m high building lands o
	gu. 0
- 5	
~ 5	
E. 36 s	
7) A projectil	e is fined s
vertical con	mponent see ground level over level ground with an inches
distance fro	le is fired from ground level over level ground with an initial velocity that has a imponent of 20 m/s and a horizontal component of 30 m/s. Using $g = 10$ m/s ² , the
A. 40 m	om launching to landing points is: $\frac{1}{20} \frac{10}{10} \frac{10}{10}$
B. 60 ra	•
C. 80 m	
D. 120 m	•
E. 180 m	
8) When a certs	ain force is applied to the standard kilogram its acceleration is 5.0 m/s ² . When
A. 0.2 kg	ain force is applied to the standard kilogram its acceleration is 5.0 m/s². When ce is applied to another object its acceleration is one-fifth as much. The mass is:
A. 0.2 kg B. 0.5 kg	ain force is applied to the standard kilogram its acceleration is 5.0 m/s². When ce is applied to another object its acceleration is one-fifth as much. The mass is:
A. 0.2 kg B. 0.5 kg C. 1.0 kg	ain force is applied to the standard kilogram its acceleration is 5.0 m/s². When ce is applied to another object its acceleration is one-fifth as much. The mass is:
A. 0.2 kg B. 0.5 kg C. 1.0 kg D. 5.0 kg	ain force is applied to the standard kilogram its acceleration is 5.0 m/s². When ce is applied to another object its acceleration is one-fifth as much. The mass is:
A. 0.2 kg B. 0.5 kg C. 1.0 kg D. 5.0 kg E. 10. kg	The mass
A. 0.2 kg B. 0.5 kg C. 1.0 kg D. 5.0 kg E. 10. kg	omobile in
A. 0.2 kg B. 0.5 kg C. 1.0 kg D. 5.0 kg E. 10. kg	omobile in
A. 0.2 kg B. 0.5 kg C. 1.0 kg D. 5.0 kg E. 10. kg	omobile in
A. 0.2 kg B. 0.5 kg C. 1.0 kg D. 5.0 kg E. 10. kg 9) A 9000 N autoforward force A. 0.055 m/s ²	ain force is applied to the standard kilogram its acceleration is 5.0 m/s². When ce is applied to another object its acceleration is one-fifth as much. The mass is: omobile is pushed along a level road by four students who apply a total of 500 N. Neglecting friction, the acceleration of the automobile is:
A. 0.2 kg B. 0.5 kg C. 1.0 kg D. 5.0 kg E. 10. kg 9) A 9000 N autoforward force A. 0.055 m/s ² B. 0.55 m/s ²	Omobile in
A. 0.2 kg B. 0.5 kg C. 1.0 kg D. 5.0 kg E. 10. kg 9) A 9000 N autoforward force A. 0.055 m/s ² B. 0.55 m/s ² C. 1.8 m/s ²	Omobile in
A. 0.2 kg B. 0.5 kg C. 1.0 kg D. 5.0 kg E. 10. kg 9) A 9000 N autoforward force A. 0.055 m/s ² B. 0.55 m/s ² C. 1.8 m/s ² D. 9.8 m/s ²	Omobile in
A. 0.2 kg B. 0.5 kg C. 1.0 kg D. 5.0 kg E. 10. kg 9) A 9000 N autoforward force A. 0.055 m/s ² B. 0.55 m/s ² C. 1.8 m/s ² D. 9.8 m/s ²	Omobile in
A. 0.2 kg B. 0.5 kg C. 1.0 kg D. 5.0 kg E. 10. kg 9) A 9000 N autoforward force A. 0.055 m/s ² B. 0.55 m/s ² C. 1.8 m/s ² D. 9.8 m/s ² E. 18 m/s ²	omobile is pushed along a level road by four students who apply a total of 500 N. Neglecting friction, the acceleration of the automobile is:
A. 0.2 kg B. 0.5 kg C. 1.0 kg D. 5.0 kg E. 10. kg 9) A 9000 N autoforward force A. 0.055 m/s ² B. 0.55 m/s ² C. 1.8 m/s ² D. 9.8 m/s ² E. 18 m/s ² O) When a 25 kg or	omobile is pushed along a level road by four students who apply a total of 500 N. Neglecting friction, the acceleration of the automobile is:
A. 0.2 kg B. 0.5 kg C. 1.0 kg D. 5.0 kg E. 10. kg 9) A 9000 N autoforward force A. 0.055 m/s ² B. 0.55 m/s ² C. 1.8 m/s ² D. 9.8 m/s ² E. 18 m/s ²	omobile is pushed along a level road by four students who apply a total of 500 N. Neglecting friction, the acceleration of the automobile is:
A. 0.2 kg B. 0.5 kg C. 1.0 kg D. 5.0 kg E. 10. kg 9) A 9000 N autoforward force A. 0.055 m/s ² B. 0.55 m/s ² C. 1.8 m/s ² C. 1.8 m/s ² E. 18 m/s ² O) When a 25 kg or	omobile is pushed along a level road by four students who apply a total of 500 N. Neglecting friction, the acceleration of the automobile is:
A. 0.2 kg B. 0.5 kg C. 1.0 kg D. 5.0 kg E. 10. kg 9) A 9000 N autoforward force A. 0.055 m/s ² B. 0.55 m/s ² C. 1.8 m/s ² D. 9.8 m/s ² E. 18 m/s ² 0) When a 25 kg condirected 20° belower the is: Take g = 25 N	omobile is pushed along a level road by four students who apply a total of 500 N. Neglecting friction, the acceleration of the automobile is:
A. 0.2 kg B. 0.5 kg C. 1.0 kg D. 5.0 kg E. 10. kg 9) A 9000 N autoforward force A. 0.055 m/s ² B. 0.55 m/s ² C. 1.8 m/s ² D. 9.8 m/s ² E. 18 m/s ² 0) When a 25 kg condirected 20° belower at the second crate is: Take g = 25 N 68 N	omobile is pushed along a level road by four students who apply a total of 500 N. Neglecting friction, the acceleration of the automobile is:
A. 0.2 kg B. 0.5 kg C. 1.0 kg D. 5.0 kg E. 10. kg 9) A 9000 N autoforward force A. 0.055 m/s² B. 0.55 m/s² C. 1.8 m/s² C. 1.8 m/s² E. 18 m/s² O) When a 25 kg condirected 20° belocrate is: Take g = 25 N 68 N 180 N	omobile is pushed along a level road by four students who apply a total of 500 N. Neglecting friction, the acceleration of the automobile is:
A. 0.2 kg B. 0.5 kg C. 1.0 kg D. 5.0 kg E. 10. kg 9) A 9000 N autoforward force A. 0.055 m/s ² B. 0.55 m/s ² C. 1.8 m/s ² D. 9.8 m/s ² E. 18 m/s ² 0) When a 25 kg condirected 20° belower the isomorphism. Take g = 25 N 68 N	omobile is pushed along a level road by four students who apply a total of 500 N. Neglecting friction, the acceleration of the automobile is:

