
Assiut University

Faculty of Science

Program: Diploma

Date: 15/9/2015

Time Allowed: 3 hours

Course Title: Sources and radiological protection - Code: P534 - Final Exam

Solve the following problems? (100 Marks) $A_o = 6.02 \times 10^{23}$ atoms/mol, μ_{air} (STP) = 3.46×10⁻⁵ cm⁻¹, $\rho_{air} = 1.293$ kg/m³ 1) Deduce the transformation constant and half-life of 226Ra if the radon gas in secular equilibrium with 1 g Ra exerts a partial pressure of 4.8×10-4 mm Hg in a 1-L flask and if the half-life of radon is 3.8 days. (10 Marks) Ans: 2) Calculate the specific activities of ^{14}C and ^{35}S , given that their half-lives are 5730 yr and 87 days, respectively. Ans: (5 Marks)

transformations/minute/gram? (5 Mar
ins: (3 Mai
• • • • • • • • • • • • • • • • • • •
•
What is the bremsstrahlung energy flux at a distance of 10 cm from source (neglect attenuation of the bremsstrahlung by the beta shield)? (10 Mag
•
•

5) Aluminum bronze, an alloy containing 90% Cu (ato 10% Al (atomic weight = 26.98) by weight, has What are the linear and mass attenuation coeffici rays if the cross sections for Cu and Al for this q and 4.45 b?	a density of 7.6 g/cm ³ . ents for 0.4 MeV gamma
Ans:	(10 Marks)
	(271213)
•	
	*
-	
6) A worker accidentally spills 3700 Bq (10 μ Ci) of a ³ of 10 cm ² on her skin. What is the dose rate to Where, For ³² P: $E_{max} = 1.71$ MeV and $E_{mean} = 0.7$ MeV Ans:	the contaminated skin?
•	
•	
•	
-	
•	
•	
•	

