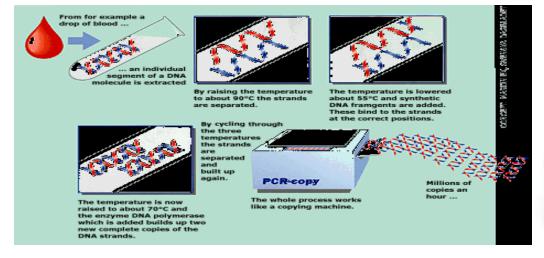

PCR Introduction

Mohamed N. Seleem

Aims

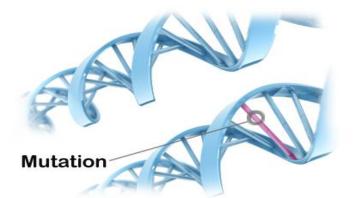


Understand the principles and applications Of:

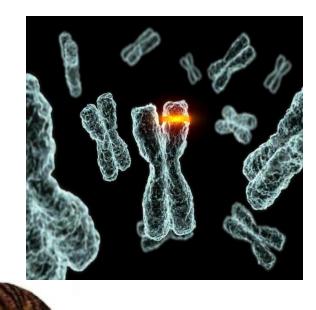
- Polymerase Chain Reaction
- DNA extraction
- Primers design
- •Set up a PCR

What is the Polymerase Chain Reaction?

- Selectively amplifying a particular segment of DNA.
 e.g. a specific gene or certain area in the DNA
 1 copy can produce billions of copies
- It can be described as a molecular photocopier.


How to pick up

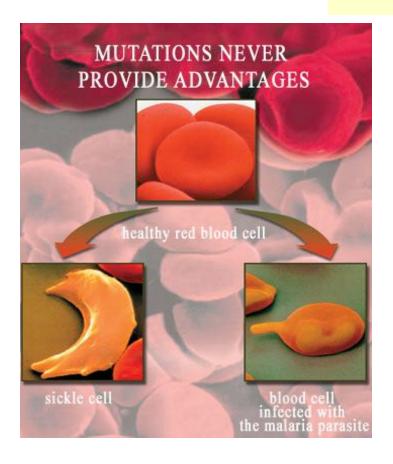
1 out of thousands genes

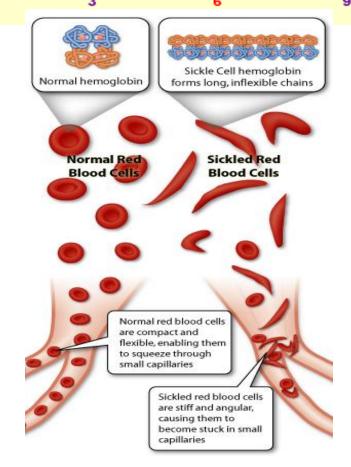


Mutation

Sickle Cell Anemia

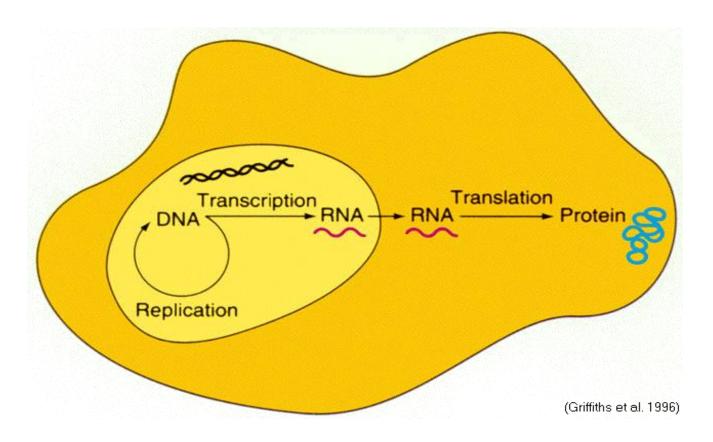
HBB Sequence in Normal Adult Hemoglobin (Hb A):


Nucleotide CTG ACT CCT GAG GAG AAG TCT


Amino Acid Leu Thr Pro Glu Glu Lys Ser
I I I
3 6 9

HBB Sequence in Mutant Adult Hemoglobin (Hb S):

