
FDSNet: dynamic multimodal 
fusion stage selection for 
autonomous driving via feature 
disagreement scoring
Asaad Mohammed, Hosny M. Ibrahim & Nagwa M. Omar

Robust and efficient 3D perception is critical for autonomous vehicles operating in complex 
environments. Multi-sensor fusion, such as Camera+LiDAR, Camera+Radar, or all three modalities, 
significantly enhances scene understanding, However, most existing frameworks fuse data at a fixed 
stage, categorized as early fusion (raw data level), mid fusion (intermediate feature level), or late 
fusion (detection output level), neglecting semantic consistency across modalities. This static strategy 
may result in performance degradation or unnecessary computation under sensor misalignment or 
noise. In this work, we propose FDSNet (Feature Disagreement Score Network), a dynamic fusion 
framework that adaptively selects the fusion stage based on measured semantic consistency across 
sensor modalities. Each sensor stream (Camera, LiDAR, and Radar) independently extracts mid-
level features, which are then transformed into a common Bird’s Eye View (BEV) representation, 
ensuring spatial alignment across modalities. To assess agreement, a Feature Disagreement Score 
(FDS) is computed at each BEV location by measuring statistical deviation across modality features. 
These local scores are aggregated into a global FDS value, which is compared against threshold to 
determine the fusion strategy. A low FDS, indicating strong semantic consistency across modalities, 
triggers mid-level fusion for computational efficiency, whereas a high FDS value activates late fusion to 
preserve detection robustness under cross-modal disagreement. We evaluate FDSNet on the nuScenes 
dataset across multiple configurations: Camera+Radar, Camera+LiDAR, and Camera+Radar+LiDAR. 
Experimental results demonstrate that FDSNet achieves consistent improvements over recent 
multimodal baselines, with gains of up to +3.0% in NDS and +2.6% in mAP on the validation set, and 
+2.1% in NDS and +1.6% in mAP on the test set, highlighting that dynamic stage selection provides 
both robustness and quantifiable advantages over static fusion strategies.

Autonomous vehicles (AVs) are poised to revolutionize transportation, promising significant improvements 
in road safety, reductions in traffic congestion, and enhanced mobility for diverse user groups1,2. Collision 
avoidance in autonomous driving unfolds through key stages enabled by robust 3D perception: (1) detection 
and localization of surrounding objects3, (2) interpretation of the scene context4, and (3) informed real time 
navigation decisions to avoid hazards and ensure safe trajectory planning5,6. This task becomes particularly 
challenging in complex, dynamic, and unpredictable environments, demanding consistently reliable perception 
under varying lighting, weather, and traffic conditions.

Relying on a single sensor modality for 3D perception often falls short of delivering the necessary robustness 
and consistency. Each sensor type presents inherent limitations due to its physical sensing principles. Cameras 
offer detailed texture and color information but remain highly susceptible to lighting variations, performing 
poorly under low visibility, glare, or nighttime conditions7–10. LiDAR sensors provide accurate geometric and 
distance measurements but struggle with adverse weather conditions, in addition to their significant power 
demands and cost implications11,12. In contrast, Radar demonstrates greater resilience to environmental 
disturbances and supports long range sensing but is hindered by limited angular resolution and sparse point 
cloud data, restricting fine grained object detection and classification13,14.

To overcome these individual sensor limitations, multi-sensor fusion has emerged as a foundational 
approach within modern AV perception systems. By integrating complementary information from different 
modalities such as Radar and Camera15,16, LiDAR and Camera17,18, or all three Camera, Radar, and LiDAR19,20, 
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fusion frameworks construct richer and more resilient representations of the driving environment. This 
method improves detection accuracy, redundancy, and fault tolerance in real-world scenarios. Nonetheless, 
most existing fusion frameworks implement a static fusion strategy (early, mid, or late), uniformly applied 
regardless of scenario dynamics. Such rigid fusion designs neglect variability in cross-sensor consistency, 
which can fluctuate significantly due to environmental factors like sensor misalignment, occlusion, or varying 
illumination conditions. For instance, early fusion combining raw or low-level data may inadvertently propagate 
sensor misalignments and noise throughout the system, reducing overall detection quality21. Mid-level fusion 
tends to exhibit stronger semantic consistency but still assumes that sensor features are consistently aligned22. 
Conversely, late fusion integrates at the decision stage, offering robustness to sensor noise but incurring higher 
computational overhead and latency, which is a critical drawback in real time AV systems23.

To mitigate these trade-offs, recent studies have explored hybrid fusion architectures, merging early-to-mid 
or mid-to-late fusion combinations24–26. These architectures capitalize on early-stage efficiency under optimal 
sensor alignment and switch to robust, later-stage fusion when inconsistencies arise. However, multi-path hybrid 
approaches tend to be computationally inefficient, as they execute all fusion branches simultaneously, regardless 
of necessity. This not only results in substantial memory usage and processing latency, hindering real-time AV 
applications, but also fails to account for the variability of real-world driving conditions. These challenges become 
especially critical in adverse scenarios such as heavy rain, fog, or nighttime driving, where camera perception 
deteriorates, or when LiDAR measurements are disrupted by snow and dust. Likewise, sensor occlusion caused 
by large vehicles or roadside infrastructure can lead to incomplete observations. Static fusion strategies, which 
rigidly apply a fixed fusion stage, are unable to adapt to such dynamic inconsistencies, often propagating noise 
or incurring unnecessary computation. This underscores the necessity of an adaptive fusion mechanism capable 
of adjusting to varying sensor reliability in real time. In parallel, advances in lightweight convolutional neural 
networks (CNNs) have highlighted the importance of designing architectures that achieve high accuracy while 
minimizing computational complexity. Such approaches have been applied successfully in diverse domains, 
including instrument indication recognition27, ancient mural element detection28, and biometric verification29. 
These studies demonstrate that carefully designed compact architectures can deliver robust performance under 
constrained resources, a principle directly aligned with the requirements of autonomous driving perception. 
Motivated by this trend, our proposed FDSNet extends efficiency-oriented design concepts to multimodal 
fusion, ensuring both robustness and computational efficiency in real-time scenarios.

Addressing these limitations, we propose FDSNet (Feature Disagreement Score Network), a dynamic fusion 
framework that adaptively selects the optimal fusion stage either mid-level or late level, based on semantic 
consistency across sensor modalities. Unlike prior approaches that rigidly execute multiple fusion stages or 
rely on fixed fusion pipelines, FDSNet introduces a Feature Disagreement Score (FDS) computed at the Bird’s 
Eye View (BEV) level to quantify semantic inconsistencies between modalities. A global threshold applied to 
the FDS determines the fusion strategy dynamically, mid-level fusion is activated when semantic consistency is 
high, enhancing computational efficiency, whereas late-level fusion is triggered under significant disagreement, 
ensuring robustness. This conditional approach retains the advantages and flexibility of multi-stage fusion 
methods while significantly reducing redundant computation, making it particularly suited for real time 
autonomous driving applications. An overview of the FDSNet conditional switching mechanism is illustrated 
in Fig. 1.

