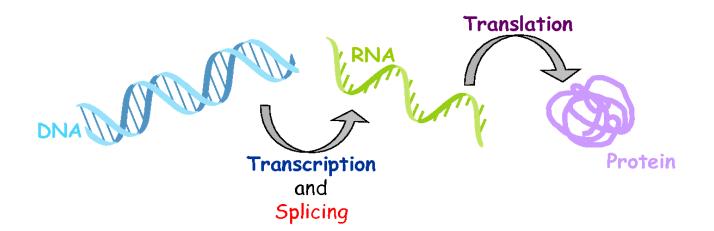



## Gene Expression

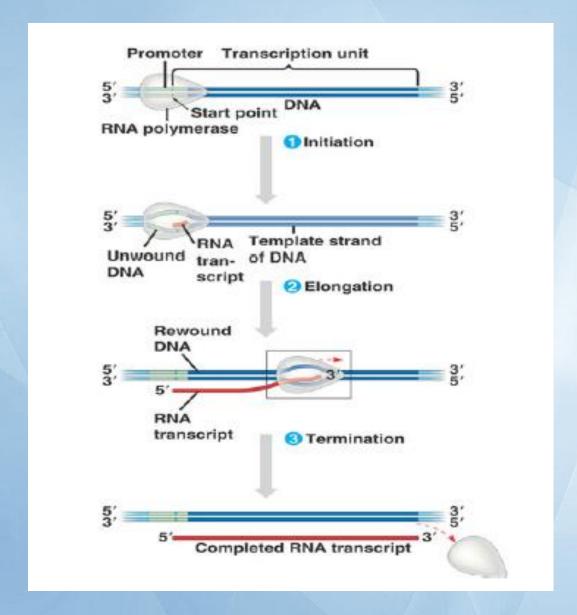
Ameer Effat M. Elfarash


Dept. of Genetics
Fac. of Agriculture, Assiut Univ.
aelfarash@aun.edu.eg





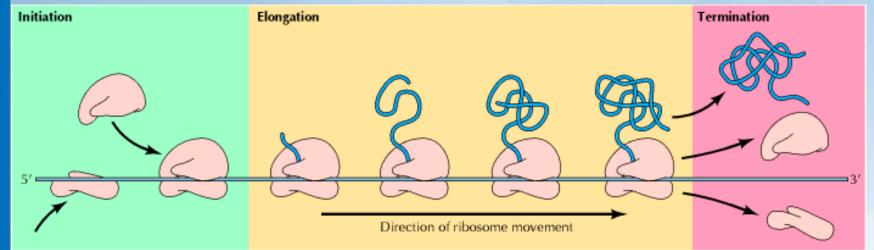




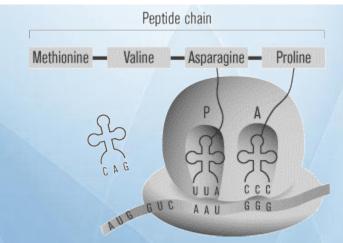





#### **Transcription**








#### **Translation**



Ribosome binds mRNA at start codon Polypeptide chain elongates by successively adding amino acids When a stop codon is encountered, polypeptide is released and ribosome dissociates