whose maximum energy is 0.672 MeV and v MeV.	arolage chergy is 0.2
	(5 Mar)
7	
•	
Consider two radiation fields of equal energy 0.1-MeV photon flux of 2000 photons/cm²/s. In	n the second case, the photo
energy is 2 MeV and the flux is 100 photons/cm ² /s. In for the two radiation fields. Where the energy muscle are μ (0.1 MeV) = 0.0252 cm ² /g and μ	n ² /s. Calculate the dose rate
energy is 2 MeV and the flux is 100 photons (ar	n ² /s. Calculate the dose rate
energy is 2 MeV and the flux is 100 photons/cm ² /s. In for the two radiation fields. Where the energy muscle are μ (0.1 MeV) = 0.0252 cm ² /g and μ	<pre>n²/s. Calculate the dose rate y absorption coefficients fo (2.0 MeV) = 0.0257 cm²/g.</pre>
energy is 2 MeV and the flux is 100 photons/cm ² /s. In for the two radiation fields. Where the energy muscle are μ (0.1 MeV) = 0.0252 cm ² /g and μ	<pre>n²/s. Calculate the dose rate y absorption coefficients fo (2.0 MeV) = 0.0257 cm²/g.</pre>
energy is 2 MeV and the flux is 100 photons/cm ² /s. In for the two radiation fields. Where the energy muscle are μ (0.1 MeV) = 0.0252 cm ² /g and μ	<pre>n²/s. Calculate the dose rate y absorption coefficients fo (2.0 MeV) = 0.0257 cm²/g.</pre>
energy is 2 MeV and the flux is 100 photons/cm ² /s. In for the two radiation fields. Where the energy muscle are μ (0.1 MeV) = 0.0252 cm ² /g and μ	<pre>n²/s. Calculate the dose rate y absorption coefficients fo (2.0 MeV) = 0.0257 cm²/g.</pre>
energy is 2 MeV and the flux is 100 photons/cm ² /s. In for the two radiation fields. Where the energy muscle are μ (0.1 MeV) = 0.0252 cm ² /g and μ	<pre>n²/s. Calculate the dose rate y absorption coefficients fo (2.0 MeV) = 0.0257 cm²/g.</pre>
energy is 2 MeV and the flux is 100 photons/cm ² /s. In for the two radiation fields. Where the energy muscle are μ (0.1 MeV) = 0.0252 cm ² /g and μ	<pre>n²/s. Calculate the dose rate y absorption coefficients fo (2.0 MeV) = 0.0257 cm²/g.</pre>
energy is 2 MeV and the flux is 100 photons/cm ² /s. In for the two radiation fields. Where the energy muscle are μ (0.1 MeV) = 0.0252 cm ² /g and μ	<pre>n²/s. Calculate the dose rate y absorption coefficients fo (2.0 MeV) = 0.0257 cm²/g.</pre>
energy is 2 MeV and the flux is 100 photons/cm ² /s. In for the two radiation fields. Where the energy muscle are μ (0.1 MeV) = 0.0252 cm ² /g and μ	<pre>n²/s. Calculate the dose rate y absorption coefficients fo (2.0 MeV) = 0.0257 cm²/g.</pre>
energy is 2 MeV and the flux is 100 photons/cm ² /s. In for the two radiation fields. Where the energy muscle are μ (0.1 MeV) = 0.0252 cm ² /g and μ	<pre>n²/s. Calculate the dose rate y absorption coefficients fo (2.0 MeV) = 0.0257 cm²/g.</pre>
energy is 2 MeV and the flux is 100 photons/cm ² /s. In for the two radiation fields. Where the energy muscle are μ (0.1 MeV) = 0.0252 cm ² /g and μ	<pre>n²/s. Calculate the dose rate y absorption coefficients fo (2.0 MeV) = 0.0257 cm²/g.</pre>
energy is 2 MeV and the flux is 100 photons/cm ² /s. In for the two radiation fields. Where the energy muscle are μ (0.1 MeV) = 0.0252 cm ² /g and μ	<pre>n²/s. Calculate the dose rate y absorption coefficients fo (2.0 MeV) = 0.0257 cm²/g.</pre>
energy is 2 MeV and the flux is 100 photons/cm ² /s. In for the two radiation fields. Where the energy muscle are μ (0.1 MeV) = 0.0252 cm ² /g and μ	<pre>n²/s. Calculate the dose rate y absorption coefficients fo (2.0 MeV) = 0.0257 cm²/g.</pre>

walks toward the source at a rate of 1 m/s, and, at a distance of the source, he stops, looks at the exposed source for 15 s, realist source is not in the shield, and leaves at a rate of 2 m/s. What commitment from this exposure?	zes that the
	(15 Marks)
	(========
	•
4-	
·	
	-
+	

 $^{9)}$ A $^{10}\text{-Ci}$ ^{60}Co source failed to be retracted into its shield. The operator