				/ 11	
) Answer the Following problems:				→ F	
A 400 N block is dragged along a horizontal surface by an applied force F as shown. The coefficient of kinetic friction is $\mu_k = 0.4$ and the block moves at constant velocity. The magnitude of F is: [3 Marks]	11/1/1/1/1/	7777	(4/5) <i>F</i>	7 F (3/5)F -	
NS:		~~~~			
		water	s surfac	ee. Neglect 0 m above [4 Ma	t ai
resistance. (a) Use conservation of incommerce water's surface. (b) Find his speed as he hits th		water	s surfaces	ee. Neglect 0 m above [4 Ma	t ai
resistance. (a) Use conservation of incer- water's surface. (b) Find his speed as he hits th		water	s surfaces	ee. Neglect 0 m above [4 Ma	t air
resistance. (a) Use conservation of incention water's surface. (b) Find his speed as he hits th		water	s surfaces	ee. Neglect 0 m above [4 Ma	t air
resistance. (a) Use conservation of incention water's surface. (b) Find his speed as he hits th		water	s surfaces	ee. Neglect 0 m above [4 Ma	t ai
resistance. (a) Use conservation of incention water's surface. (b) Find his speed as he hits th		water	s surfaces	ee. Neglect 0 m above [4 Ma	t ai
resistance. (a) Use conservation of incention water's surface. (b) Find his speed as he hits th		water	s surfaces	ee. Neglect 0 m above [4 Ma	t ai
resistance. (a) Use conservation of incention water's surface. (b) Find his speed as he hits th		water	s surfaces	ee. Neglect 0 m above [4 Ma	t ai
resistance. (a) Use conservation of incention water's surface. (b) Find his speed as he hits th		water	s surfaces	ee. Neglect 0 m above [4 Ma	t ai
resistance. (a) Use conservation of incention water's surface. (b) Find his speed as he hits th		water	s surfaces	ee. Neglect 0 m above [4 Ma	t air
resistance. (a) Use conservation of incer- water's surface. (b) Find his speed as he hits th		water	s surfaces	ee. Neglect 0 m above [4 Ma	t air
resistance. (a) Use conservation of incer- water's surface. (b) Find his speed as he hits th		water	s surfaces	ee. Neglect 0 m above [4 Ma	t air
resistance. (a) Use conservation of incer- water's surface. (b) Find his speed as he hits th		water	s surfaces speed 5.	ee. Neglect 0 m above [4 Ma	t aine the
resistance. (a) Use conservation of incer- water's surface. (b) Find his speed as he hits th		water	s surfaces speed 5.	ee. Neglect 0 m above [4 Ma	t aine the
2) A diver of mass m drops from a board 10.0 resistance. (a) Use conservation of mechanica water's surface. (b) Find his speed as he hits the ANS:		water	s surfaces speed 5.	ee. Neglect 0 m above [4 Ma	t air
resistance. (a) Use conservation of incer- water's surface. (b) Find his speed as he hits th		water	s surface speed 5.	ee. Neglect 0 m above [4 Ma	t ain