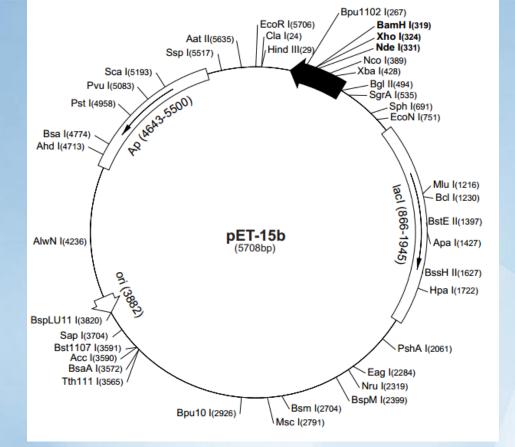




# The Regulation of Gene Expression






# The Regulation of Gene Expression



Lac Operon

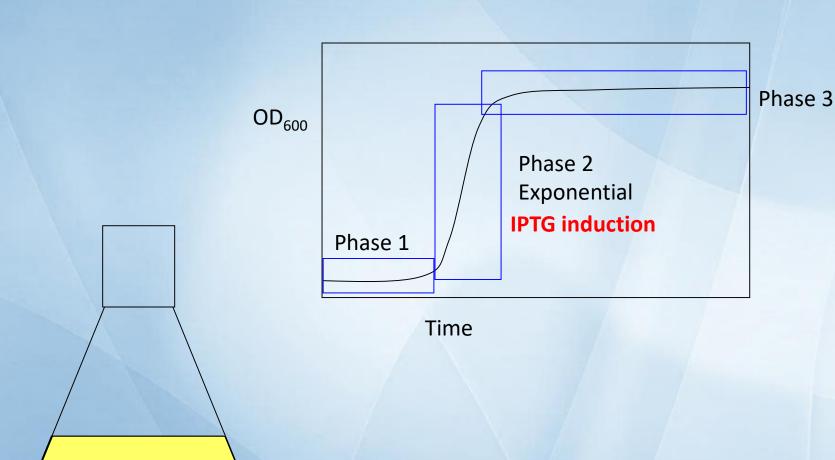
**Animation** 







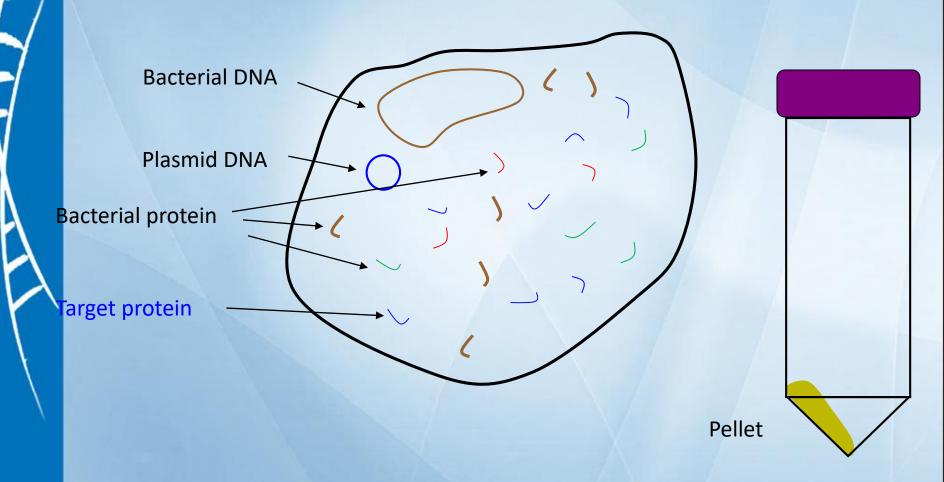
|                                  | T7 promoter primer #69348-3                              | Iac operator Xba I  AGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGA  Nde I Xho I BamH I  AGGCAGCGGCCTGGTGCCGCGCGGCAGCCATATGCTCGAGGATCCGGCTGCTAACAAAGCCCGA SerSerGlyLeuValProArgGlySerHisMetLeuGluAspProAlaAlaAsnLysAlaArg thrombin T7 terminator |                     |                      |
|----------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------|
| Bgl II                           | T7 promoter                                              | lac operator                                                                                                                                                                                                                                                       | Xba I               | rbs                  |
|                                  | CGAAATTAATACGACTCACTATAGGGG                              | AATTGTGAGCGGATAACAAT                                                                                                                                                                                                                                               |                     | TGTTTAACTTTAAGAAGGAG |
| Nco I                            | His•Tag                                                  |                                                                                                                                                                                                                                                                    | Nde I Xho I BamH I  |                      |
| TATACCATGGGCAG<br>MetGlySe       |                                                          |                                                                                                                                                                                                                                                                    |                     |                      |
|                                  | <i>Bpu</i> 1102 I                                        | thrombin                                                                                                                                                                                                                                                           | T7 terminator       |                      |
| AAGGAAGCTGAGTT<br>LysGluAlaGluLe | GGCTGCTGCCACCGCTGAGCAATAACT<br>uAlaAlaAlaThrAlaGluGInEnd | AGCATAACCCCTTGGGGCCT                                                                                                                                                                                                                                               | CTAAACGGGTCTTGAGGGG | TTTTTTG              |
|                                  | T7 terminator primer #                                   | 69337-3                                                                                                                                                                                                                                                            |                     |                      |




