

Assiut University

Faculty of Science

Department of Physics

Final Exam 2014/2015

Date: Jan. 9th, 2015

Allowed Time: 3 hours

Course Name: Amorphous Materials and Glasses

Coordinator: Dr. Mansour Abdel Sattar

Code: 457 P

Answer only five of the following questions:

(50 Marks)

Question 1:

(10 Marks)

- a. Compare between the amorphous and crystalline solids
- b. Give a definition for the following: the glass transformation-thermal analysis -the onset crystallization temperature
- c. List the common methods used for preparing the amorphous materials?

Question 2: (10 Marks)

- a. Draw the enthalpy-temperature diagram showing the behavior of a melt which cools to form glass and crystals and explain how cooling rate affect the glass transformation?
- b. Calculate the specific refractivity (R_s) and the Abbe number (v) of the sodium borate glass. Where $n_D = 1.47$, $n_F n_C = 0.0079$, and Density = 1.89 g.cm⁻³
- c. Give a definition for the following: Polarizability-Electronegativity- DSC

Question 3: (10 Marks)

- a. Explain in detail how can the splat technique is used for preparing the amorphous metals?
- b. What are the raw materials which are added to silica to produce Soda-lime glass? What is the reason for using these materials with silica?
- c. Compare between the Goldschmidt and Zachariasen theory?

Look at the back page

Ouestion 4: (10 Marks)

a. Show how the push-rod dilatometer is used to measure the thermal expansion of glass.

- b. What are the mean parts of the thermal analysis apparatus?
- c. List the production methods of glass containers. Explain in detail one method of them.

Ouestion 5: (10 Marks)

- a. Explain how the ultraviolet is absorbed by the glasses?
- b. Explain how the electron beam Evaporator is working?
- c. Draw the typical DSC curve of glass, showing the endothermic and exothermic peaks.
- d. What are the two approaches which are used to analyze the dependence of the glass transition temperature on the heating rate

Question 6: (10 Marks)

- a. What does happen for the 3d levels when the metal ions such as Fe ions are added to glass?
- b. Compare among the amber, Gold ruby, and Colloidal Semi-conductor glasses.
- c. Consider these materials: MgO, Al_2O_3 and SiO_2 According to Zachariasen rules, which materials can form glasses and which ones cannot? Where the ioic radius of Mg^{2+} , O^{2-} , Al^{3+} and Si^{4+} are 0.72, 1.40, 0.53 and 0.40, respectively.

End of questions	Best wishes
Dr. Mansour Abdel Sattar	

المعة أسيوط الفصل الدراسي الثاني المقرر: 491 ف الية العلوم 2015-2014 المادة: فيزياء رياضية مدم الفيزياء أختبار نهاية الفصل الاول الوقت: 3 ساعة

Answer the following questions:

- 1. a. State the 10 rules governing a mathematical space.
 - b. Find out if the two 2x2 matrices:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

make up a group under Matrix multiplication. What kind of a group?

- c. Discuss the symmetry of a triangle with two equal sides. Is this symmetry related to the above (b)? (الساقين متساوي مثلث)
- d. What these two matrices do to the 2D basis (I,j) in 2D geometric space?
- 2. Take the Linearly independent set: $\{x^i\}_{i=0}^{\infty}$. Get the first three components of c.o.n.s. of functions under the inner product:

$$(f(x), g(x)) = \int_0^2 f(x)g(x)dx$$

Is there any relation between your answer and the following?

$$P_0 = \sqrt{\frac{1}{2}}$$
 $P_1 = \sqrt{\frac{3}{2}} x$ $P_2 = \sqrt{\frac{5}{2}} \left[\frac{3}{2} x^2 - \frac{1}{2}\right]$

3. Find the coefficients $a_i's$ for the expansion $\Psi(\mathbf{x}) = \sum_{i=0}^{\infty} a_i \, \varphi_i(\mathbf{x})$ where $\{\varphi_i\}_{i=0}^{\infty}$ is a c.o.n.s. on the interval [0,+1].

Take $\Psi(\mathbf{x})=3x^2-1$ and the first three components of $\{\varphi_i\}_{i=1}^\infty$

are : i.
$$\varphi_0=1$$
 ii. $\varphi_1=\sqrt{3}[2x-1]$ iii. $\varphi_2=\sqrt{5}[6x^2-6x+1].$

Do you need more than the three components? Explain your Answer.