	survey meter, whose time constant is 4 seconds reads 10 mR (100 μ Sv)
	per hour while measuring the radiation from a dental X-ray exposure of
	0.08 second.
	What was the actual exposure rate?
	What would have been the dose to the dental hygienist if she had been
A m a.	at the point of measurement? (10 Marks)
Ans:	(10 Marks)
	*
11)	A counting standard whose transformation rate is given as 1000±30
	A counting standard whose transformation rate is given as 1000 ± 30 min ⁻¹ is used to determine the efficiency of a counting system. The measured count rate is 200 ± 10 min ⁻¹ . What is the efficiency of the counting system and the precision of the measurement?
11) Ans:	A counting standard whose transformation rate is given as 1000 ± 30 min ⁻¹ is used to determine the efficiency of a counting system. The measured count rate is 200 ± 10 min ⁻¹ . What is the efficiency of the
	A counting standard whose transformation rate is given as 1000 ± 30 min ⁻¹ is used to determine the efficiency of a counting system. The measured count rate is 200 ± 10 min ⁻¹ . What is the efficiency of the counting system and the precision of the measurement?
	A counting standard whose transformation rate is given as 1000 ± 30 min ⁻¹ is used to determine the efficiency of a counting system. The measured count rate is 200 ± 10 min ⁻¹ . What is the efficiency of the counting system and the precision of the measurement?
	A counting standard whose transformation rate is given as 1000 ± 30 min ⁻¹ is used to determine the efficiency of a counting system. The measured count rate is 200 ± 10 min ⁻¹ . What is the efficiency of the counting system and the precision of the measurement?
	A counting standard whose transformation rate is given as 1000 ± 30 min ⁻¹ is used to determine the efficiency of a counting system. The measured count rate is 200 ± 10 min ⁻¹ . What is the efficiency of the counting system and the precision of the measurement?
	A counting standard whose transformation rate is given as 1000 ± 30 min ⁻¹ is used to determine the efficiency of a counting system. The measured count rate is 200 ± 10 min ⁻¹ . What is the efficiency of the counting system and the precision of the measurement?
	A counting standard whose transformation rate is given as 1000 ± 30 min ⁻¹ is used to determine the efficiency of a counting system. The measured count rate is 200 ± 10 min ⁻¹ . What is the efficiency of the counting system and the precision of the measurement?
	A counting standard whose transformation rate is given as 1000 ± 30 min ⁻¹ is used to determine the efficiency of a counting system. The measured count rate is 200 ± 10 min ⁻¹ . What is the efficiency of the counting system and the precision of the measurement?
	A counting standard whose transformation rate is given as 1000 ± 30 min ⁻¹ is used to determine the efficiency of a counting system. The measured count rate is 200 ± 10 min ⁻¹ . What is the efficiency of the counting system and the precision of the measurement?
	A counting standard whose transformation rate is given as 1000 ± 30 min ⁻¹ is used to determine the efficiency of a counting system. The measured count rate is 200 ± 10 min ⁻¹ . What is the efficiency of the counting system and the precision of the measurement?
	A counting standard whose transformation rate is given as 1000 ± 30 min ⁻¹ is used to determine the efficiency of a counting system. The measured count rate is 200 ± 10 min ⁻¹ . What is the efficiency of the counting system and the precision of the measurement?
	A counting standard whose transformation rate is given as 1000 ± 30 min ⁻¹ is used to determine the efficiency of a counting system. The measured count rate is 200 ± 10 min ⁻¹ . What is the efficiency of the counting system and the precision of the measurement?
	A counting standard whose transformation rate is given as 1000 ± 30 min ⁻¹ is used to determine the efficiency of a counting system. The measured count rate is 200 ± 10 min ⁻¹ . What is the efficiency of the counting system and the precision of the measurement?
	A counting standard whose transformation rate is given as 1000 ± 30 min ⁻¹ is used to determine the efficiency of a counting system. The measured count rate is 200 ± 10 min ⁻¹ . What is the efficiency of the counting system and the precision of the measurement?
	A counting standard whose transformation rate is given as 1000 ± 30 min ⁻¹ is used to determine the efficiency of a counting system. The measured count rate is 200 ± 10 min ⁻¹ . What is the efficiency of the counting system and the precision of the measurement?
	A counting standard whose transformation rate is given as 1000 ± 30 min ⁻¹ is used to determine the efficiency of a counting system. The measured count rate is 200 ± 10 min ⁻¹ . What is the efficiency of the counting system and the precision of the measurement?

12) Define only five from the following:

- a) Linear Energy Transfer
- b) Synchrotron radiation
- c) Specific activity
- d) Kerma
- e) The atomic attenuation coefficient
- f) Absorbed dose

Ans:	
Alls.	(10 Maylan)
	(10 Marks)
	*
4	
•	
3.	
,	

Assiut University Program: Diploma **Faculty of Science** Date: Sep. 17, 2015 **Physics Department** Time Allowed: 3 hours **Course Title: Reactor Physics** Course Code: 535P Final Exam (100 Marks) A) Answer ALL the Following THREE Questions. Question 1 (40 Marks, 20 per each) a) There are many mechanisms of the neutron-nuclear interactions. Discuss four of them in terms of the interaction cross-section, neutron energy, and the mass number of the target nucleus. b) Define the multiplication factor, k, discussing how it determines the degree of the nuclear criticality. Question 2 (30 Marks, 15 per each) a) A nuclear reactor has a complex construction. Describe, briefly, the basic elements of the nuclear reactor core. b) Define the following five terms: Reactor thermal power; Plant electrical power; Core power density; Fuel loading; and Fuel enrichment. **Question 3** (30 Marks, 15 per each) a) "Control rods represent a negative reactivity". Discuss this sentence showing the role of these

rods to control the power generated from the reactor.

b) Define the following four terms:

Excess reactivity; Shutdown margin; Control element worth; and Total control element worth.

