Assiut University Faculty of Science 19th June 2021 Time allowed: 2 h

Chemistry Department

Second Semester Examination Subject: General Chemistry (C-105)

Students: First Level "Credit Hours System"

	لطالب باستخدام القلم الجاف فقط	(تسويد) الإجابة المختارة من قبل ال	يتم طمس
	am "50 Marks"	* 1	
	rrect answer; A, B, C rganic Chemistry (25		
		sible for a compound has t	he molecular formula
C ₅ H ₁₀ ?	· · · · · · · · · · · · · · · · · · ·	note for a compound has t	no motocatar tomicala
A) 5	B) 8	C) 9	D) 10
2) Which carbo	on has the lowest % S- cha	aracter?	
A) CH ₄	B) $H_2C = CH_2$	С) нс == сн	D) None of them
3) Which of the	e following alkanes would	I have the highest boiling	point?
A) CH ₃ (CH ₂) ₅ C	H_3	B) (CH ₃) ₂ CH (CH CH ₂ CH ₃
	CH ₃		CH ₃
C) (CH ₃) ₂ CH CH ₂	СН	D) (CH ₃) ₃ C C	
		(0113)3 0 0	(0113)2
4) Tl	CH ₃	CAID .	
	mechanism of addition o		D) C
A) Free radical	B) Electrophilic	C) Nucleophilic	D) Concerted
A) Each one is B) One of them	occupied by one electron is occupied by three elec	ar overlapping of two ator strons and the one is empty ne is occupied by two elec-	y,
A) Homolytic b B) Heterolytic			
molecule?	e following is an acceptab	le Lewis structure for the	odali odali
A) N == N	B) ·N≡≡ N·	C):N == N:	$D) \stackrel{N}{=} \stackrel{N}{=}$
A) Two mutual	ation of one s and one p or ly perpendicular orbitals s directed tetrahedrally	rbitals we get: B) Two orbital D) Three orbita	
9) The most fav A) Boat	vorable energetically conf B) Twist boat	Cormation of cyclohexane C) Half chair	is: D) Chair

A) 1	B) 2		-,-	D) 4
Predict the pre	oduct (P) of the fo	llowing	reactions:	
20) H ₃ C——CH——($\begin{array}{c} \text{BH}_3 \\ \text{H}_2\text{O}_2/\text{OH} \end{array}$	P		
A) 1- Propanol	B) 2-Propanol		C) Propanal	D) A and B
	H ₀ O/H			
21) H_3C — CH == C	H ₂ O/H	P		
A) Propanal	B) 1-Propanol		C) 2-Propanol	D) A and C
	+			
22) H ₃ CC==CH	$\frac{\text{H}_2\text{O/H}^{\frac{1}{4}}}{\text{Hg SO}_4}$	P		
A) Propanal	B) 1-Propanone		C) Propanone	D) A and C
	, = =		O) I Topullollo	D) 11 and C
23) 4 6 6 6		Pt, Pd	- n	
A) Butane	B) Cis-butene	a fig. 1)	C) Trans-butene	D) B and C
24) 11 0 0	A DILD.			
	+ 2HBr			
A) 1,2- dibromopropa	ane B) 1,1-dibromo	propane	C) 2,2-dibromop	ropane D) B and C
25) H-C	CH—CH ₃ Z ₁	O ₃	P	
4) Fd 1	Zı	n/H ₂ O		
A) Etnanol	B) Ethanal		C) Ethene	D) A and B
Section B: Analyti	cal Chemistry (25	Marks		
	ne reaction: $SO_{2(g)} + 1$			i)) ^{1/2}
27. When the system	$A + B \rightleftharpoons C + D$ is at	equilibr	ium,	
	d and the reverse read ward nor the reverse re			
28. On increasing the constant will:	e concentration of re	eactants	in a reversible rea	ction, then equilibrium
A) Maximized	B) Increase	C) U	Inchanged	D) Decrease
	Please turn over	for the re	est of questions	
		AAW A		