Fig. 1.  Overview of the proposed FDSNet framework for adaptive sensor fusion in 3D object detection. The 
framework computes a Feature Disagreement Score (FDS) based on BEV features from Camera and LiDAR/
Radar branches. Depending on the FDS value, the system dynamically selects between mid-level (feature 
fusion) and late-level (result fusion) strategies, enabling robust performance across varying sensor reliability 
and environmental conditions.
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Our key contributions are summarized as follows

•	 We propose a dynamic fusion architecture that adaptively switches between mid-level and late-level fusion 
based on real-time semantic consistency among sensor modalities.

•	 We introduce the Feature Disagreement Score (FDS), a novel metric that quantifies semantic misalignment at 
the BEV level and guides conditional fusion decisions.

•	 We conduct comprehensive experiments on the nuScenes dataset30, evaluating three sensor configurations: 
LiDAR + Camera, Radar + Camera, and LiDAR + Radar + Camera. FDSNet achieves competitive 3D object 
detection accuracy while significantly reducing computational cost compared to static and hybrid fusion 
strategies.

Related work
Multimodal fusion strategies are generally categorized into four main approaches: early, mid-level, late, 
and hybrid fusion. Each method provides unique trade-offs in terms of computational efficiency, semantic 
consistency, and adaptability. Fig. 2 illustrates the fundamental stages of these fusion strategies. This section 
reviews prominent methods in each category, highlighting their strengths and limitations.

Early fusion
Early fusion combines multimodal sensor data at the input or raw feature stage, prior to independent feature 
extraction. This fusion strategy leverages the complementarity among different sensor modalities to generate 
richer input features but faces inherent limitations in computational efficiency and adaptability. A representative 
example is the  Multimodal Early Fusion with Attention (MEFA) model proposed by Dupas et al.31. MEFA 
employs local and global attention modules to fuse visible, infrared, and LiDAR data into a single coherent 
representation at the raw data level. Specifically, the local attention mechanism captures spatially adjacent feature 
interactions within each modality, while the global attention mechanism facilitates cross-modal information 
propagation, enhancing semantic coherence across the fused data. This sophisticated hierarchical attention 
architecture significantly improves robustness against challenging environmental conditions, such as adverse 
weather or varying illumination scenarios. However, the computational complexity introduced by these multi-
scale attention mechanisms results in substantial computational overhead, limiting the model’s practicality 
for real time deployment in autonomous systems. Another prominent early fusion method is the Virtual 
Sparse Convolution (VirConv) framework presented by Wu et al.32. VirConv projects multi-view LiDAR 
point clouds and camera images into a common sparse voxel grid representation within a BEV. This voxel 
based representation enables efficient 3D object detection by leveraging sparse convolutional neural networks, 
achieving high processing speeds and detection accuracy in well-structured, predictable scenarios. Nonetheless, 
VirConv’s fixed projection and fusion stages reduce the model’s flexibility, particularly in dynamically changing 
or semantically inconsistent environments. Its rigid design lacks the capability to adapt fusion parameters based 
on the evolving semantic relationships among sensor inputs, resulting in potential degradation of accuracy and 
robustness under complex or unstructured conditions. To overcome these limitations, our proposed FDSNet 
introduces an adaptive fusion approach guided by a FDS, dynamically selecting between mid-level and late stage 
fusion based on semantic consistency. This mitigates the performance degradation and computational overhead 
observed in traditional early fusion methods.

Fig. 2.  Illustration of different sensor fusion strategies: Early, Mid, Late, and Hybrid fusion schemes.
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Mid-level fusion
Mid-level fusion is a modality integration strategy wherein sensor specific features are independently extracted 
prior to their fusion, preserving the distinct semantic and structural properties intrinsic to each modality. 
Unlike early fusion, mid-level fusion capitalizes on modality specific representations, enabling more effective 
fusion after extracting specialized features from each sensor independently. This approach is particularly 
advantageous in scenarios where direct integration at the raw data level may obscure critical domain specific 
information. BEVFusion4D33exemplifies this approach. BEVFusion4D first independently extracts BEV feature 
representations from LiDAR and camera inputs. Subsequently, it leverages a LiDAR-guided view transformation 
mechanism to accurately project and spatially align image features within a unified BEV coordinate system. 
The aligned features are then fused using spatial and temporal fusion modules designed to incorporate both 
spatial contextual coherence and temporal consistency. Although it efficiently resolves issues related to cross 
modal misalignment and effectively captures temporal dynamics, its fusion process operates unconditionally 
irrespective of the semantic coherence or agreement among the modalities. Consequently, noise or erroneous 
data from one modality may propagate into the fused representation, incurring unnecessary computational 
overhead and reducing model robustness. Similarly, DeepStep21, utilizes an incremental step wise fusion strategy. 
DeepStep progressively merges modality specific 2D image features and 3D LiDAR features via a hierarchical 
spatiotemporal transformer architecture. This step wise fusion paradigm enhances contextual reasoning and 
improves semantic understanding by gradually refining multi modal feature representations. Despite these 
benefits, it also exhibits limitations, particularly in its absence of conditional control mechanisms. It consistently 
applies identical fusion processes regardless of semantic disagreements, potentially degrading overall fusion 
effectiveness when certain modalities are noisy, inaccurate, or semantically inconsistent. In the context of Radar 
and Camera fusion, CRN34 presents a mid-level approach that effectively integrates high level modality specific 
features through a dynamic spatial fusion strategy. By leveraging Radar’s motion stability and Camera’s semantic 
richness, CRN improves robustness against visual degradation and sparsity. However, similar to other mid-
level methods, it lacks an explicit mechanism for selectively gating or adjusting the fusion process based on 
semantic agreement, which may limit its adaptability in inconsistent or noisy environments. Addressing these 
limitations, FDSNet employs the FDS metric to dynamically select the optimal fusion stage. By retaining mid-
level fusion only when cross-modal alignment is strong and shifting to late fusion in cases of significant feature 
disagreement, FDSNet significantly reduces redundant computation and enhances robustness.