		,		
	,			·
			•	
			·	• .
		·		
				•
NS:				(, , , , , , , , , , , , , , , , , , ,
(b)	Find the skier's speed at the botton How far does the skier travel on the air resistance.	m. 1e horizontal si	urface befor	e coming to rest? Negl [4 Marl
	ow is 0.210.			
kin	etic friction between skis and			θ (B (C
	er encounters a horizontal	h = 20.0 n	1	•
a l				

Assuit University Faculty of Science Physics Department

FINAL EXAMINATION

				TVIII T	1011		
Aca	ademic Year	2017/2018	G				_
Ser	nester	√ First		Second	S	Summer	
Co	urse Title:		ysics	2 - code(P10:			
Exa			-	(9-11) D	/	2018	
i	Physical constants:						
Ele	ectron charge (e)= 1.6 x	10 ⁻¹⁹ C	m _e =9	9.11 x 10 ⁻³¹	Kg m _p	=1.67 x 10 ⁻²⁷ Kg	
K _e =	=9 x 10 ⁹ N.m ² /C ²		$\varepsilon_0 = 3$	3.85 x 10 ⁻¹²	C ² /N.m ²		Marketon
PA	ART I : Circle the correct	answer f	or the	e following	question	<u>s:</u> (25 marks	-)
1-	Tesla is a unit of: a- Electric Field c- Magnetic Field			- Inductance - magnetic Fl			
2-	The acceleration of an elec	tron movii	ng in a	uniform Elec	ctric Field	$E = 5x 10^3 \text{ N/C is:}$	
	a- $7.8 \times 10^{14} \text{m/s}^2$ b-	8.8x10 ¹⁴ n	1/s²	c- 5.6x10	$0^8 \mathrm{m/s^2}$	d- 6.2x10 ⁸ m/s ²	
3-	The direction of magnetic I a- From south pole to nort		ce is:	b- F	rom north	pole to south pole	
	c- From one end of the ma	ignet to an	other	d- N	None of the	above	
4-	The total charge of a sphere is: (area of sphere = $4\pi r^2$		0.2m	having a volu	ume charge	e density ρ=50 μc/m³	
	a- 3μC	b- 1.67μC		c- 2.5	μC	d- 1.4μC	
5-	The ratio of charge stored t a- Resistance b-				e is called t	hed- Capacitance	
6-	The maximum electric flux (magnitude E = 10 N/C through a- $10 \pi \text{ N.m}^2/\text{C}$ b- π	igh a circul	lar sur	face of radiu	s 1 m is: (a	electric field of rea of circle= πr^2)	
7-	The unit of the current (An	npere) is e	equiva	lent:			
	a- C.S	b- C/S		c- N	N.C	d- C/N	
	The electric field lines for a a-Form circles c-Point radically inward	positive po	b-	arge: Point radical No correct a	•	I	
						Follow next page	