29. Consider the gas-phase forward reaction is end equilibrium amount of H ₂ A) Adding more oxygen B) Decreasing the volume C) Increasing the tempera D) None of these	othermic, which of O? e of the container (the	the following change	es will decrease the
,			
30. In which of the following A) $H_{2(g)} + I_{2(g)} \rightleftharpoons 2 HI_{(g)}$ C) $2NO_{(g)} + O_{2(g)} \rightleftharpoons 2NO_{(g)}$)	B) $2 SO_{2 (g)} + O_{2 (g)} \rightleftharpoons$ D) $CaCO_{3 (s)} \rightleftharpoons CaO$	1
31. Consider the reversible following amounts are fo 0.0357 mole NH ₃ . Evaluation	und in equilibrium at		
A) 0.202	B) 1.988	C) 0.503	D) 2.202
32. Find the conjugate acid of	of NH ₂		
A) NH ₃	B) NH ₄ OH	C) NH ₄ ⁺	D) NH ₃ ·H ₂ O
33. When NH ₄ Cl is added	,	,	
reduced due to:		Common ion effect	D) Reduction
34. Which of the following is A) $pH > pK_w/2$	is false for an alkaline B) pH < pOH	aqueous solution? C) pOH < pK _w /2	D) pH > pOH
35. The pOH of a solution o A) 1.995×10^{-3}	f NaOH is 11.30. What $(3) 2.500 \times 10^{-3}$		ution? D) 5.500 × 10 ⁻¹³
36. The pOH value of CH ₃ C A) pOH = $\frac{1}{2}$ pK _w + $\frac{1}{2}$ pK C) pOH = $\frac{1}{2}$ pK _w + $\frac{1}{2}$ pK	Ka - 1/2 log C	B) $pOH = \frac{1}{2} pK_w - \frac{1}{2}$	pKa - ½ log C
37. Henderson-Hasselbalch	equation for a buffer	solution composed of w	veak acid and its salt
is: A) $pH = pK_a + log([salt]$ C) $pH = pK_a + log([salt]$		B) $pH = -pK_a + \log (D)$ D) $pH = pK_a + \log (D)$	
38. The solubility product ex A) [Sn ²⁺] ² [OH ⁻]		/droxide, Sn(OH) ₂ , is: C) [Sn ²⁺] [OH ⁻] ³	D) none of these
39. The solubility of Ag ₂ SC the solubility product of the A) 5.7 × 10 ⁻⁸			
40. The volume of the reaction: SO ₂ C A) The amount of Cl ₂ (g) C) The amount of SO ₂ Cl	$l_{2 (g)} \rightleftharpoons SO_{2 (g)} + Cl_{2 (g)}$ remains unchanged		re-established: O _{2 (g)} decreases
41. Which of the following A) 0.2 <i>M</i> sodium hydroxic C) Pure water		st pH at 25 °C? (No cald B) 0.2 <i>M</i> benzoic a D) 0.1 <i>M</i> ammoniu	cid