Late fusion
Late fusion independently processes each sensor modality through separate, dedicated feature extraction and 
decision making pipelines, integrating their outputs only at the final decision making stage. This approach 
inherently maintains the modularity of processing streams and is particularly robust against scenarios involving 
sensor degradation or failure, as the fusion is performed at a high level decision or prediction space. Nevertheless, 
this strategy may fail to fully leverage intermediate semantic cues and complementary information available 
at earlier stages of processing, potentially limiting overall fusion performance. The C-CLOCs framework35, 
employs a contrastive learning based approach designed to align object level predictions from LiDAR and 
camera modalities. It accomplishes this by performing confidence calibration and Intersection-over-Union 
(IoU) based matching of object proposals generated independently by each modality. By aligning predictions 
post-hoc, it effectively reduces false positives and enhances consistency across sensor modalities. Despite these 
advantages, C-CLOCs is fundamentally constrained by its reliance on fixed, post-hoc alignment techniques. As 
a consequence, it lacks the flexibility to dynamically adapt its fusion strategy based on real time fluctuations or 
variations in modality specific performance, potentially compromising performance under rapidly changing 
environmental conditions or varying sensor reliability. Another model is BAFusion, introduced by Chen et al.17, 
utilizes a bidirectional attention mechanism to perform modality specific late stage fusion. It independently 
generates predictions from LiDAR and camera inputs, subsequently employing bidirectional cross attention 
modules to integrate these high level modality specific predictions. This approach effectively captures high level 
semantic correlations and retains modularity, enabling ease of sensor specific adaptation and maintenance. 
However, similar to other late fusion strategies, BAFusion applies fusion unconditionally, without explicitly 
evaluating or quantifying the level of cross modal semantic alignment or disagreement. Consequently, in 
challenging scenarios characterized by conflicting or semantically misaligned sensor outputs, unconditional 
fusion may degrade overall detection and classification accuracy. To effectively mitigate these limitations and 
exploit the inherent strengths of both mid-level and late stage fusion strategies, in contrast our proposed FDSNet 
dynamically quantifies the degree of semantic disagreement across modalities in real time. Unlike previous late 
fusion methods, FDSNet selectively applies late fusion only when significant disagreement exists, otherwise 
favoring computationally efficient mid-level fusion. Thus, it combines the robustness benefits of late fusion with 
adaptive computational efficiency.

Dynamic and hybrid fusion
Recent advances in multi modal fusion for autonomous driving have prompted the emergence of dynamic and 
hybrid fusion methods, which integrate sensor data across multiple abstraction levels such as (point-level, mid-
level, decision-level). These hybrid approaches aim to combine the strengths of individual fusion strategies, 
achieving a balance between robustness, flexibility, and computational efficiency by adaptively utilizing 
complementary information at varying processing stages. DecoratingFusion25 exemplifies a hybrid approach, 
enriching LiDAR point clouds with image aligned features at the input stage and subsequently refining them 
using mid-level BEV-based cross modal attention. Similarly, MS-Occ26 proposes a multi-stage LiDAR–Camera 
fusion architecture, combining mid-level projection of 2D image features into 3D voxel spaces with late stage 
semantic aggregation from multiple viewpoints. Although effective in improving geometric and semantic 
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understanding, these hybrid methods execute all fusion stages unconditionally, resulting in increased latency 
and computational costs even when simpler fusion strategies might suffice. RCBEV36 further contributes to 
this direction by addressing the spatial misalignment between Radar and Camera modalities through modality 
specific feature adaptation and alignment modules, improving the reliability of Radar-Camera fusion in BEV-
based 3D detection. Although effective in improving geometric and semantic understanding, these hybrid 
methods execute all fusion stages unconditionally, resulting in increased latency and computational costs even 
when simpler fusion strategies might suffice. In addition, they lack an explicit mechanism to evaluate or quantify 
semantic consistency across modalities, meaning that fusion is applied regardless of whether sensor features are 
aligned or conflicting. This inability to adapt often propagates redundant or noisy computations. Conditional 
fusion approaches, like HydraFusion37, offer a promising direction by selecting among predefined fusion 
branches based on scene context or learned contextual features. it employs a context-aware gating mechanism, 
dynamically choosing fusion paths guided by external metadata (e.g., weather) or learned context. However, 
each selected branch still follows a rigid fusion pipeline, performing fusion irrespective of real time semantic 
alignment, thus risking redundant computation and suboptimal performance.

To address these shortcomings comprehensively, the proposed FDSNet utilizes a real time computed FDS to 
dynamically select either mid-level or late fusion stages based explicitly on semantic consistency avoiding the 
redundant execution of all fusion branches and directly resolving the limitations of existing hybrid strategies. 
This conditional fusion approach further enhances computational efficiency, and maintains robust perception 
tailored explicitly for real time autonomous driving applications. Table 1 summarizes the reviewed sensor fusion 
approaches, categorized by fusion stage, and highlights their core limitations regarding adaptability, efficiency, 
and semantic consistency.

Proposed work
The proposed FDSNet architecture dynamically integrates multimodal sensor data by conditionally selecting 
optimal fusion stage based on real-time semantic alignment across the three sensor configurations: Camera+LiDAR 
(C+L), Camera+Radar (C+R), and Camera+LiDAR+Radar (C+L+R). This algorithm operates in three primary 
steps: (1) Independent feature extraction and spatial alignment, wherein each sensor modality is processed 
independently and mapped into a unified Bird’s Eye View (BEV) representation. (2) Computation of the Feature 
Disagreement Score (FDS), a variance-based metric quantifying semantic alignment and disagreement between 
modalities. and (3) Conditional fusion stage selection, dynamically choosing between mid-level feature fusion 
and late-stage decision fusion based on the global FDS value. This adaptive mechanism enhances computational 
efficiency and robustness for real-time autonomous driving applications. Early-stage raw feature fusion was 
intentionally excluded, as it tends to amplify noise, increase dimensionality, and propagate modality-specific 
errors, making it less effective for reliable real-time decision-making. The pseudocode describing the overall 
algorithm is provided in Algorithm 1.

Stage Model Strengths Limitations

Early
MEFA31 High-resolution fusion, fine-grained

spatial feature alignment
Rigid fusion, high computational
cost, limited real-time use

VirConv32 Lightweight, efficient voxel feature
propagation

Limited adaptability, struggles
with semantic inconsistencies

Mid-Level

BEVFusion4D33 Temporal BEV fusion, consistent
scene aggregation

Executes fusion regardless of
feature alignment, redundant
computations

CRN34 adar-Camera feature fusion with
dynamic spatial reasoning

Lacks semantic consistency gating
, sensitive to modality disagreement

DeepStep21 Progressive integration, improved
temporal continuity

Unconditional fusion execution,
limited adaptability

Late

C-CLOCs35 Modality-specific decision making,
robustness to misalignment

Post-hoc alignment, limited
semantic feature utilization

BAFusion17 Uncertainty-aware fusion,
reliability weighting

Unconditional fusion, limited
adaptability to sensor
disagreement

Hybrid

DecoratingFusion25 Multi-stage refinement, dense
feature propagation

Executes all fusion stages
unconditionally, increased latency

MS-Occ26 Multi-scale occupancy reasoning,
strong spatial coverage

Performs all fusion stages
unconditionally, computationally
intensive

HydraFusion37 Flexible per-branch processing,
adaptable fusion routes

Static fusion pipelines within
each branch, unnecessary
computations

RCBEV36 Radar-Camera feature alignment,
modality-specific spatial adaptation

Limited to Radar-Camera pairs,
lacks generalized modality fusion

Table 1.  Sensor fusion models with their strengths and limitations.