In the equation $F = q \vec{v} \times \vec{B}$: a- F must be perpendicular to \vec{v} but not b- F must be perpendicular to \vec{B} but not necessarily to \vec{B} necessarily to \vec{v} c- \vec{v} must be perpendicular to \vec{B} but not d- F must be perpendicular to both \vec{v} and \vec{B} necessarily to F 10- The inverse of the conductivity (σ) is called: a- Capacitance b- Resistivity c- Potential d- Current 11- In series combination of the capacitors, the equivalent capacitance is: a- greater than the individual capacitances b- smaller than the individual capacitances c- equal the sum of the individual capacitances e- equal the total charge of the combination 12- The magnetic force acting on the particle is zero: a- When the charged particle moves b- When the charged particle moves perpendicular to the magnetic field parallel to the magnetic field c- When the charged particle moves with an d- None of these angle to the magnetic field 13- The unit of the conductivity σ of a conductor is : $b - \Omega^{-1} \cdot m^{-1}$ $c-\Omega/m^2$ $d-\Omega.m^2$ $a-\Omega/m$ 14- If a dielectric material is inserted between capacitor plates, then: a- The charge on the capacitor increases b- The capacitance increases d- The capacitance decreases c- The charge on the capacitor decreases 15- A 3 μF capacitor is connected in series with a 6 μF capacitor and a 12-V battery for a long time. The charge on the $3.0-\mu F$ capacitor is: d- 6 μC c- 48 µC b- 36 μC a- 24 µ.C 16- A conductor of length 1m has a cross-sectional area of 2cm^2 and its resistance is 10 Ω , then its resistivity equal: d- 20 x10⁻⁶ Ω.m b- 2 x10⁻³ Ω.m c- 20 Ω.m a- 2Ω .m 17- Three resistances R_1 = R_2 = R_3 are connected in parallel in circuit , the current I_1 , I_2 , I_3 pass in the resistances are: **b**- $I_1 \neq I_2 = I_3$ **c**- $I_1 = I_2 = I_3$ **d**- $I_1 = I_2 \neq I_3$ a- $I_1 \neq I_2 \neq I_3$ 18- A dielectric material is inserted between parallel plates of a capacitor. The potential difference across the capacitor plates (ΔV) and the charge stored (Q) will be:

b- ΔV decreases and Q remains the same

d- ΔV remains the same and Q decreases

a- ΔV increases and Q remains the same

c- ΔV remains the same and Q increases

- 19- Two capacitors are identical. They can be connected in series or in parallel. If you the largest equivalent capacitance for the combination, do you connect them in
 - a- In series
- b- In parallel
- c- do the combination have the same capacita
- 20- In series combination of the resistors, the equivalent resistor is:
 - a- greater than any individual resistor
 - b- smaller than any individual resistor
 - c- equal the sum of the individual resistor
 - d- equal the total current of the combination
- 21- Farad is equal:
 - a- Coulomb/Volt
- b- Coulomb. Volt
- c- Volt /Coulomb
- d- Volt/ ohm
- 22- The electric field between two charged, parallel metal plates is 6500 N/C. The distance between the plates are 12 cm. The electric potential difference between them is:
 - a- $7.8 \times 10^{-3} \text{ V}$
- b- 780 V
- c- 7.8×10^4 V d- 7.8×10^5 V
- 23- The capacitance of an isolated charged sphere is given by:

a-
$$(c = \frac{4\pi\varepsilon_0}{r})$$

b-
$$(c = \frac{\varepsilon_o r}{4\pi})$$

b-
$$\left(c = \frac{\varepsilon_o r}{4\pi}\right)$$
 c- $\left(c = \frac{r}{4\pi\varepsilon_o}\right)$ d- $\left(c = 4\pi\varepsilon_o r\right)$

