

Cloning Vectors

Ameer Effat M. Elfarash

Dept. of Genetics
Fac. of Agriculture, Assiut Univ.
amir_effat@yahoo.com

CLONING VECTORS

- Cloning vectors are DNA molecules that are used to "transport" cloned sequences between biological hosts and the test tube.
- Most vectors are genetically engineered.
- A vector is used to amplify a single molecule of DNA into many copes.

Cloning vectors share four common properties:

- 1. Ability to replicate.
- 2. Contain a genetic marker for selection.
- 3. Unique restriction sites to facilitate cloning of insert DNA.
- 4. Minimum amount of nonessential DNA to optimize cloning.

Types of vectors

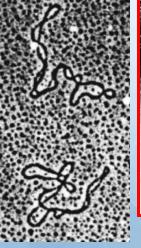
- Different types of cloning vectors are used for different types of cloning experiments.
- The vector is chosen according to the size and type of DNA to be cloned

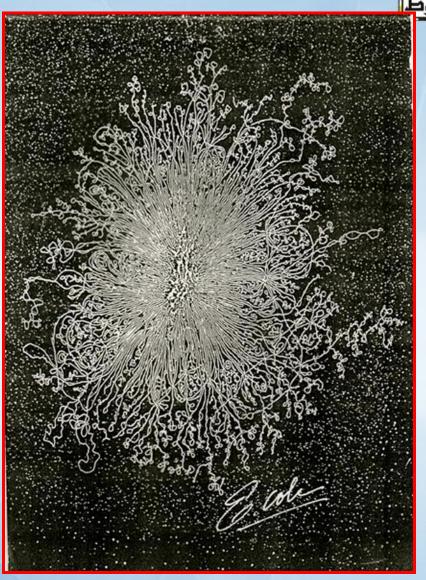
Maximum insert size (kilobases or kb [1000bp])

 Bacterial plasmid 	6-12
	0 12

• bacteriophage 25

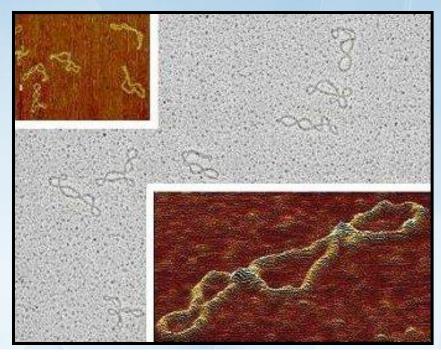
• Cosmids 35

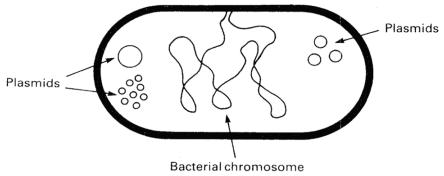

yeast artificial chromosome 200-1000


Bacterial

Bacterial plasmids

Most bacterial DNA is on a single large chromosome, but some DNA is in a small circle called a plasmid.


Bacterial Plasmids in Nature



Occur naturally in bacteria and usually carry genes that are useful but not essential to survival

There can be as many as several hundred copies of a single plasmid in each bacteria.

They can replicate independently of the host cell.

Plasmids: independent genetic elements found in bacterial cells.

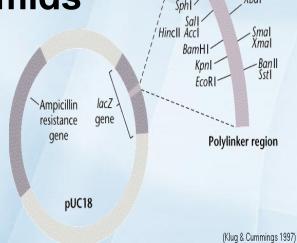
Size and copy number

 Table 2.1 Sizes of representative plasmids

Plasmid	Siz	Organism		
	Nucleotide length (kb)	Molecular wt (MDa)		
pBR345	0.7	0.46	E. coli	
pBR322	4.362	2.9	E. coli	
ColEl	6.36	4.2	E. coli	
RP4	54	3,6	Pseudomonas + others	
F	95	63	E. coli	
TOL	117	78	Pseudomonas putida	
pTiAch5	213	142	Agrobacterium tumefaciens	

TABLE 4.2	Copy numbers of some plasmids					
Plasmid	Approximate copy number					
F	1					
P1 prophage	1					
RK2	4–7 (in <i>E. coli</i>)					
pBR322	16					
pUC18	~30–50					
plJ101	40–300					

PLASMID VECTORS


Plasmid vectors are used to clone DNA ranging in size from several base pairs to several thousands of base pairs (100bp -10kb).