 

Scientific Reports |        (2025) 15:44209 5| https://doi.org/10.1038/s41598-025-25693-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Feature extraction from multi-modal sensors
To extract semantically meaningful representations from heterogeneous sensor data, we adopt a three-branch 
design independently extracting mid-level features from Camera, LiDAR, and RADAR sensors. Each modality-
specific representation is subsequently projected into a unified BEV representation to facilitate consistency 
assessment and spatial alignment. The use of BEV is motivated by its ability to provide compact, spatially coherent, 
and semantically rich representations–ideal for multi modal fusion. In contrast, voxel-based representations, 
which often memory intensive and computationally expensive due to their sparse 3D structure38. Image plane 
projections, meanwhile, suffer from geometric distortions and misalignment across modalities, as direct 
projection into camera viewpoints can warp spatial relationships and degrade 3D accuracy33. By projecting into 
BEV, we avoid these pitfalls while preserving both geometric precision and semantic density. Thus, BEV offers a 
robust fusion foundation compared to alternative fusion schemes.

Camera stream
To generate BEV features from multi-view camera images, we adopt the Lift-Splat-Shoot (LSS) mechanism39. 
Compared to transformer based view transformation methods like BEVFormer40 or PETR41, which offer strong 
performance but come at a significantly higher computational cost, LSS offers a strong balance between accuracy 
and real time performance due to its simplified architecture and reduced latency. The process begins by the Lift 
step, in this step image features f ∈ RC×H×W , (where C is the number of feature channels, H and W are the 
spatial dimensions) are extracted using a backbone ResNet42 and followed by FPN neck43 module to enhance 
spatial detail and contextual representation. A depth classifier then predicts a discrete depth distribution α ∈ RD  
for each pixel, where D is the number of sampled depth bins. Each pixel at image coordinates (u, v) is lifted into 
a set of 3D frustum points (x, y, z) using the camera intrinsic K and extrinsic [R | t]. Here, K ∈ R3×3 encodes 
the camera’s internal parameters (focal lengths and principal point), while R ∈ R3×3 is a rotation matrix that 
orients the camera in 3D space, and t ∈ R3×1 is a translation vector specifying the camera’s position in the world 
coordinate system. The full projection to 3D is given in (1), following the standard pinhole camera model and 
coordinate transformation defined in44:

	

[
x
y
z

]
= R⊤

(
αd · K−1

[
u
v
1

]
− t

)
� (1)

where αd scales each 3D point according to depth probability. In the Splat step, the lifted 3D points from all 
views are aggregated into a voxel grid V(c,  x,  y,  z). To obtain the final BEV feature map, a vertical pooling 
operation is applied along the height (z) axis while preserving the channel dimension:

Algorithm 1.  Proposed FDSNet fusion Algorithm.
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F Cam

BEV (c, x, y) =
∑

z

V (c, x, y, z)� (2)

This BEV representation encodes both semantic and geometric information and serves as the unified spatial 
format for downstream fusion assessment. A visual illustration of the full camera-to-BEV transformation 
pipeline is provided in Fig. 3.

LiDAR stream
For the LiDAR We adopt the PointPillars framework45 to efficiently convert LiDAR point clouds into BEV 
features. Compared to voxel-based encoders like VoxelNet46 or sparse 3D convolutional neural network (CNN) 
models such as SECOND47, PointPillars eliminates the need for expensive 3D convolutions by operating in the 
2D BEV plane, achieving a favorable trade-off between accuracy and speed as reported in the prior benchmarks48. 
The input point cloud P ∈ RN×D , where N is the number of points and D includes spatial coordinates and 
intensity values, is first discretized into vertical columns (pillars) across the XY plane. Each non-empty pillar is 
encoded using PointNet49 to produce a fixed length feature vector. These features are then scattered into a 2D 
pseudo-image, preserving spatial structure. Finally, the pseudo-image is processed by a 2D CNN to produce the 
final BEV feature map:

	 F LiDAR
BEV ∈ RC×X×Y � (3)

By capturing local geometry and intensity, this representation facilitates spatial alignment essential for computing 
the FDS across sensor modalities.

RADAR stream
To efficiently extract BEV features from radar point clouds in real time, we employ a streamlined point-based 
backbone inspired by RadarBEVNet50. In contrast to alternative radar processing approaches such as heatmap-
based representations34, which suffer from limited geometric precision and low spatial resolution, the point-
based method provides a more spatially accurate and lightweight feature encoding strategy suitable for sparse 
radar data. The input data is represented as R ∈ RK×5 where K is the number of radar points in a frame, and 
each point is represented by a 5-dimensional vector comprising its 3D spatial coordinates (x, y, z) and Doppler-
compensated velocity components (vx, vy). Each point is encoded using a simplified PointNet49 architecture, 
which applies a shared Multi-Layer Perceptron (MLP) to project raw inputs into a higher dimensional feature 
space, followed by a global max pooling operation to capture contextual information. The radar feature encoding 
is given by:

	 f = Concat[MLP(f), MaxPool(MLP(f))]� (4)

The encoded features are then scattered into a structured 2D grid using RCS-aware scattering, which spreads 
each point’s influence over multiple BEV locations according to its Radar Cross Section (RCS). The resulting 
BEV feature map:

	 F Radar
BEV ∈ RC×X×Y � (5)

serves as a spatially aligned representation used in downstream fusion and FDS computation.

FDS calculation
To quantify modality disagreement over spatially aligned BEV features, we adopt a variance-based FDS that 
captures semantic inconsistencies across the Camera, LiDAR, and Radar streams. Each modality-specific 
BEV feature map is denoted as Fm ∈ RC×X×Y , where Fm ∈ {F Cam

BEV , F LiDAR
BEV , F Radar

BEV }, as introduced in 

Fig. 3.  BEV feature generation from multi-view camera inputs. 6 surround view images are first processed 
using a ResNet+FPN backbone to extract 2D image features. A depth network lifts each pixel into a 3D 
frustum using camera intrinsics and extrinsics. The lifted points are then aggregated into a voxel grid and 
vertically pooled to produce the final BEV representation.
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Equations (2), (3), and (5), respectively. From each BEV map, the local feature value at spatial coordinate (x, y) 
and channel c for modality m is denoted as f (c)

m (x, y) ∈ R. The average channel-wise feature at each location is 
computed using the following formulation:

	
µ(c)(x, y) = 1

M

M∑
m=1

f (c)
m (x, y), for c = 1, . . . , C � (6)

Here, M ∈ {1, 2, 3} represents the number of modalities (Camera, LiDAR, Radar) participating in the current 
fusion instance. Next, we determine each modality deviation from the mean feature vector calculated in Eq. (7) 
as:

	 δ(c)
m (x, y) = f (c)

m (x, y) − µ(c)(x, y), for c = 1, . . . , C � (7)

The level of disagreement per modality at each location is then computed by the squared L2-norm of these 
deviations, as defined in Eq. (8):

	
∥δm(x, y)∥2

2 =
C∑

c=1

(
δ(c)

m (x, y)
)2

� (8)

This formulation quantifies the extent to which modality m deviates from the average representation across all 
modalities at a specific spatial location. A higher value indicates greater disagreement or inconsistency in the 
feature encoding of that modality relative to the others. Finally, the overall FDS at location (x, y) is computed by 
averaging the squared deviations derived in Eq. (8) across all sensor modalities, as defined in Eq. (9):

	
FDSvar(x, y) = 1

M

M∑
m=1

∥δm(x, y)∥2
2� (9)

This metric quantifies the consistency of feature representations across sensors at each spatial location and 
enables downstream tasks to identify ambiguous or uncertain regions. To extend this to the scene level, we define 
Global Feature Disagreement Score (FDSglobal) by spatially averaging local values across the entire BEV grid:

	
FDSglobal = 1

X · Y

X∑
x=1

Y∑
y=1

FDSvar(x, y)� (10)

This scalar reflects the overall semantic consistency across all modalities. Local noise or isolated disagreements 
are smoothed, while systematic cross-modal misalignments remain emphasized, making global FDS a robust 
metric for guiding adaptive fusion stage selection.