- 24- According to Gauss' law ,the net electric flux (Φ_E) across surface S_3 in the next figure is equal:

 - a- $(\Phi_{\rm E}) = -Q$ b- $(\Phi_{\rm E}) = -2Q$ c- $(\Phi_{\rm E}) = -3Q$ d- zero
- 25- Rank the current in these three regions from highest to lowest:

a- 1, 3,2

- b- 2,3,1
- c-3,1,2
- d-3,2,1

PART II : Put ($\sqrt{}$) or (X) in front the following sentences:

(5 marks)

- 1- The net electric flux through an opened surface is called Gaussian's surface
- 2- The electric flux through a surface of a fixed area A has a maximum value when the normal to the surface is parallel to the field.
- 3- The total flux through a cube Gaussian surface is changed when the surface is changed to spherical surface.
- 4- The magnetic force acts on a charged particle only when the particle is in motion.
- 5- The magnitude of F_B exerted on the particle is inversely proportional with q and directly with u

Follow next page

RT	III	:	Solve	the	next	problems	:
7							

(20 marks)

In the corresponding figure, Find the resultant electrostatic force acting on charge q₂ $q_1 = 1x10^{-9} C$ $q_2 = 5x10^{-9} \text{ C}$ $q_3 = 1x10^{-9} \text{ C}$ and its direction (5 marks) 2- Determine the equivalent capacitance of the combination shown when C=12nF and if a potential difference of about 24 V is applied across its terminal 2CFind the total charge (5 marks) 3C

3 <u>-</u>	A proton moving at 4 x10 ⁶ m/s through a magnetic field of 1.7 T experiences a mag
	force of magnitude 8.2 x10 ⁻¹³ N. What is the angle between the proton's velocity and field? (2.5 mark
4-	A parallel -plate capacitor having a plate area of 1.75 cm ² and plate separation of
	0.04 mm filled with a Teflon.(Dielectric constant (K) for Teflon =2.1), if the dielectric
	strength (E) for Teflon is $60 \times 10^6 \text{ V/m}$. Determine (a) the capacitance
	(b) the maximum potential difference (5 marks)
5-	The charge per unit length on a long, straight filament is (- 90µC/m). Find the electric
	field at 20 cm, where distances are measured perpendicular to the length of the
	filament. (2.5 marks)
••••	
	·
	Questions Finished
	Questions Finished With my best wishes

الخميس ٢٠١٧/١٢/٢ م ١١:٩ صباحاً

جامعة أسيوط كلية الحقوق

الزمن: ساعتان

امتحان مقرر حقوق الإنسان لطلاب كلية العلوم (جميع التخصصات) - جامعة أسيوط

ملحوظة: على الطالب الإجابة عن الأسئلة المطلوبة فقط، ولايُلتفت إلى الإجابة الزائدة.

أجب عن سوالين فقط من الأسئلة الآتية: (خمس وعشرون درجة لكل سوال) السوال الأول:

ما المقصود بحقوق الإنسان ؟ مع شرح خصائصها ؟ مبيناً أنواعها ؟ السؤال الثاني:

تكلم عن الإعلان العالمي لحقوق الإنسان من حيث :

أ _ القيمة القانونية للإعلان العالمي لحقوق الإنسان .

ب - حقوق الإنسان التي تضمنها الإعلان.

السؤال الثالث:

تناول - بالشرح المناسب - بعضاً من الحد الأدنى لحقوق الأجنبى في إطار التشريع المصرى ؟

السؤال الرابع:

من الأمور التى فرق الإسلام فيها بين الرجل والمرأة: الميرات ـ الشهادة ... وضح ذلك ؟

مع تمنياتنا بالنجاح والتوفيق ،،، د. بدرأحمد محمد عبدالسلام