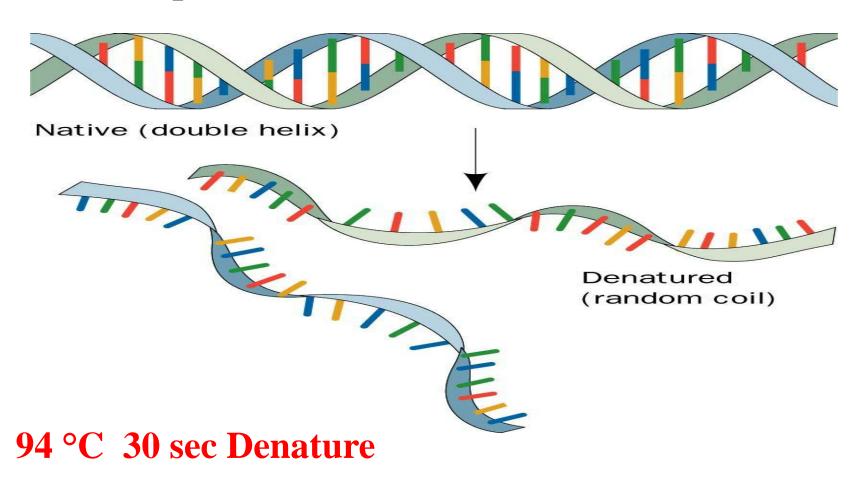
Nucleotide Amino Acid CTG ACT CCT GTG GAG AAG TCT


Leu Thr Pro Val Glu Lys Ser

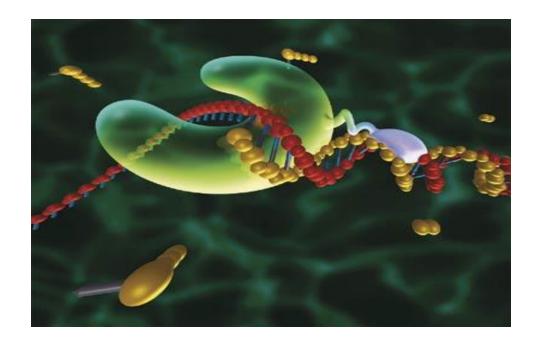
A T Glutamic -Valine

Measuring Gene Expression

Idea: measure the amount of mRNA to see which genes are being expressed in (used by) the cell different time different conditions.


History of PCR

- Invented by Kary Mullis in 1983.
- First published account appeared in 1985.
- Awarded Nobel Prize for Chemistry in 1993.

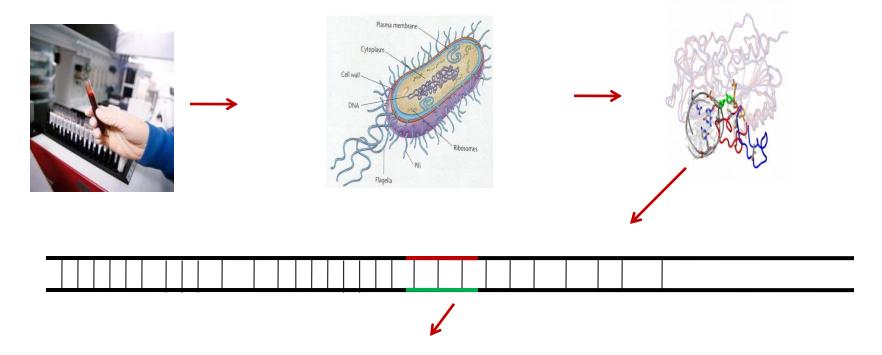

One of the fastest Nobel Prize In Nobel terms, that's a pretty short turnaround.

How to separate double stranded DNA?

How to make copies?

DNA Polymerase enzyme

Enzyme sensitive to heat


Hot springs bacteria

Thermus aquaticus
Taq enzyme
Heat stable
1988

How to select the gene or the area in DNA

Primers

ACCATCGGACTGCATCAGTACCATCGG---------ACTGCATCAGTACCATCGGACTGCATCAGA
TGGTAGCCTGACGTAGTCATGGTAGCC------TGACGTAGTCATGGTAGCCTGACGTAGTCT

ACCATCGGACTGCATCAGTACCATCGG------ACTGCATCAGTACCATCGGACTGCATCAGA

TGGTAGCCTGACGTAGTCATGGTAGCC-----TGACGTAGTCATGGTAGCCTGACGTAGTCT

PCR Cycles

Denature 94 °C for 30 sec Native (double helix) Denatured (random coil)