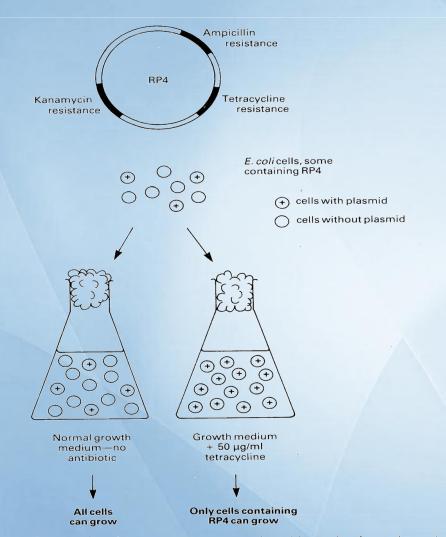
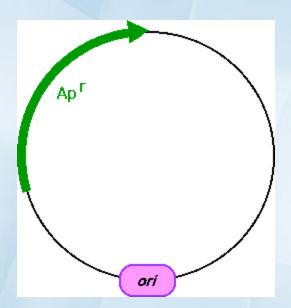
Features of many modern Plasmids

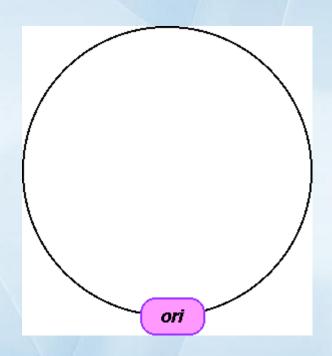
- Small size
- Origin of replication
- Multiple cloning site (MCS)
- Selectable marker genes
- Some are expression vectors and have sequences that allow

RNA polymerase to transcribe genes

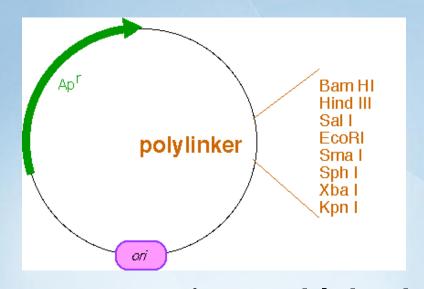
DNA sequencing primers

SELECTIVE MARKER


Figure 2.2 The use of antibiotic resistance as a selectable marker for a plasmid. RP4 (top) carries genes for resistance to ampicillin, tetracycline and kanamycin. Only those *E. cali* cells that contain RP4 (or a related plasmid) will be able to survive and grow in a medium that contains toxic amounts of one or more of these antibiotics.

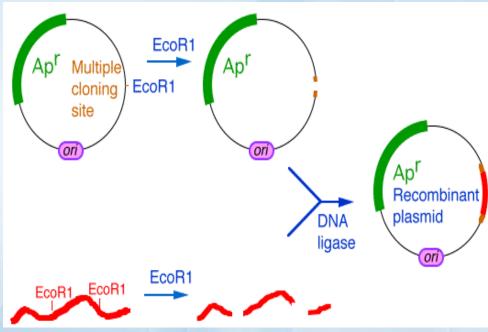
ORIGIN OF REPLICATION


- Origin of replication is a DNA segment recognized by the cellular DNAreplication enzymes.
- Without replication origin, DNA cannot be replicated in the cell.

MULTIPLE CLONING SITE

Many cloning vectors contain a **multiple cloning site** or **polylinker**: a DNA segment with several unique sites for restriction endo- nucleases located next to each other Restriction sites of the polylinker are not present anywhere else in the plasmid.

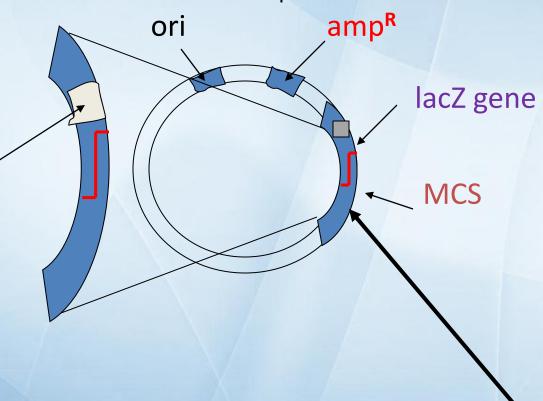
Cutting plasmids with one of the restriction enzymes that recognize a site in the polylinker does not disrupt any of the essential features of the vector