Liquid LB medium

with bacteria in it

#### **Protein Expression**





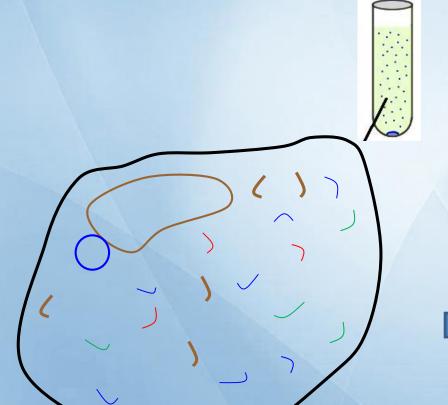












#### Lysis



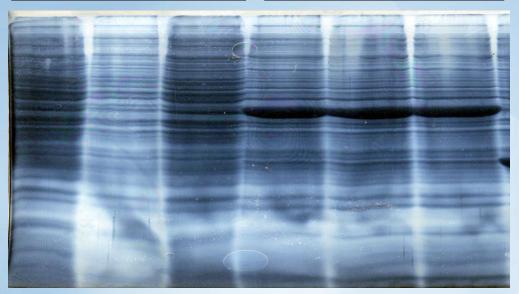
•Pellet is resuspended in the lysis buffer containing, and sonicated to further liberate the protein

• Spin down the denaturing lysis buffer, cell wall and debris will pellet at the bottom and our protein is in the soluble supernatant.





- Sonication.
- Centrifuge.


- Sonication.
- Centrifuge.



#### Expression of protein in *E. coli*



Uninduced Induced Samples



We want to work with pure proteins. How do we purify it from all the other *E. coli* proteins?



#### Why purify a protein?

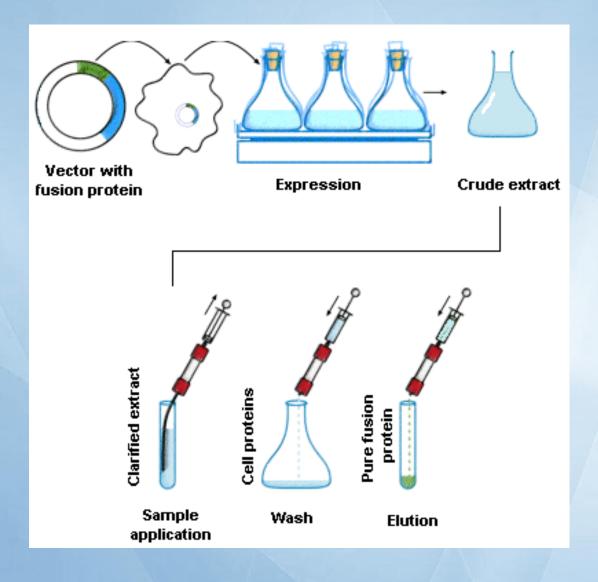


- To study its function, Activity
- For industrial or therapeutic applications
- Study protein regulation and protein interactions
- Produce Antibodies
- Perform structural analysis by X-Ray and Crystallography

**HOW** to purify a protein?



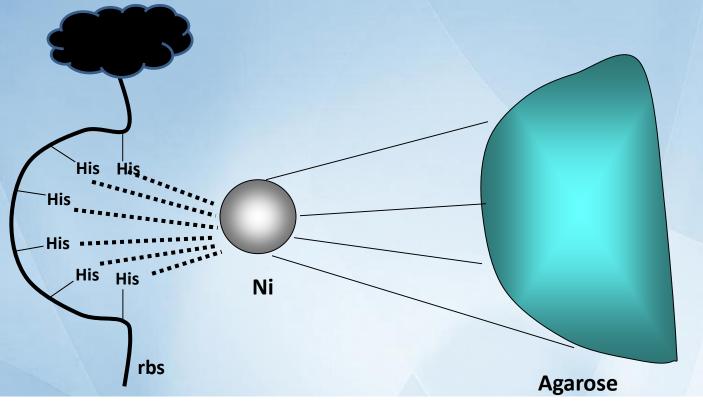
# Affinity chromatography (AC) What is AC?




- AC is a technique enabling purification of a biomolecule with respect to biological function or individual chemical structure.
- AC is designed to purify a particular molecule from a mixed sample.