Primer annealing

55 °C for 30 sec

ACCATCGGACTGCATCAGTACCATCGG------ACTGCATCAGTACCATCGGACTGCATCAGA
GACGTAGTCT

Forward Primer Reverse Primer

ACCATCGGACT

TGGTAGCCTGACGTAGTCATGGTAGCC-----TGACGTAGTCATGGTAGCCTGACGTAGTCT

PCR Cycles

Extension

72 °C for XXX sec

ACCATCGGACTGCATCAGTACCATCGG -------ACTGCATCAGTACCATCGGA CATCAGA

T A GTAGTCT

ACCATCG

ACCATCAGA

ACCATCG

ACCATCAGA

ACCATCG

ACCATCAGA

ACCATCG

ATCGGACTGCATCAGTACCATCGG-------ACTGCATCAGTACCATCGGACTGCATCAGA

STAGCCTGACGTAGTCATGGTAGCC-----TGACGTAGTCATGGTAGCCAGACG

CGGACTGCATCAGTACCATCGG------ACTGCATCAGTACCATCGGACTGCATC

2nd cycle

Denature

94°C for 30 sec

ACCATCGGACTGCATCAGTACCATCGG——ACTGCATCAGTACCATCGGACTGCATCAGA

TGGTAGCCTGACGTAGTCATGGTAGCC——TGACGTAGTCATGGTAGCCAGACGTAGTCT

ACCATCGGACTGCATCAGTACCATCGG——ACTGCATCAGTACCATCGGACTGCATCAGA

TGGTAGCCTGACGTAGTCATGGTAGCC——TGACGTAGTCATGGTAGCCTGACGTAGTCT

2nd cycle

Primer annealing

55 °C for 30 sec

ACCATCGGACTGCATCAGTACCATCGG-------ACTGCATCAGTACCATCGGACTGCATCAGA
GACGTAGTCT

ACCATCGGACT

TGGTAGCCTGACGTAGTCATGGTAGCC----TGACGTAGTCATGGTAGCCTGACGTAGTCT

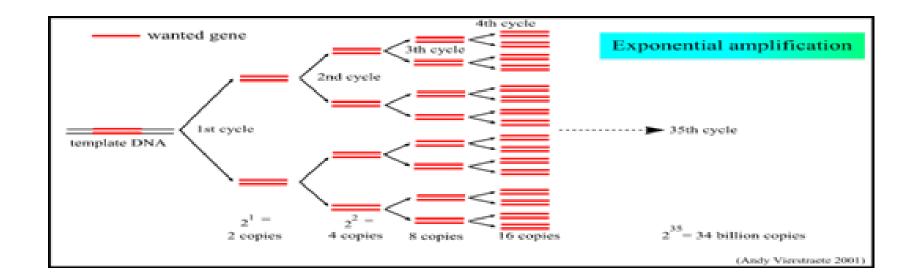
ACCATCGGACTGCATCAGTACCATCGG-------ACTGCATCAGTACCATCGGACTGCATCAGA
GACGTAGTCT

ACCATCGGACT

TGGTAGCCTGACGTAGTCATGGTAGCC-----TGACGTAGTCATGGTAGCCTGACGTAGTCT

Extension

2nd cycle


72 °C for XXX sec

ACCATCGGACTGCATCAGTACCATCGG------ACTGCATCAGTACCATCGGACTGCAGAGA
TGGIAGCCTGACGTAGTCATGGTAGCC-----TGACGTAGTCATGGTAGCCAGACG

GGACTGCATCAGTACCATCGG------ACTGCATCAGTACCATCGGACTGCATCAGA
TGG ACCTGACGTAGTCATGGTAGCC-----TGACGTAGTCATGGTAGCCTGACGTAGTCT

ACCATCGGACTGCATCAGTACCATCGG-------ACTGCATCAGTACCATCGGACTGC
TGGTAGCCTGACGTAGTCATGGTAGCC------TGACGTAGTCATGGTAGCCAGACC

CGGACTGCATCAGTACCATCGG------ACTGCATCAGTACCATCGGACTGCATCAGA
TG AGCCTGACGTAGTCATGGTAGCC-----TGACGTAGTCATGGTAGCCTGACGTAGTCT

PCR Cycles

25-40 cycles

Time and Temperature

Initial denature

94 °C for 2 minuets

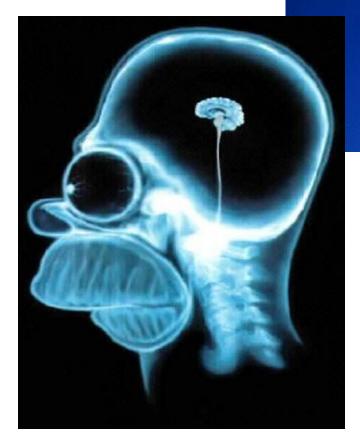
denature

annealing

Extension

94 °C for 30 sec

55 °C for 30 sec


68-72 °C for xxx sec

Final extension

72 °C for 5 minuets

PCR is just a tool

Reaching Beyond Horizons

How to use it, is up to you