42. When we mix together, from separate sources, salt will precipitate if Q _{sp} K _{sp} , and will co. A) is greater than; equals C) is less than; equals	ntinue to precip	itate until Q _{sp} is greater than	t, the K _{sp} .		
43. According to Brønsted definition of acids and base A) Base B) Salt		as a/an D) Acid and base both	h		
44. Buffer solution is prepared by mixing:A) Weak acid + its salt of weak baseC) Weak acid + its salt of strong base		+ its salt of strong bas + its salt of weak base			
45. You have a sample of 1.28 <i>M</i> acetic acid (K _a = 1.28 A) 7.00 B) 4.64	1.8×10^{-5}). The C) 2.32	pH of this solution is: D) 9.26			
 46. A solution obtained by dissolving a salt consisti A) Neutral if K_a = K_b C) Basic if K_a > K_b 	B) Acid	id and weak base will ic if $K_b > K_a$ c of these	be:		
47. For the reaction A $_{(g)}$ + 3B $_{(g)} \rightleftharpoons$ 2C $_{(g)}$ at 27 °C, C are present in 2 liter vessel, If K _c for the reaction A) Forward direction C) Neither direction	on is 4.2, the rea	action will proceed in: ward direction			
48. For the reaction: CO $_{(g)}$ + Cl _{2 $_{(g)}$} \rightleftharpoons COCl _{2 $_{(g)}$} , the A) \sqrt{RT} B) 1.0	e value of K _c /K _l C) 1/RT	, is equal to: D) RT			
 49. At a certain temperature, only 50 % HI is direction: 2HI (g) H₂ (g) + I₂ (g), the equilibrium A) 0.25 B) 1.0 50. Given the following equilibrium, N₂ (g) + 3H₂ (g) 	constant for this C) 3.0 \rightleftharpoons 2NH ₃ (g).	reaction is: D) 0.5 Some inert gas at con	stant		
pressure is added to the system. In which of th affected? A) More NH _{3 (g)} is produced C) No effect on the equilibrium	B) Less NH _{3 (g)}		ll be		
Q2: Mid-term, Oral, Activity (Organic and An	alytical Chen	nistry) "30 Marks"			
Shade (T) for True statements or (F) for Fals	e statements	: (1 Mark each)			
51) The C— H bond of ethyne is a polar covalent be	ond.		()		
52) A double headed straight arow between structur	es indicates that	are in equilibrium.	()		
53) Nucleophiles are electron poor reagents.			()		
54) In exothermic reactions, the products are higher	in energy than i	eactants.	()		
55) Cyclopropane has both high angle and torsional	strains.		()		
56) Molecules that have the same molecular formula	a called isomers	, ta wa Pisance i Y	()		
57) Heat is required to break C—C bond of ethane	to give two ethy	l radicals.	()		
58) SP ³ orbitals of oxygen in H ₂ O are directed to the corners of tetrahedral structure. (

59) Hydration of ethyne gave ethane.	()
60) Chlorination of methane gave a trace amount of ethane in propagation steps.	()
61) The eclipsed conformation of ethane is easily separated from staggered conformation	on. ()
62) In termination step, a radical is consumed without formation of a new radical.	()
63) The length and strength of C—H bonds vary depending on the hybridization of the atom.	,	on)
64) 1,3-Butadiene and 1- butyene are isomers.	()
65) Each C—O bond in carbonate ion is neither single nor double.	()
66) The common ion effect in acid-base equilibria is to suppress the ionization of a weak or a weak base.	,	id)
67) For the system: $NH_4HS_{(s)} \rightleftharpoons NH_{3(g)} + H_2S_{(g)}$, the $K_c = [NH_3][H_2S]$.	()
68) A strong acid has a large pK _a value.	()
69) The ion is completely precipitated if 99.0 % of it is precipitated and only about 1. left in solution.	,	is)
70) The [H ⁺] in a 0.050 M solution of Ba(OH) ₂ is: $5.0 \times 10^{-2} M$.	()
71) A very large value of equilibrium constant means that the backward reaction can tal place.)
72) Conjugate acid is a compound formed when a base gain a hydrogen ion.	()
73) The equilibrium constant varies only with the temperature of the reaction.	()
74) An aqueous solution of CH ₃ COONa will be acidic.	()
75) The pH of a buffer solution has an equal concentrations of B^- and HB ($K_b = 10^{-10}$ for is 7.)
76) In heterogeneous equilibria, no change in the equilibrium conditions will occur as a of adding or removing pure liquid or solid phase.	,	ılt)
77) The K_{sp} value of $Ag_2Cr_2O_4$ is given by: $K_{sp} = [Ag^+][Cr_2O_4^{2-}]^2$.	()
78) The molar solubility of silver sulfate in water increases on adding of sodium solution.	,	te)
79) If $Q_c < k_c$ then the forward reaction must occur to reach equilibrium.	()
80) The pH value of a weak base can be calculated using the formula: $pH = log \sqrt{K_a \times [HA]}$. ()