Conditional fusion stage selection
Building upon the calculated FDSglobal, we propose a dynamic fusion control strategy that conditionally selects 
between mid-fusion and late fusion stages. This approach leverages the global agreement across spatially aligned 
BEV features to determine whether to fuse at the feature level for confident, consistent scenes or defer to decision-
level fusion for ambiguous, uncertain regions. A low FDSglobal indicates strong modal agreement, while a high 
value suggests potential semantic misalignment or sensor disagreement. We then apply a conditional rule to 
select the fusion stage S based on a experimentally tunable threshold τ  as:

	
S =

{
Fmid, if FDSglobal < τ
Flate, otherwise � (11)

The overall conditional switching process is illustrated in Fig. 4, where BEV features from Camera, LiDAR, 
and Radar are evaluated through the FDS and compared against a threshold τ  to select the appropriate fusion 
stage. In the mid-fusion stage, denoted by Fmid, spatially aligned BEV features from all available modalities are 
combined through an element-wise average:

	
Ffused(x, y) = 1

M

M∑
m=1

fm(x, y)� (12)

This simple yet effective fusion strategy assumes equal trust across modalities in regions where the FDS 
indicates strong semantic consistency. Compared to more complex fusion mechanisms such as attention-based 
fusion, or convolutional encoders as used in BEVFusion51, this approach introduces minimal computational 
overhead and is highly suitable for real time deployment. By avoiding additional parameters Fmid provides a 
fast, deterministic alternative while still benefiting from the redundancy and complementarity of multi-modal 
inputs under low disagreement conditions. A detailed comparison of this method against alternative mid-fusion 
strategies is provided in Table 2.
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In contrast to mid-level fusion, late fusion operates at the decision level, where each modality: Camera, 
LiDAR, and Radar independently generates complete detection outputs, including class probability scores and 
corresponding bounding box parameters at each BEV location (x, y). Each modality m provides a prediction 
Dm(x, y) alongside a confidence estimate γm(x, y) ∈ [0, 1], indicating its reliability at that position. The final 
fused decision Dfinal(x, y) is computed using a confidence-weighted aggregation:

	
Dfinal(x, y) =

∑M

m=1 γm(x, y) · Dm(x, y)∑M

m=1 γm(x, y)
� (13)

this approach ensures that predictions from more reliable modalities dominate the final outcome, while those 
from less certain sources are down weighted. Compared to simple averaging or rule based voting, the confidence 
weighted fusion mechanism offers a more adaptive and fine grained strategy, dynamically reflecting sensor 
reliability at each spatial location. This makes it particularly effective under adverse conditions, such as sensor 
occlusion, misalignment, or environmental interference, thereby enhancing the robustness and reliability of 
multi-sensor object detection in real time driving environments. A detailed comparison of this method with 
other representative late-stage fusion approaches is presented in Table 3. In addition, for clarity, we provide a 
summary table of the key terms and symbols used in FDSNet, which consolidates the mathematical notations 
introduced in Table 4.

Experiments
In this section, we begin by presenting the benchmark dataset employed to evaluate the proposed FDSNet. We 
then describe the experimental settings and implementation details.

Dataset
We conduct our experiments on the nuScenes dataset30, a large scale benchmark for autonomous driving 
perception tasks. It provides synchronized multi-sensor data, including six surround view cameras, five 

Fusion method Fusion operation Complexity Real-time suitability Parameter overhead

Element-wise Average52 Sum over spatially aligned BEV features Low High Low

Attention-based Fusion34 Local and global attention over concatenated features High Low High

Convolutional Fusion51 Concatenation followed by convolutional encoding in BEV space Medium Medium Medium

Table 2.  Comparison of mid-level fusion strategies.

 

Fig. 4.  Flowchart of FDSNet’s conditional fusion, where the FDS threshold τ  determines mid-level or late 
fusion selection.
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RADAR sensors, and one 32-beam LiDAR scanner, captured at 2 Hz across diverse urban scenarios in Boston 
and Singapore. Each scene offers full 360° coverage and is annotated with 3D bounding boxes for 10 object 
categories, including cars, pedestrians, trucks, and bicycles. A representative samples from the nuScenes dataset 
are provided in Fig. 5, including RGB images from six camera views (top two rows) and a LiDAR top view 
(bottom), to visualize the spatial coverage and complementary characteristics of these two sensor modalities.

Experimental setup and implementation details
Computational environment
All experiments were performed on a high performance computing workstation equipped with an Intel Core 
i7 CPU running at 3.40 GHz, 64 GB of system memory, and two NVIDIA GeForce GTX 1080 Ti GPU. The 
proposed framework was implemented in PyTorch56 using open-sourced MMDetection3D57, which provides 
modular support for 3D object detection and multi-sensor fusion tasks.

Implementation details
The proposed FDSNet includes three modality specific backbone networks,a ResNet42 followed by FPN 
neck43 module for camera input initialized from ImageNet58 pretrained weights, a PointPillars backbone for 
LiDAR(trained from scratch following Lang et al.45), and a streamlined RadarBEVNet inspired point-based 
backbone for RADAR data (trained from scratch with He initialization as in Zhou et al.50). Training was 
structured into three sequential stages to ensure robust feature learning and stable cross-modal convergence: 
First, the LiDAR backbone was trained individually for 20 epochs to extract robust 3D representations from point 
clouds. Second, the camera backbone was independently trained for 12 epochs utilizing standard augmentations 
(random flipping with 0.5 probability, rotation ±0.3925 rad, and scaling [0.95, 1.05]). Finally, the multi-sensor 
fusion network was trained jointly for an additional 18 epochs, integrating Camera, LiDAR, and RADAR features 
into a unified BEV representation, with parameters from camera and LiDAR backbones frozen as recommended 
by prior fusion studies59,60. For evaluation, we split the nuScenes dataset, which comprises roughly 1000 scenes, 
into 700 for training, 150 for validation, and 150 for testing, ensuring no overlap across subsets, following the 
official nuScenes30. All training stages employed the same optimization setup. AdamW61 with an initial learning 
rate of 1 × 10−3, weight decay of 0.01, gradient clipping at norm 35, linear warm-up (1000 iterations), and 
multi-step decay at epochs 14 and 17 by a factor of 0.1,with a batch size of 4 samples per GPU (on 2 GPUs). 
Point cloud data from LiDAR and RADAR was voxelized into pillars of size 0.25 m × 0.25 m × 8 m, covering 
[−50 m, 50 m] in the X/Y axes and [−5 m, 3 m] in the Z-axis. For the threshold parameter τ , we experimentally 
evaluated values in the range [0.3–0.7] on the validation set and selected τ  = 0.5 as the default setting, since it 
provided the best balance between mid- and late-stage fusion. This regimen ensured effective modality specific 
learning, enhanced robustness, computational efficiency, and reproducibility.