# Affinity chromatography applied to recombinant proteins

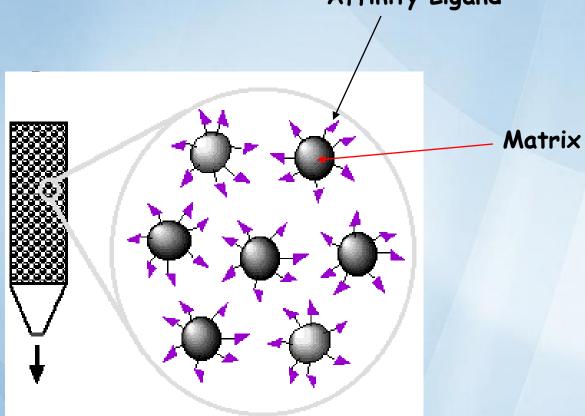







#### **Affinity Chromatography**

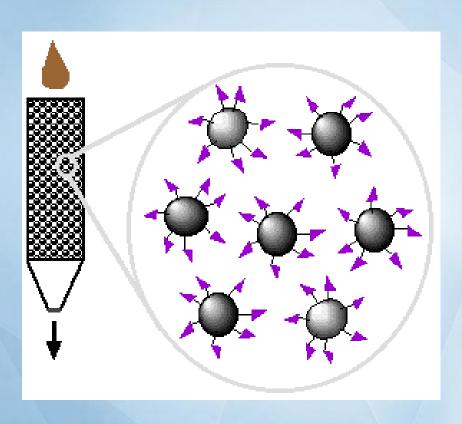





| T                                        | 7 promoter primer #69348-3                   |                                                             |                    |                      |
|------------------------------------------|----------------------------------------------|-------------------------------------------------------------|--------------------|----------------------|
| Bgl II                                   | T7 promoter                                  | lac operator                                                | Xba I              | rbs                  |
| AGATOTOGATOCOGOGAA                       | ATTAATACGACTCACTATAG                         | GGGAATTGTGAGCGGATAACAATT                                    | CCCCTCTAGAAATAATTT | TGTTTAACTTTAAGAAGGAG |
| Nco I                                    | His•Tag                                      |                                                             | Nde I Xho I BamH I |                      |
| TATACCATGGGCAGCAGC<br>MetGlySerSer       |                                              | CAGCGGCCTGGTGCCGCGCGCAG<br>rSerGly <u>LeuValProArgGlySe</u> |                    |                      |
|                                          | Bpu1102 I                                    | thrombin                                                    | T7 terminator      |                      |
| AAGGAAGCTGAGTTGGCT<br>LysGluAlaGluLeuAla | GCTGCCACCGCTGAGCAATA<br>AlaAlaThrAlaGluGInEn | ACTAGCATAACCCCTTGGGGCCTC<br>d                               | TAAACGGGTCTTGAGGGG | TTTTTTG              |
|                                          | T7 terminator prim                           | ner #69337-3                                                |                    |                      |