End of the Exam......Good Luck

Dr. Mohamed Omer

Faculty of Science

Assiut University

Postgraduate Exam.

Sep. 2015

Diploma in Physics

Biophysics (533 P)

Time allowed: 3 hours

Try on all of the following:

(Total Degree: 100 Marks)

I- Write on:

- A Types of Radiation.
- B Radiation Energy.
- C Natural Radioactive Series.
- D Induced Radioactivity .

(10 Marks each)

II- Discuss fully:

- A The mechanism of radioactive decay and unit of radioactivity.
- B The interaction of radiation with the matter.
- C Absorption of energy (absorbed dose, equivalent dose, effective dose).

(20 Marks each)

Good luck.....

Faculty of science Physics Department Date: 8 December, 2015

Time: 3 hours

Written Examination for the Qualification of (Biophysics Diploma)
Nuclear Medicine Physics and Equipments (531P)]
Teaching Staff: Prof. Dr. Abdulaziz Abualfadl

Answer 5 questions from the following: [20 marks for each]

- 1- (a)- What is the difference between ordinary x-ray and nuclear medicine examinations?
- (b)- An X-ray tube is operated at a peak voltage of 100 kV and the beam current is 40 mA.
- (i) What is the power of the machine? (ii) How many electrons reach the machine every second? (iii) How many photons are released every second?
- (iv) What is the maximum energy of each photon? What is its wavelength?

[Data: $e = 1.6 \times 10^{-19} \text{ C}$; $h = 6.63 \times 10^{-34} \text{ Js}$; $c = 3 \times 10^8 \text{ m/s}$]

- 2- (a)- Show how the intensifier screen and image intensifier tubes are used to reduce the exposure of a patient?
- (b) How filters are most useful for shaping the x-ray beam to increase the number of photons that are best for imaging certain tissues and to reduce those that increase patient dose or decrease image contrast?
- 3-(a)- Write short notes on the characteristics of single photon emission computed tomography (SPECT) instrumentation?
- (b)- Compare between CT and PET scanners and Why PET scanner can be combined with CT scanner into a single machine?
- 4-(a)- What are PET radioisotopes? And how radioisotope produced?
- (b) Explain in brief radioisotope generator and specialized hospital-based cyclotrons?
- 5-(a)- Define the following:
- i- Partial rings and panel geometry used in PET scanners iii- The non-collinearity of the gamma rays in PET scanners.
- (b)- What are the benefits versus risks in nuclear medicine exam? What are the limitations of general nuclear medicine?
- 6- (a)- Show the main differences between SPECT and Anger camera scanners?
- (b)-Write in brief on the function of collimator in gamma camera?

GOOD LUCK

Assiut University Faculty of Science Physics Department Biophysics Diploma. Final Exam, Sep. 6, 2015 Course: Radiation doses measurement (530P) Time: 3 hours

(Total mark= 100 Marks)

Answer the following questions:

Question 1

(25 marks)

Derive the following equation

 $N(t) = N(0)e^{-\lambda t}$

Question2

(25 marks)

A Vial containing $^{99m}T_c$ is labeled 3mCi at 8 p.m. what is the activity at 8 a.m. on the same day? (DF (7 hr)=0.445).

Question 3

(25 marks)

Distinguish between different types of radiation detectors.

Question 4

(25 marks)

Explain the electronic instrumentation for radiation detection systems.

Good luck

Course coordinator: Dr. Hany Tawfik El-Gamal