Examiners: Prof. Hassan A.H. El-sherief, Prof. Ali A. Abdel-Hafez Gomaa, Prof. Bahaa M. Abu-Zied, Prof. Talaat I. El-Emary, Dr. Ahmed K. Youssef, Dr. Mohamed I. Said, Dr. Doaa A. Abdel-Kader, Dr. Ahmed M. Sayed

GOOD LUCK

6

Assiut University Industrial Chemistry Program

Chemical Manufacturing processes

Faculty of Science Date: 3/7/2021 Time: 2 hrs.

Answer the following questions:

Describe briefly the main steps to manufacture the following materials, taking into the consideration the input and output materials, the main chemical and physical changes, the operating conditions and support your answers by flow sheet diagrams.

1.	Cement by dry process.	(20 points)
2.	Sponge iron by Midrex's process.	(20 points)
3.	Glass.	(20 points)
4.	Superphosphate.	(20 points)
5.	Al ₂ O ₃ by Bayer's process.	(20 points)

Prof. Dr. Gomma A. Elsayed

Assiut University Faculty of Science Chemistry Department

June: 2021 Time: 2 hrs.

Total Degree: (50+30)

Second Semester Final Examination Subject: General Chemistry I (C-100) Students: First Level "Credit Hours System"

Final Exam (50 mark)

	Final Exam (30 mark)		
1: <u>A</u>	nswer the following statements with sign ($\sqrt{\ }$) or (\times): (20 x 1= 20 marks)		
1.	A gas consists of molecules separated wide apart in empty space. The molecules are from to move about throughout the container.	ee ()
2.	Charles' Law stated that "At constant temperature, the volume of a fixed weight of gain is inversely proportional to its pressure'.	as ()
3.	The conditions of standard temperature and pressure are abbreviated as STP.	()
4.	Dalton law visualized that in a mixture of gases, each component gas of gases exerted pressure as if it were alone in the container.	()
5.	Density of a liquid is the resistance of a fluid to flow.	()
6.	. Solids are of two types; Crystalline solids and Amorphous solids.	()
7.	. Redox process involves only one operation; oxidation or reduction.	()
8.	. Calomel electrode isn't a reference electrode.	()
9.	. Anisotropy is observed in crystalline solids because the concentration of the atoms is different in different directions of the unit cell.	()
10	0. The effect of light scattering on particles of colloidal systems is called the Tyndall effe	ect.()
13	1. A p orbital is spherically symmetrical around the nucleus.	()
12	2. Bonding orbitals are lower in energy than their corresponding anti-bonding orbitals.	()
13	3. The electron structure for a carbon atom (6 e) is 1s ² 2s ² 2p _x ² .	.()
1	4. Zeeman Effect is the effect of splitting of a spectral line into several components in th presence of a static magnetic field.	e ()
1	5. When the frequency of a wave increases, the wavelength increases.	()
1	6. First spectral series of hydrogen atom was discovered by Lyman.	()
1	7. The axial overlap between the two orbitals leads to the formation of a sigma bond.	()
1	8. The concept of formal charges is useful in determining the most acceptable Lewis structures	()
1	9. The angular quantum number, \(\epsilon \), specifies the shape of the electron cloud around the nucleus.	()
2	O. A nonpolar covalent bond results from the unequal sharing of a pair of electrons between atoms in a molecule.	()
	Please turn over for the rest of questions		