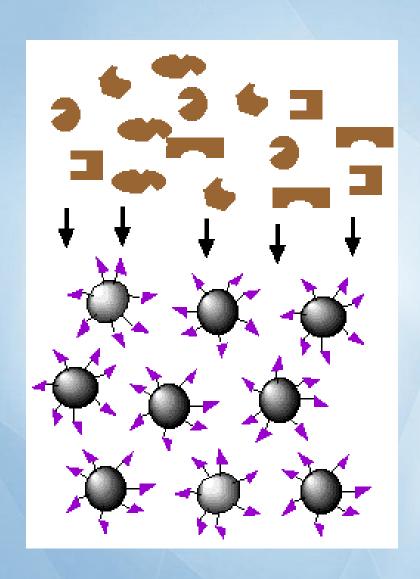



#### Affinity Ligand





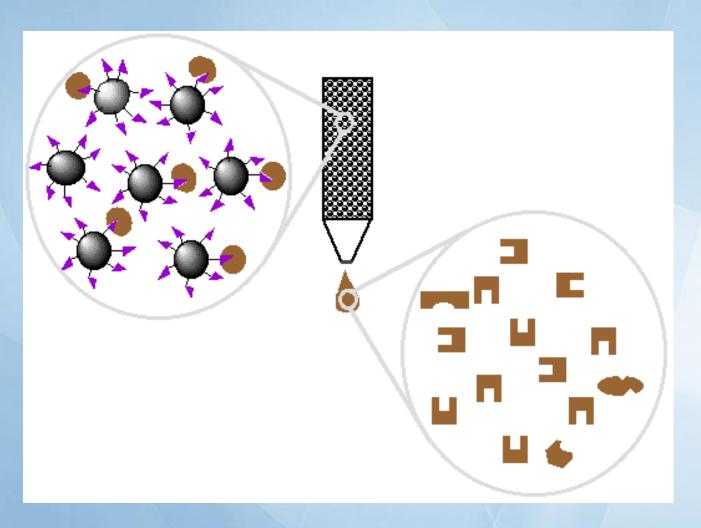








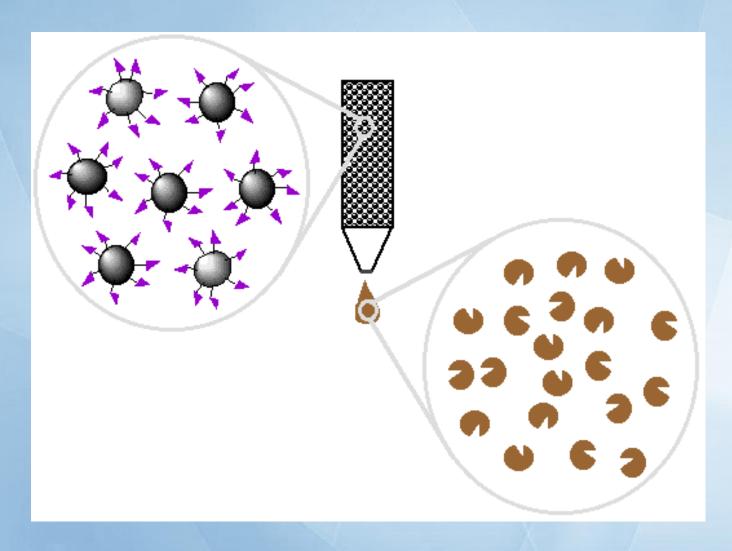

Step 2. Proteins sieve through matrix of affinity beads.