MULTIPLE CLONING SITE

Gene to be cloned can be introduced into the cloning vector at one of the restriction sites present in the polylinker

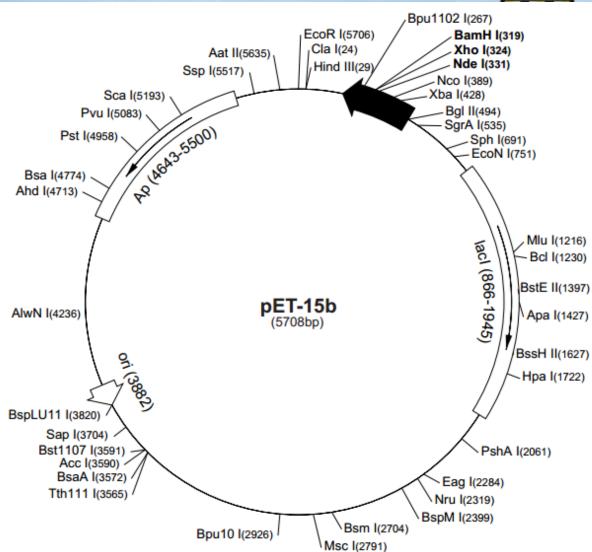
 origin of replication (ori)


Practical Features of DNA Cloning Vectors (Plasmids)

 multiple cloning sites (MCS) or restriction sites

- selectable markers
- RNA polymerase promoter sequences

Allows bacteria with this plasmid to grow in presence of ampicillin antibiotic



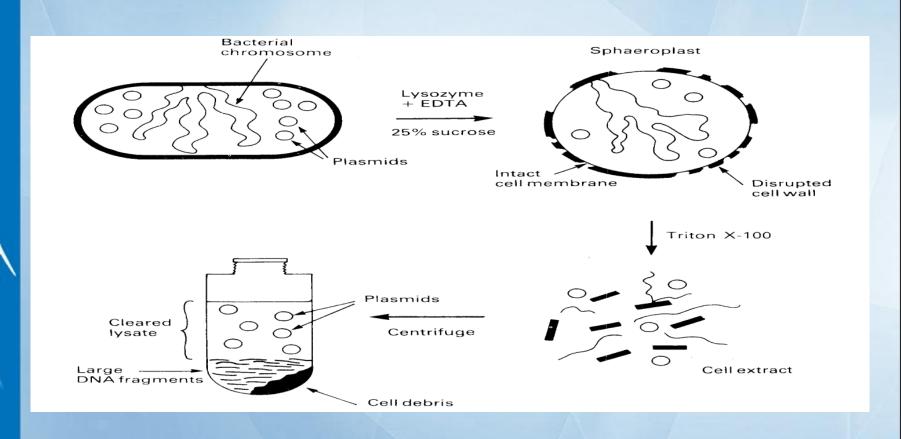
If plasmid picks up a foreign piece of DNA at the MCS, then the lacZ gene is non-functional

pET-15b sequence landmarks							
T7 promoter	463-479						
T7 transcription start	452						
His • Tag coding sequence	362-380						
Multiple cloning sites							
(<i>Nde</i> I - <i>Bam</i> H I)	319-335						
T7 terminator	213-259						
lacI coding sequence	(866-1945)						
pBR322 origin	3882						
bla coding sequence	4643-5500						

T7 p	romoter primer #69:	348-3								
Bgf II	T7 promoter	<u>-</u>	lac operator			Xba I		rbs		
AGATOTOGATOCOGOGAAAT	TAATACGACTCACTA	TAGGGGA	ATTGTGA	GCGGAT	AACAAT	receet	CTAGAAA	TAATTTT	GTTTAACTTT	AAGAAGGAGA
Ndel Nhel T	7-Tag	рЕТ-24а	BamH I	EcaR I	Saci	Sall	Hind III	Eag I Not I	Xho I	His-Tag
TATACATATGGCTAGCATGA MetAloSerMetT	CTGGTGGACAGCAAA hrGlyGlyGlnGlnP				GAGCTC GluLeu					CCACCACCACCACCACTGA ProProProProProLeu
Bpu1102 I				T7 terminator						
GATCCGGCTGCTAACAAAGC	CCGAAAGGAAGCTGA	AGTTGGCT	GCTGCCA	CCSCTG	AGCAAT.	AACTAG	CATAACC	CCTTGGG	GCCTCTAAAC	GGGTCTTGAGGGGTTTTTT
				T7 termir	nator pri	mer #690	337-3			