Q2: <u>C</u>	ircle the one correct	answer from the choice	es listed: (20 x 1.5 =	30 mark)		
1.	1. The matter is defined as anything that has and volume.					
	(a) electron	(b) mass	(c) atom	(d) molecules		
2.			However, the intermo	olecular space permits the		
	movement of mole			(1)		
	(a) gas	(b) liquid	(c) solid	(d) matter		
3.	1-liter equals	ec				
	(a) 1000	(b) 1000.028	(c) 1000.28	(d) 1000.8		
4.	The pressure of air	that can support 760 i	mm Hg column at sea	level is called one		
	(a) Bar	(b) atm	(c) torr	(d) Pascal		
5.	The no. of moles of	4 g of N_2 (N = 14) is				
	(a) 0.114	(b) 0.14	(c) 0.15	(d) 0.17		
6.			molecule at 0°C is (c) 5.6x10 ⁻¹¹ erg	$(R = 8.314 \times 10^7 \text{ erg mol}^{-1} \text{ k}^{-1})$ (d) $5.6 \times 10^{-10} \text{ erg}$		
7.	Density of a liquid i	s the mass per unit				
	(a) area	(b) space	(c) volume	(d) moles		
8.	Sugar and salt can (a) amorphous	be considered as (b) isomorphism	solid (c) crystalline	(d) polymorphism		
9.	If the dispersion me	edium for colloidal is v	water, they are called .	•••••		
	(a) hydrosols	(b) aqua sols	(c) hydrophobic	(d) a and b		
10	can be used	as a reference electroc	le in electrochemical c	ells.		
	(a) SHE	(b) SCE	(c) Ag/AgCl	(d) all of these		
11	. Which one of the fo	llowing types of radia	tion has the longest wa	avelength?		
	(a) gamma rays	(b) visible light rays	(c) ultraviolet ray	s (d) X- rays		
12	. Which of the follow of an atom?	ring is not an allowed	value for the angular 1	nomentum quantum number		
	(a) -1	(b) 0	(c) +1	(d) all of these		
13	. What is the total n	umber of valence elect	trons in the chlorate io	on, ClO_3 ?		
		(b) 26		(d) 32		
14	. Which of the follow	ving are permissible s	ets of quantum numbe			
	(a) $n = 4$, $\ell = 4$, r	$\mathbf{m}_{\mathfrak{l}}=0, \mathbf{m}_{\mathbf{s}}=\frac{1}{2}$	(b) $n = 3$, $\ell = 2$	$m_{f} = 1, m_{s} = -\frac{1}{2}$		
	(c) $n = 2$, $\ell = 0$ m	$m_{\ell} = 0, m_s = \frac{3}{2}$	(d) none of thes	e		

	15.	One resonance structure for OCN- ion is drawn below. What is the formal charge on	each			
		atom? $ \left[: \ddot{\mathbb{Q}} - \mathbb{C} = \mathbb{N}^{\epsilon} \right]^{-} $				
		(a) O atom = 0, C atom = 0, and N atom = 0 (b) O atom = 0, C atom = 0, and N atom = 0 (c) O atom = -1, C atom = 0, and N atom = 0 (d) O atom =+1, C atom = 0, and N				
	16.	.6. According to molecular orbital theory, what is the bond order of oxygen, O2?				
		(a) 1 (b) 3/2 (c) 2 (d) 3				
	17.	Which molecule has a Lewis structure that does not obey the octet rule?				
		(a) CO_2 (b) PCl_3 (c) SF_6 (d) HCN				
	18.	Which molecule exhibits resonance?				
		(a) O_3 (b) $BeCl_2$ (c) CO_2 (d) NF_3				
	19.	The geometry of NH ₃ on the basis of VSEPR model is				
		(a) trigonal planar (b) trigonal pyramidal (c) tetrahedral (d) linear				
	20.	The configuration $(\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\pi_{2p})^2$ is the molecular orbital description for:				
		(a) Li^{2^+} (b) Be_2 (c) H_2 (d) B_2				
		Mid Term and Oral Exam: (30 marks)				
Q1	: <u>A</u> ı	nswer the following statements with sign $(\sqrt{)}$ or (\times) : $(12 \text{ x}1=12 \text{ mark})$				
	1.	Gases are easily compressed by applying pressure to a movable piston fitted in				
		the container.	()		
	2.	The molar gas volume for 1 mole of a gas at STP equals 22.4 L.	()		
	3.	Reduction is the process of losing electrons.	(.)		
	4.	When two gases are placed in contact, they mix spontaneously. This process of mixing				
		of gases by the random motion of the molecules is called Diffusion.	()		
	5.	When solids are allowed to remain in contact with a gas, a film of gas molecules	,			
		accumulates on the surface.	()		
	6.	A gas can be liquefied by lowering the temperature and increasing the pressure.	()		
	7.	The energy level of a 3d electron is higher than that of a 4s electron.	()		
	8.	The Hund principle states that electrons occupy the lowest-energy orbitals available				
		before entering the higher-energy orbitals.	()		
	9.	All the elements in a group possess essentially the same outer-shell electron structure.	()		
		Please turn over for the rest of questions				