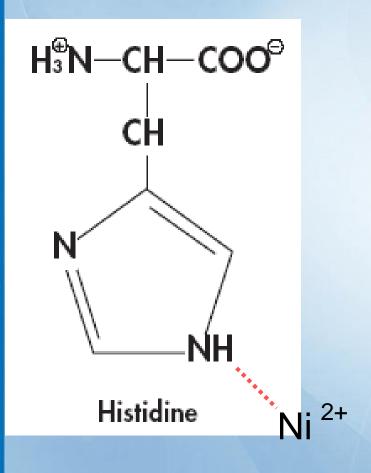


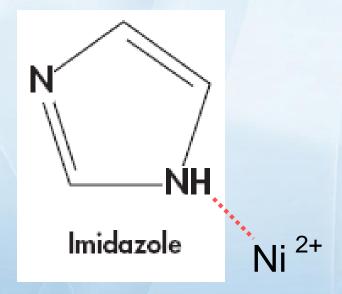





**Step 6**. Elute proteins that bind tightly to ligand and collect purified protein of interest.



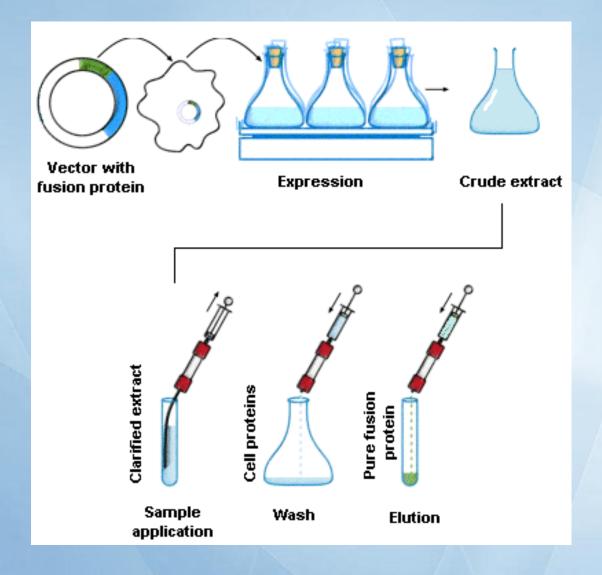



# Elution with imidazole Why imidazole?



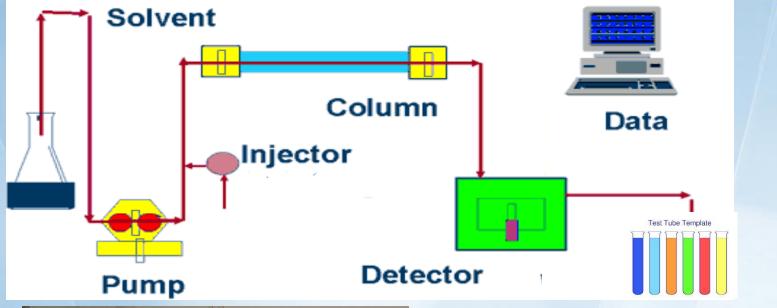



The imidazole ring is part of the structure of histidine

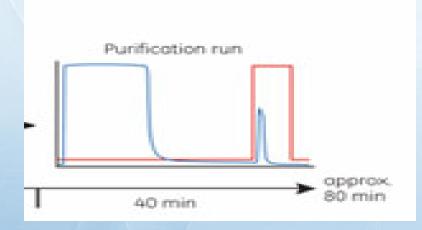




# Affinity chromatography applied to recombinant proteins



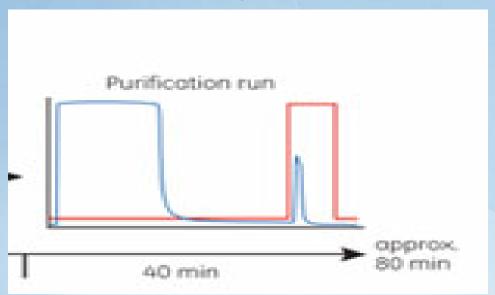


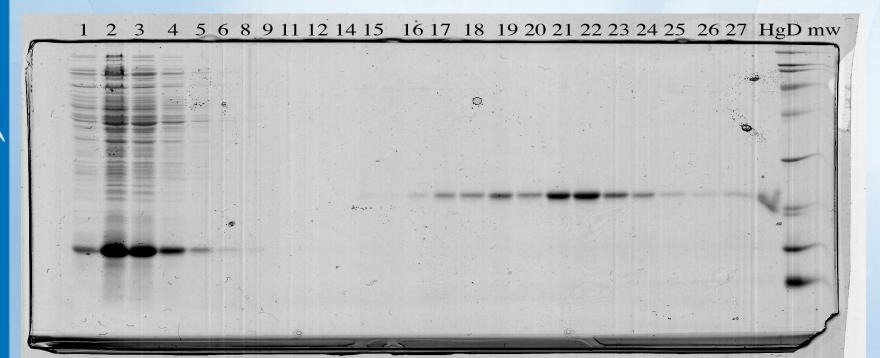




# **IMAC System**





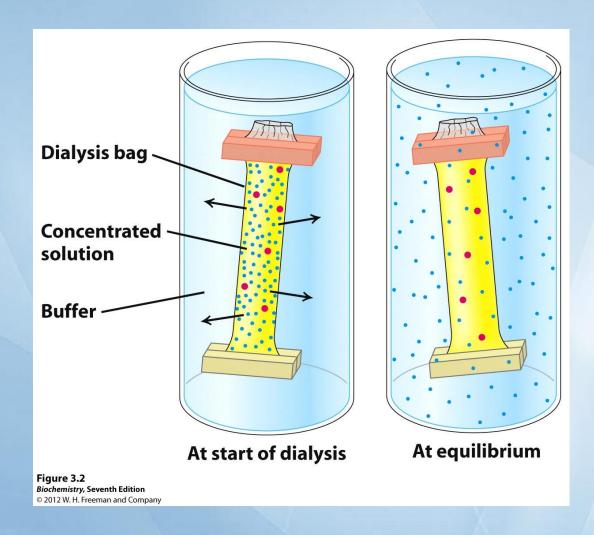





### Purity test










### **Protein dialysis**








#### **Protein Concentrators**







#### Cleavage of His tag



His tag is not part of the protein. It needs to be removed in order to perform structural and biophysical studies on the protein.