Symbol/term Definition Role in FDSNet

Fm ∈ RC×X×Y Modality-specific BEV feature map (Camera, LiDAR, Radar) Input feature representation per modality

f(c)
m (x, y) Feature value at channel c, location (x, y), modality m Local spatial feature element

µ(c)(x, y) Mean feature across modalities at (x, y), Eq. (6) Baseline for measuring disagreement

δ(c)
m (x, y) Deviation of modality m from mean at (x, y), Eq. (7) Captures modality-specific differences

∥δm(x, y)∥2
2 Squared L2-norm of deviations, Eq. (8) Quantifies per-modality disagreement

FDSvar(x, y) Average disagreement across modalities at (x, y), Eq. (9) Local Feature Disagreement Score

FDSglobal Spatial average of FDSvar(x, y), Eq. (10) Global consistency metric for fusion stage decision

τ Threshold parameter, Eq. (11) Controls mid- vs late-fusion switching

Ffused Mid-level fusion output, Eq. (12) Element-wise average when agreement is high

Dm(x, y), γm(x, y) Detection output and confidence for modality m, Eq. (13) Inputs for late fusion

Dfinal(x, y) Final decision after confidence-weighted fusion, Eq. (13) Robust fused output under uncertainty

Table 4.  Summary of symbols and terms in FDSNet.

 

Fusion method Fusion operation Complexity Real-time suitability
Parameter 
overhead

Confidence-Weighted Fusion35 Weighted sum of predictions using modality-wise confidence scores: Medium High Low

Simple Averaging53 Uniform average of outputs without confidence weights Low Medium None

Rule-Based Voting54 Majority or priority-based fusion of class labels or boxes Low Medium None

Learned Fusion Gate55 Task-specific gating network trained to select or weight predictions 
from each modality High Low High

Table 3.  Comparison of late fusion strategies.
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Evaluation metrics
To rigorously quantify the performance of the proposed FDSNet for 3D object detection, we adopt the official 
nuScenes detection evaluation protocol30, which offers a multifaceted assessment across spatial localization, 
object orientation, scale estimation, velocity prediction, and attribute classification. The evaluation focuses on 
a comprehensive set of metrics, including the mean Average Precision (mAP), mean Average Translation Error 
(mATE), mean Average Scale Error (mASE), mean Average Orientation Error (mAOE), mean Average Velocity 
Error (mAVE), mean Average Attribute Error (mAAE), and the overall nuScenes Detection Score (NDS). These 

Fig. 5.  Representative samples from the nuScenes Dataset30.
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metrics collectively provide a holistic view of a model’s capability to accurately detect and characterize objects in 
3D space, reflecting not only detection precision but also geometric fidelity and semantic richness.

Mean average precision (mAP)
In alignment with the nuScenes evaluation protocol, mean Average Precision is computed using a center-distance-
based matching approach rather than the traditional IoU, reducing sensitivity to object size and orientation. A 
detection is considered a true positive if its 2D center lies within a threshold distance d ∈ D = {0.5, 1, 2, 4} 
meters from the ground-truth box center. For each class c ∈ C  and each threshold d ∈ D, the Average Precision 
APc,d is defined as the area under the precision-recall curve, excluding operating points where precision or 
recall falls below 10%. The final mean Average Precision (mAP) is then computed as the average across all classes 
and thresholds:

	
mAP = 1

|C||D|
∑
c∈C

∑
d∈D

APc,d� (14)

Mean average scale error (mASE)
The mean Average Scale Error (mASE) quantifies the deviation in object dimensions between predicted and 
ground truth 3D bounding boxes. Unlike traditional IoU metrics, mASE isolates scale discrepancies by first 
aligning the predicted box with the ground truth in terms of translation and orientation, so that only scale 
contributes to the residual error. It is formally defined as:

	 ASE = 1 − IoU(B̂pred, Bgt)� (15)

Where B̂pred denotes the rescaled predicted box aligned with the ground truth box Bgt in both position and 
yaw orientation.

Mean average translation error (mATE)
This metric measures the average Euclidean distance (in meters) between predicted and ground truth bounding 
box centers:

	
mATE = 1

N

N∑
i=1

∥tpred
i − tgti ∥2� (16)

Mean average orientation error (mAOE)
The mean Average Orientation Error (mAOE) quantifies the accuracy of predicted object orientations by 
measuring the smallest angular difference between the predicted yaw angle θpred and the ground truth yaw 
angle θgt, expressed in radians. This error is computed over a full 360◦ period for most object classes, except 
for symmetric objects such as barriers, where a 180◦ period is used. The orientation error for each matched 
prediction is defined as:

	 AOE = min (|θpred − θgt| , 2π − |θpred − θgt|)� (17)

The final mAOE is obtained by averaging the AOE values across all valid classes and matched detections, 
providing a robust measure of directional estimation performance that is independent of translation or scale.

Mean average velocity error (mAVE)
The mean Average Velocity Error (mAVE) evaluates the accuracy of predicted object motion by calculating 
the L2 norm (Euclidean distance) between the predicted and ground truth velocity vectors in the 2D plane, 
expressed in meters per second (m/s). This metric captures discrepancies in both magnitude and direction of 
motion and is defined for each matched detection as:

	 AVE = ∥vpred − vgt∥2� (18)

where vpred and vgt represent the predicted and ground truth velocity vectors, respectively. The final mAVE is 
computed by averaging AVE values across all matched predictions and valid object classes that exhibit motion.

Mean average attribute error (mAAE)
The mean Average Attribute Error (mAAE) quantifies the accuracy of attribute prediction by computing the 
complement of classification accuracy. Specifically, the per sample attribute error is defined as:

	 AAE = 1 − acc� (19)

where acc denotes the proportion of correctly predicted attributes over the total number of valid attribute 
annotations. The final mAAE is obtained by averaging AAE values across all matched detections and applicable 
object classes (excluding classes like cones or barriers where attributes are undefined).
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nuScenes detection score (NDS)
The nuScenes Detection Score (NDS) provides a unified metric to evaluate both detection accuracy and 
the quality of 3D bounding box estimation. It combines the mAP with five True Positive (TP) error metrics 
translation (mATE), scale (mASE), orientation (mAOE), velocity (mAVE), and attribute classification (mAAE) 
into a single score. These TP metrics, denoted collectively as mTP, capture the estimation fidelity of critical object 
properties. The NDS is computed as:

	
NDS = 1

10

(
5 · mAP +

∑
mTP

(1 − min (1, mTP))

)
� (20)

Here, the summation over mTP refers to the set {mATE, mASE, mAOE, mAVE, mAAE}. Each metric is 
clipped to the [0, 1] range to ensure stability and comparability. The final score balances classification performance 
(via mAP) with the regression accuracy of object properties.