10.	The half of the diffe bonding MO is called	rence between the num	ber of electrons in bon	ding MO and anti-	()
					(,
11.	The bond angle in N	H ₃ is smaller than that	in H_2O .		()
12.	The idea that it is in	possible to know both	the exact position and	momentum of an		
	object at the same	time is the cuncertainty	principle proposed by	Heisenberg.	(,
2: <u>C</u>	ircle the one correct a	nswer from the choices	s listed: $(12 \times 1.5 = 18)$	marks)		
1.	Adsorption process of	can be classified accord	ing to their interaction	s to		
	(a) physical	(b) chemical	(c) coordination	(d) a and b		
2.	30 °C equals K					
	(a) 298	(b) 303	(c) 237	(d) 320		
3.	The compressibility	factor for an ideal gas e	equals			
	(a) 0.2	(b) 0.3	(c) 0.5	(d) 1		
4.	The unit of pressure	, millimeter of mercury	, is also called			
	(a) Bar	(b) atm	(c) torr	(d) Pascal		
5.	Gas exhibits general	characters of				
	(a) expansibility	(b) compressibility	(c) diffusibility	(d) all of these		
6.	is the process o	f losing an electron.				
	(a) Oxidation	(b) Reduction	(c) Redox	(d) none of these		
7		ation of the carbon ato	ms in benzene, C ₆ H ₆ ?			
, .	(a) sp	(b) sp^2	(c) sp ³	(d) spd		
8.	The distance between	n two successive peaks	on adjacent waves is it	S:		
	(a) wavelength	(b) velocity	(c) quantum numb	er (d) amplitude	e .	
9.	Which of the followi	ng compounds has an i	onic bond?			
	(a) H ₂ O	(b) NH ₄ Cl	(c) CH ₃ Li	(d) HF		
10	The electron configu	ration for Fe ²⁺ is 1s ² 2s	2 2n ⁶ 3s ² 3n ⁶ 3d ⁶ . There	efore Fe ²⁺ is:		
10		ith three unpaired elect		(b) diamagnetic		
	(/ 1	ith four unpaired elect		(d) none of these		
11	. Paschen series lies i					
11	(a) visible region	(b) far-ultraviolet regi	on (c) ultraviolet re	gion (d) infrare	d regi	on
12	()	that the relation between			d	
12	wavelength (λ) is:	that the relation between	en circumierence or an	owed of bit (2m) an	CI.	
		(b) $2 \pi r = n/\lambda$	(c) $2 \pi r = h/\lambda$	(d) none of th	iese	
		e = 2, Li=3, Be = 4, B = 5			= 17	
	(Atomic no: H=1, He		d_Luck	- 7, 1 - 13, 5 10, 61	1 17	
		000	uLuch			

Dr. Mervat I. Abdel Hamid, Dr. Hani N. Abdel Hamid