- Thrombin is used to remove the His tag.



|                                      | T7 promoter primer #69348-3                            |                                                 |                      |                      |
|--------------------------------------|--------------------------------------------------------|-------------------------------------------------|----------------------|----------------------|
| <i>Bgl</i> II                        | T7 promoter                                            | lac operator                                    | Xba I                | rbs                  |
| AGATOTOGATOCOGOG                     | GAAATTAATACGACTCACTATAGGG                              | GAATTGTGAGCGGATAACAAT                           |                      | GTTTAACTTTAAGAAGGAGA |
| Nco I                                | His•Tag                                                |                                                 | Nde I Xho I BamH I   |                      |
| TATACCATGGGCAGCA<br>MetGlySerS       | AGCCATCATCATCATCATCACAGCA<br>SerHisHisHisHisHisHisSerS | .GCGGCCTGGTGCCGCGCGCA<br>.erGlyLeuValProArgGlyS |                      |                      |
|                                      | <i>Bpu</i> 1102 I                                      | thrombin                                        | T7 terminator        |                      |
| AAGGAAGCTGAGTTGG<br>LysGluAlaGluLeuA | GCTGCTGCCACCGCTGAGCAATAAC<br>AlaAlaAlaThrAlaGluGinEnd  | TAGCATAACCCCTTGGGGCCT                           | CTAAACGGGTCTTGAGGGGT | TTTTTG               |
|                                      | T7 terminator primer                                   | #69337-3                                        |                      |                      |



## Examples of tags and ligands



- His-tag
- FLAG<sup>TM</sup> peptide
- Strep-tag
- GST tag
- Maltose binding protein fusion
- Calmodulin binding protein fusion

- Transition metal ion
- Monoclonal antibody
- Biotin
- Glutathione
- Amylose
- Ca<sup>2+</sup>