Plasmid Isolation from Bacteria

- تنميه المزرعة البكتيرية المحتوية على البلازميد على بيئة سائلة
 - جمع الخلايا منها بالطرد المرطزى
 - تحضير المستخلص الخلوى من هذة الخلايا (Cell extract)
 - ويتم التخلص من البروتينات وازالة ال RNA.
- بالاضافة الى ذلك يجب فصل DNA البلازميد عن الكميات الكبيرة


من DNA الكرموسومات البكتيرية الموجودة ايضا في الخلايا.

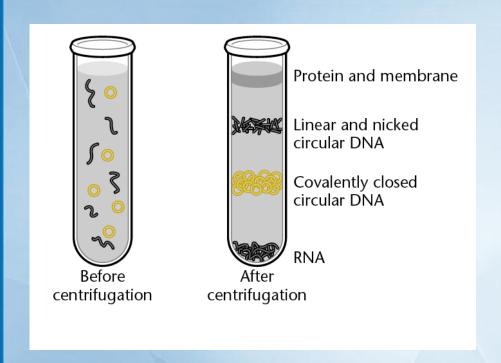
Plasmid DNA isolation

• - فصل DNA البلازميدات بناء على الحجم:

2- فصل DNA البلازميدات بناء على الشكل:

Alkaline denaturation

استخدام الطرد المركزي في وجود الايثيديوم بروميد والسيزيوم كلوريد

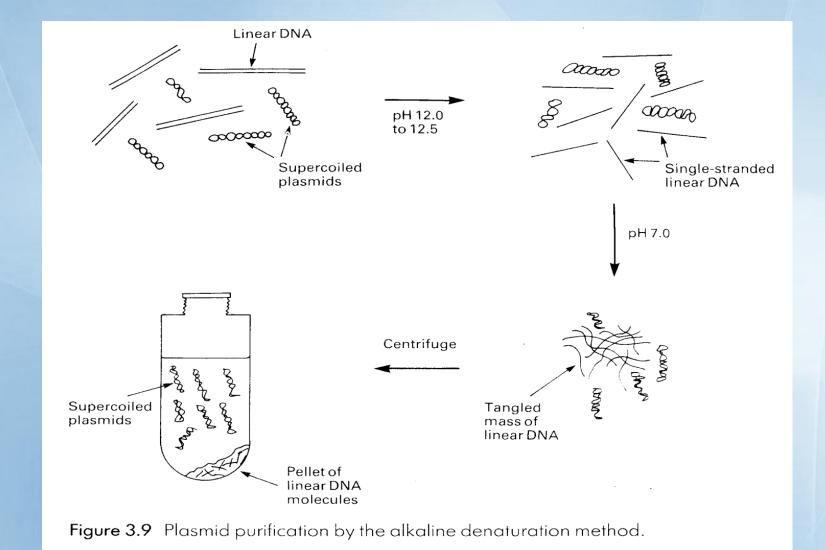

Figure 3.8 Two conformations of circular double-stranded DNA. (a) Supercoiled: both strands are intact. (b) Open-circular: one or both strands are nicked.

Conformations of Plasmid DNAs



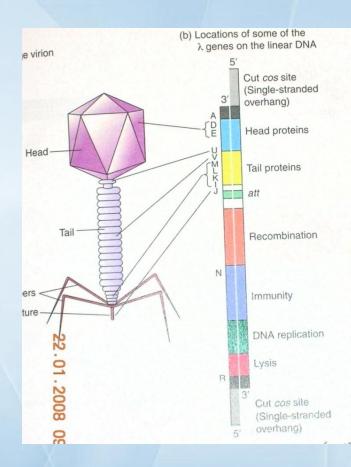
"Old School method of purifying plasmid"

After 10 hrs centrifugation at 100,000 rpm (450,000 xg), two distinct bands, corresponding to **linear nuclear DNA** above and **circular DNA** below, are visible under ultraviolet light.