Results and discussion
All experiments were conducted on the nuScenes benchmark30, where we evaluated our proposed FDSNet 
framework under three sensor fusion configurations: Camera+RADAR (C+R), Camera+LiDAR (C+L), and 
Camera+LiDAR+RADAR (C+L+R). As summarized in Table 5 and Table 6, the complete fusion configuration 
(C+L+R) achieved the highest performance across both the validation set (75.9% mAP, 78.1% NDS) and test 
set (76.1% mAP, 78.2% NDS), outperforming recent state-of-the-art multi-modal detectors such as PolarFusion 
and IS-Fusion. This superior performance arises from the complementary strengths of the three modalities. 
The Camera provides dense semantic and texture information, LiDAR contributes precise geometric depth and 
structural cues, while Radar offers robustness under adverse conditions such as rain, fog, or poor illumination, 
together with FDSNet’s adaptive fusion strategy, which aligns the fusion stage with the level of cross-modal 
consistency. The (C+L) configuration also showed competitive performance (74.4% mAP, 76.5% NDS on 
validation, 74.9% mAP, 76.8% NDS on test), exceeding PolarFusion and IS-Fusion by noticeable margins and 
reinforcing the effectiveness of integrating high-resolution geometry with visual context. Despite RADAR’s 
sparsity and noisier returns, the (C+R) setting yielded promising results (56.7% mAP, 64.4% NDS on test), 
outperforming top radar fusion baselines such as RCBEVDet and CRN. This indicates that even in sparse 
modalities, our adaptive fusion mechanism effectively suppresses cross-modal inconsistencies and enhances 
robustness. Qualitative results are shown in Fig. 6. A detailed breakdown of mAP and NDS under each fusion 
configuration is illustrated in Fig. 7.

Ablation and efficiency analysis
To comprehensively evaluate the adaptability and efficiency of FDSNet, we conducted an extensive ablation 
study covering four aspects: (1) the effect of the threshold parameter τ  on adaptive stage selection, (2) the impact 
of fusion strategy and dynamic switching, (3) computational efficiency across different sensor configurations, 
and (4) category-wise detection performance. Together, these analyses validate the effectiveness of the proposed 
FDS in guiding real-time fusion decisions, improving perception accuracy under varying sensor agreements, 
and maintaining consistent detection quality across object classes.

Method Input NDS↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

CenterFusion62 C+R 45.3 33.2 0.649 0.263 0.535 0.540 0.142

CRAFT63 C+R 51.7 41.1 0.494 0.276 0.454 0.486 0.176

RCBEVDet16 C+R 56.3 45.3 0.492 0.269 0.449 0.230 0.188

RCBEV4D36 C+R 49.7 38.1 0.526 0.272 0.445 0.465 0.185

CRN34 C+R 54.3 44.8 0.518 0.283 0.552 0.279 0.180

CR3DT64 C+R 45.6 35.1 - - - 0.47 -

BEVDet65 C 39.2 31.2 0.691 0.272 0.523 0.909 0.247

BEVDepth66 C 47.5 35.1 0.639 0.267 0.479 0.428 0.198

SOLOFusion67 C 53.4 42.7 0.567 0.274 0.411 0.252 0.188

StreamPETR68 C 54.0 43.2 0.581 0.272 0.413 0.295 0.195

RCBEVDet16 C+R 56.8 45.3 0.486 0.285 0.404 0.220 0.192

PolarFusion69 C+L 75.1 73.3 - - - - -

IS-Fusion70 C+L 74.0 72.8 - - - - -

ProFusion3D71 C+L 73.6 71.1 - - - - -

FDSNet (Ours) C+R 58.2 47.9 0.468 0.251 0.319 0.270 0.140

FDSNet (Ours) C+L 76.5 74.4 0.398 0.228 0.288 0.240 0.110

FDSNet (Ours) C+L+R 78.1 75.9 0.385 0.219 0.275 0.229 0.105

Table 5.  Quantitative comparison of 3D object detection performance on the nuScenes validation set. ‘C’, ‘R’, 
and ‘L’ denote input from Camera, Radar, and LiDAR sensors, respectively.
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Effect of threshold τ
We investigate the influence of the threshold parameter τ , which governs the balance between mid and late stage 
fusion across configurations in Table 7. As expected, a lower τ  favors late fusion by making it harder to satisfy 
the condition F DSglobal < τ , while a higher τ  biases toward mid fusion. For example, τ = 0.3 leads to late 
fusion dominance, while τ = 0.7 shifts the preference to mid fusion, with τ = 0.5 providing the best trade-off. 
The performance variation associated with threshold tuning is visualized in Fig. 8, which plots the effect of τ  
on both mAP and NDS across all sensor configurations. Together, these results validate that FDSNet’s dynamic 
fusion mechanism adapts effectively to sensor agreement levels and consistently improves performance while 
preserving computational efficiency.

Ablation on fusion strategy
The ablation results in Table 8 show that incorporating dynamic switching via the Feature Disagreement Score 
(FDS) yields consistent improvements across all evaluation metrics compared with static fusion strategies 
using all three modalities (Camera, LiDAR, and Radar). In the fixed mid-fusion setup, features from the 
three sensors are merged before detection, effectively combining the semantic richness of the camera with the 
geometric precision of LiDAR and the motion awareness of radar. However, this approach assumes perfect 
spatial alignment between modalities, but in practice, small calibration drift or the inherent sparsity of radar 
measurements can lead to feature misalignment, which in turn degrades orientation and velocity estimation 
(mAOE = 0.289, mAVE = 0.252), limiting overall accuracy (mAP = 73.2, NDS = 75.4). The fixed late-fusion 
configuration, which merges independent detections at the decision level, enhances robustness to sensor noise 
through confidence weighting, LiDAR primarily governs localization accuracy (mATE = 0.395) while Radar 
refines motion estimation (mAVE = 0.238), but lacks intermediate feature interaction, resulting in suboptimal 
semantic integration (mAP = 74.3, NDS = 76.5). In contrast, dynamic FDSNet adaptively switches between 
mid and late fusion according to real-time semantic consistency, using mid-fusion under strong cross-modal 
agreement and late-fusion when discrepancies arise. This mechanism improves detection across all metrics 
(mAP = 75.9, NDS = 78.1, mATE = 0.385, mASE = 0.219, mAOE = 0.275, mAVE = 0.229, mAAE = 0.105) by 
optimally combining the complementary strengths of camera semantics, LiDAR geometry, and radar motion 
cues, ensuring robust and consistent multimodal perception for autonomous driving.