|               |      | kan® |    | T71ac | н      | lis•Tag | 1      | 7•Tag |       | Trx•Tag | 1      | KSI |        | PKA | (       | GST•Ta | g sig   | nal seq |           |
|---------------|------|------|----|-------|--------|---------|--------|-------|-------|---------|--------|-----|--------|-----|---------|--------|---------|---------|-----------|
| Vector        | amp® |      | T7 |       | f1 ori | ,       | T7∙Tag | "     | S•Tag | CĨ      | BD•Tag | м   | 4SV•Ta | g l | Dsb•Tag | 9      | proteas | e Li    | C availal |
| pET-3a-c      | •    |      | •  |       |        |         | N      |       |       |         |        |     |        |     |         |        |         |         |           |
| pET-5a-c      | •    |      | •  |       |        |         | N      |       |       |         |        |     |        |     |         |        |         |         |           |
| pET-9a-d      |      | •    | •  |       |        |         | N      |       |       |         |        |     |        |     |         |        |         |         |           |
| pET-11a-d     | •    |      |    | •     |        |         | N      |       |       |         |        |     |        |     |         |        |         |         |           |
| pET-12a-c     | •    |      | •  |       |        |         |        |       |       |         |        |     |        |     |         |        |         | •       |           |
| pET-14b       | •    |      | •  |       |        | N       |        |       |       |         |        |     |        |     |         |        | T       |         |           |
| pET-15b       | •    |      |    | •     |        | N       |        |       |       |         |        |     |        |     |         |        | T       |         |           |
| pET-16b       | •    |      |    | •     |        | N       |        |       |       |         |        |     |        |     |         |        | X       |         |           |
| pET-17b       | •    |      | •  |       |        |         | N      |       |       |         |        |     |        |     |         |        |         |         |           |
| pET-17xb      | •    |      | •  |       |        |         |        | N     |       |         |        |     |        |     |         |        |         |         |           |
| pET-19b       | •    |      |    | •     |        | N       |        |       |       |         |        |     |        |     |         |        | E       |         |           |
| pET-20b(+)    | •    |      | •  |       | •      | С       |        |       |       |         |        |     |        |     |         |        |         | •       | $\Box$    |
| pET-21a-d(+)  | •    |      |    | •     | •      | С       | N      |       |       |         |        |     |        |     |         |        |         |         |           |
| pET-22b(+)    | •    |      |    | •     | •      | С       |        |       |       |         |        |     |        |     |         |        |         | •       |           |
| pET-23a-d(+)  | •    |      | •  |       | •      | С       | N      |       |       |         |        |     |        |     |         |        |         |         |           |
| pET-24a-d(+)  |      | •    |    | •     | •      | С       | N      |       |       |         |        |     |        |     |         |        |         |         |           |
| pET-25b(+)    | •    |      |    | •     | •      | С       |        |       |       |         |        |     | С      |     |         |        |         | •       |           |
| pET-26b(+)    |      | •    |    | •     | •      | С       |        |       |       |         |        |     |        |     |         |        |         | •       |           |
| pET-27b(+)    |      | •    |    | •     | •      | С       |        |       |       |         |        |     | С      |     |         |        |         | •       |           |
| pET-28a-c(+)  |      | •    |    | •     | •      | N,C     | 1      |       |       |         |        |     |        |     |         |        | T       |         | $\Box$    |
| pET-29a-c(+)  |      | •    |    | •     | •      | С       |        |       | N     |         |        |     |        |     |         |        | T       |         |           |
| pET-30a-c(+)  |      | •    |    | •     | •      | N,C     |        |       | 1     |         |        |     |        |     |         |        | T,E     |         |           |
| pET-30 Ek/LIC |      | •    |    | •     | •      | N,C     |        |       | 1     |         |        |     |        |     |         |        | T,E     |         | •         |
| pET-30 Xa/LIC |      | •    |    | •     | •      | N,C     |        |       | 1     |         |        |     |        |     |         |        | T,X     |         | •         |
| pET-31b(+)    | •    |      |    | •     | •      | С       |        |       |       |         |        | N   |        |     |         |        |         |         |           |
| pET-32a-c(+)  | •    |      |    | •     | •      | I,C     |        |       | 1     | N       |        |     |        |     |         |        | T,E     |         |           |
| pET-32 Ek/LIC | •    |      |    | •     | •      | I,C     |        |       | 1     | N       |        |     |        |     |         |        | T,E     |         | •         |
| pET-32 Xa/LIC | •    |      |    | •     | •      | I,C     |        |       | 1     | N       |        |     |        |     |         |        | T,X     |         | •         |
| pET-33b(+)    |      | •    |    | •     | •      | N,C     | 1      |       |       |         |        |     |        | N   |         |        | T       |         |           |
| pET-34b(+)    |      | •    |    | •     | •      | С       |        |       | 1     |         | N      |     |        |     |         |        | T,E     |         | •         |
| pET-35b(+)    |      | •    |    | •     | •      | С       |        |       | 1     |         | N      |     |        |     |         |        | T,X     |         | •         |
| pET-36b(+)    |      | •    |    | •     | •      | С       |        |       | 1     |         | N      |     |        |     |         |        | T,E     | •       | •         |
| pET-37b(+)    |      | •    |    | •     | •      | С       |        |       | 1     |         | N      |     |        |     |         |        | T,X     | •       | •         |
| pET-38b(+)    |      | •    |    | •     | •      | С       |        |       | 1     |         | С      |     |        |     |         |        | Т       | •       |           |
| pET-39b(+)    |      | •    |    | •     | •      | I,C     |        |       | 1     |         |        |     |        |     | N       |        | T,E     | •       |           |
| pET-40b(+)    |      | •    |    | •     | •      | I,C     |        |       | 1     |         |        |     |        |     | N       |        | T,E     | •       |           |
| pET-41a-c(+)  |      | •    |    | •     | •      | I,C     |        |       | 1     |         |        |     |        |     |         | N      | T,E     |         |           |
| pET-42a-c(+)  |      | •    |    | •     | •      | I,C     |        |       | 1     |         |        |     |        |     |         | N      | T,X     |         |           |
| pSCREEN-1b(+) | •    |      | •  |       | •      | 1       |        | N     | 1     |         |        |     |        |     |         |        | T,E     |         |           |



signal seq. = signal sequence for potential periplasmic localization

Notes:  $T7 \bullet Tag^{11} = 11$  aa fusion tag  $T7 \bullet Tag^{340} = 260$  aa fusion tag signal seq. = signal sequence for I = internal tag N = N-terminal tag C = optional C-terminal tag protease cleavage sites: T = thrombin E = enterokinase X = Factor X = E LIC = ligation independent cloning, vectors available separately as linearized DNA pSCREEN-1b(+) carries the pUC origin of replication; all other pET vectors carry the pBR322 origin