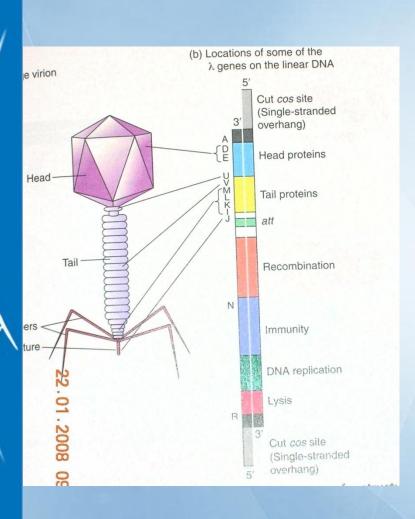


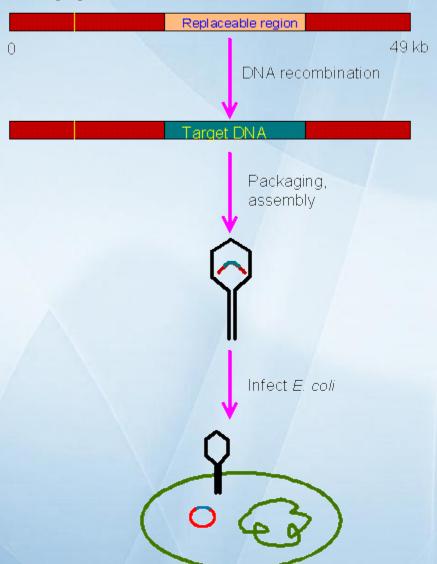
CsCl gradient with ethidium bromide and UV light.

Alkaline denaturation

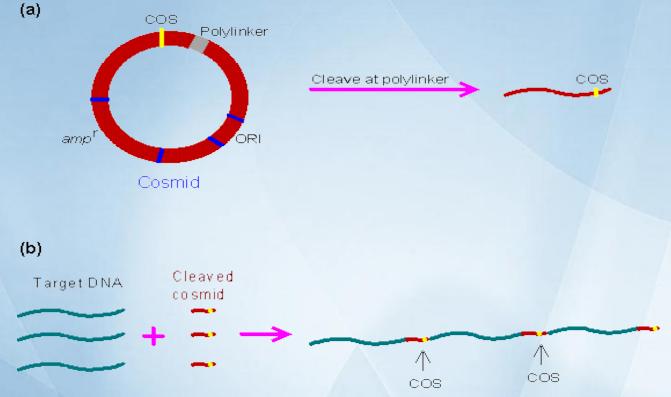

OTHER TYPES OF CLONING VECTORS

BACTERIOPHAGE LAMBDA

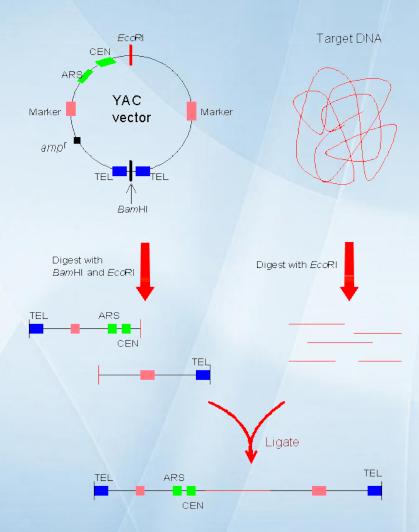

- **Phage lambda** is a **bacteriophage** or **phage**, i.e. bacterial virus, that uses *E*. coli as host.
- Its structure is that of a typical phage: head, tail, tail fibres.
- Lambda viral genome: 48.5 kb linear DNA with a 12 base ssDNA "sticky end" at both ends; these ends are complementary in sequence and can hybridize to each other (this is the cos site: cohesive ends).
 - Infection: lambda tail fibres adsorb to a cell surface receptor, the tail contracts, and the DNA is injected.
- The DNA circularizes at the cos site, and lambda begins its life cycle in the E. coli host.



BACTERIOPHAGE LAMBDA


λ-Phage genome

COSMID VECTOR


- The cosmid vector is a combination of the plasmid vector and the COS site which allows the target DNA to be inserted into the λ head. It has the following advantages:
 - High transformation efficiency.
 - The cosmid vector can carry up to 45 kb whereas plasmid and λ phage vectors are limited to 25 kb.

The yeast artificial chromosome (YAC) vector is capable of carrying a large DNA fragment (up to 200 Kb), but its transformation efficiency is very low.