----- بالتوفيق

Assiut University

Physics & Physics and Chemistry

Magnetic Resonance and Mossbauer Spectroscopy

453 P

Faculty of Science Physics Department 4th vear

Exam date: 18 / 1 / 2015

Time allowed: 3 hours

Exam in 2 pages (50 marks)

Use the following physical constants when you need:

Electron charge $e = 1.6x10^{-19}$ Coulomb,

Proton mass $m_p = 1.673 \times 10^{-27} \, kg$,

The gyromagnetic ratio of H^{I} , g = 5.586

Boltzmann Constant $k = 1.38 \times 10^{-23} \text{ J/K}$

Electron mass $m_e = 9.11x10^{-31} kg$, Planck's constant $h = 6.626 \times 10^{-34} J.s$

Dielectric permittivity $K = 9 \times 10^9 \text{ Nm}^2/\text{Coul}^2$

Section (A): (15 marks)

Circle the correct answer for the following TEN sentences: (1.5 marks for each one)

- 1- The Larmor frequency of a magnetic moment around a magnetic field
- (a) is constant and doesn't change with the applied magnetic field
- (b) increases with increasing the applied magnetic field
- (c) decreases with increasing the applied magnetic field
- 2- The L-S coupling splits the *d*-electrons levels (l=2) to
- (a) six energy levels with j=5/2
- (b) two groups with j=5/2, j=3/2
- (c) four energy levels with i=3/2
- 3- The magnetic moment of an electron spin is
- (a) μ_R

(b) $\frac{1}{2} \mu_R$

- (c) $2\mu_B$
- 4- The energy required for a spin flip of the electron in a magnetic field is
- (a) smaller than the energy required for the proton
- (b) larger than the energy required for the proton
- (c) equal to the energy required for the proton
- 5- The photon frequency required in nuclear magnetic resonance experiment
- (a) increases with increasing the applied magnetic field
- (b) decreases with increasing the applied magnetic field
- (c) doesn't depend on the applied magnetic field
- 6- The energy absorbed by the spin system conducted to the lattice is described by
- (a) The spin-spin relaxation time
- (b) The spin-lattice relaxation time
- (c) neither of them
- 7- In an octahedral field, d_{z2} and d_{x2-v2} orbitals
- (a) have higher energy than d_{xy} , d_{xz} and d_{yz} orbitals

- (b) have smaller energy than d_{xy} , d_{xz} and d_{yz} orbitals
- (c) have the same energy than d_{xy} , d_{xz} and d_{yz} orbitals
- 8- The energy of levels with quantum number *j* equals
- (a) $E = g_i \mu_B m_i H$

- (b) $E = \hbar \gamma_N m_j H$
- (c) both are correct
- 9- In a Mossbauer spectroscopy, the energy of the emitted γ photons from the source
- (a) is proportional to the Doppler velocity of the source.
- (b) is constant and doesn't change with the Doppler velocity of the source.
- (c) is proportional to the Doppler velocity of the absorber.
- 10- In a Mossbauer spectroscopy, absorption resonance of γ photons is due to
- (a) overlapping between the absorption line and the emission line
- (b) the recoil energy transferred to the source
- (c) the high energy of the emitted γ -photons

Section B (15 marks):

Answer the following question:

In an ESR experiment, for a system with l=2 and s=1/2

- a) Calculate the frequencies of resonance in a magnetic field of 0.2 T
- b) Calculate the magnetic fields of resonance (H_1 and H_2) when the system is excited by photons with energy of 11.2 GHz

Section C (20 marks):

Answer two of the following three questions (10 marks for each one)

- 1) Calculate the energy required for a spin flip in a magnetic field of 0.1 T and the Larmor frequency for (a) the electron (b) the proton
- 2) Write the Bloch equations for the system of magnetic moments excited by photons in a constant magnetic field H and considering damping:
- 3) (a) Draw a diagram showing d_{z2} , d_{x2-y2} , d_{xy} , d_{xz} and d_{yz} orbitals and their energies levels in an octahedral field.
 - (b) Show the crystal field splitting diagram of the d-orbitals energy levels in a tetrahedral, an octahedral and a square-planer fields.

Best wishes

Examiner: Dr. Mohamed Almokhtar