Computational efficiency analysis
To evaluate the scalability and runtime efficiency of the proposed framework, we analyzed FDSNet’s computational 
complexity, throughput, and detection accuracy under the three sensor configurations:(C+R),(C+L), and 
(C+L+R) setup. As summarized in Table 9, FDSNet exhibits a consistent and interpretable trade-off between 
perception accuracy and computational cost across all modality combinations. The lightweight C+R configuration 
achieves robust performance (mAP = 47.9, NDS = 58.2) with the lowest computational load (318 GFLOPs, 6.2 
GB) and the highest throughput (31 FPS), making it suitable for resource-constrained deployments. The C+L 
configuration offers a strong balance between precision and efficiency (mAP = 74.4, NDS = 76.5) with moderate 
requirements (365 GFLOPs, 7.0 GB, 27 FPS). Extending to the full C+L+R setup yields the highest detection 
accuracy (mAP = 75.9, NDS = 78.1) with only a modest increase in complexity (412 GFLOPs, 7.8 GB) and an 
effective runtime of 24 FPS

Method Input NDS↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
KPConvPillars72 R 13.9 4.9 0.823 0.428 0.607 2.081 1.000

CenterFusion62 C+R 44.9 32.6 0.631 0.261 0.516 0.614 0.115

RCBEV36 C+R 48.6 40.6 0.484 0.257 0.587 0.702 0.140

MVFusion73 C+R 51.7 45.3 0.569 0.246 0.379 0.781 0.128

CRAFT63 C+R 52.3 41.1 0.467 0.268 0.456 0.519 0.114

BEVFormer40 C 56.9 48.1 0.582 0.256 0.375 0.378 0.126

PETRv241 C 58.2 49.0 0.561 0.243 0.361 0.343 0.120

BEVDepth66 C 60.5 51.5 0.446 0.242 0.377 0.324 0.135

SOLOFusion67 C 61.9 54.0 0.453 0.257 0.376 0.276 0.148

CRN34 C+R 62.4 57.5 0.416 0.264 0.456 0.365 0.130

SparseBEV74 C 63.6 55.6 0.485 0.244 0.332 0.246 0.117

StreamPETR68 C 63.6 55.0 0.493 0.241 0.343 0.243 0.123

RCBEVDet16 C+R 63.9 55.0 0.390 0.234 0.362 0.259 0.113

PolarFusion69 C+L 76.1 74.5 - - - - -

IS-Fusion70 C+L 75.2 73.0 - - - - -

FDSNet (Ours) C+R 64.4 56.7 0.402 0.236 0.341 0.248 0.114

FDSNet (Ours) C+L 76.8 74.9 0.384 0.227 0.323 0.233 0.108

FDSNet (Ours) C+L+R 78.2 76.1 0.371 0.222 0.315 0.225 0.105

Table 6.  Quantitative comparison of 3D object detection performance on the nuScenes test set. ‘C’, ‘R’, and ‘L’ 
denote input from Camera, Radar, and LiDAR sensors, respectively.
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Class-level performance analysis
To provide a deeper understanding of category-level detection behavior, Table 10 presents the per-class mAP 
and NDS of FDSNet across different sensor configurations on the nuScenes validation set. The lightweight 
(C+R) configuration achieves moderate accuracy overall but exhibits reduced precision for small targets such 
as pedestrian and bicycle, where the sparse radar returns and limited spatial priors constrain feature alignment. 
Incorporating (C+L) markedly enhances structural reasoning and object boundary localization through 
dense geometric cues, resulting in substantial improvements across all categories, particularly for large objects 
truck, bus and barrier. Extending to the full configuration (C+L+R) yields the highest per-class performance 
by leveraging radar-derived velocity fields to disambiguate motion states and refine temporal consistency in 
dynamic scenarios. These results confirm that FDSNet’s adaptive fusion mechanism scales effectively with 
sensing diversity, integrating complementary modality characteristics to achieve balanced and robust 3D 
perception across all object classes.

Fig. 6.  Detection results from our proposed FDSNet model. The fused multi-camera, LiDAR, and Radar 
views showcase the effectiveness of our adaptive fusion strategy for robust 3D object detection under diverse 
perspectives.
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Limitations and future work
Limitations
Despite demonstrating strong performance and adaptability, the proposed FDSNet has some limitations that 
warrant consideration. First, the effectiveness of the FDS depends on accurate cross-modal alignment within 

Fig. 8.  Performance variation with respect to fusion selection threshold τ  in FDSNet.

 

Threshold τ Sensor configuration Fusion stage bias mAP ↑ NDS ↑

0.3 C + R Late-Fusion Dominant 45.3 56.1

0.5 C + R Balanced 47.9 58.2

0.7 C + R Mid-Fusion Dominant 46.2 57.0

0.3 C + L Late-Fusion Dominant 72.2 75.1

0.5 C + L Balanced 74.4 76.5

0.7 C + L Mid-Fusion Dominant 73.3 75.9

0.3 C + L + R Late-Fusion Dominant 74.2 77.1

0.5 C + L + R Balanced 75.9 78.1

0.7 C + L + R Mid-Fusion Dominant 74.8 77.3

Table 7.  Effect of the FDS threshold τ  on detection performance across different sensor configurations. A 
lower threshold biases the system toward late fusion by making it harder to satisfy FDSglobal < τ , while a 
higher threshold increases mid-fusion dominance. Balanced performance is observed near τ = 0.5.

 

Fig. 7.  Performance comparison of mAP and NDS for different sensor fusion configurations using FDSNet on 
the nuScenes dataset.
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the BEV representation. Calibration drift or asynchronous sensor timing can impair semantic consistency 
estimation, potentially leading to suboptimal fusion decisions. Second, the fusion threshold parameter τ , which 
governs mid and late stage switching, is currently selected empirically. While the ablation study confirms stable 
performance around τ = 0.5, automatic or data-driven threshold adaptation would further enhance robustness 
under diverse conditions. Third, FDSNet performs semantic consistency estimation on a per-frame basis, 
without explicitly modeling temporal correlations across frames. Incorporating temporal consistency could 
improve stability in rapidly changing environments or when sensor reliability fluctuates. Finally, although the 
efficiency analysis shows real-time inference (24–31 FPS), additional optimization will be needed for low-power 
or embedded deployments where computational resources are limited.

Future work
Future research directions may address these limitations and enhance the generalization capabilities of the 
proposed framework. Incorporating advanced calibration aware mechanisms or self-supervised alignment 
approaches could mitigate sensor misalignment issues, thus improving the reliability of the FDS. Additionally, 
developing an adaptive and learnable threshold determination mechanism for instance, via reinforcement 
learning or meta learning strategies could enable automatic and context-aware selection of the fusion stage 
without extensive manual tuning.

Conclusion
In this work, we presented FDSNet, a dynamic multimodal fusion framework designed to overcome the 
limitations of static fusion strategies in autonomous driving. By introducing the FDS, our approach quantifies 
semantic consistency across Camera, LiDAR, and Radar streams, enabling real-time selection between mid-
level and late fusion. This adaptive mechanism ensures that the system maintains both robustness under sensor 
disagreement and efficiency in favorable conditions. The experiments across multiple sensor configurations 
demonstrate that FDSNet provides a unified solution that scales seamlessly from sparse to dense modalities. 
The framework highlights how adaptive stage selection can suppress cross-modal inconsistencies while avoiding 
unnecessary computation, making it particularly suitable for real-time perception tasks.

FDSNet Configuration Input Car Truck Bus Trailer Constr. Ped. Motor Bicycle Traf. Barrier mAP NDS↑

C+R C+R 81.2 55.3 33.1 61.4 57.9 68.2 51.7 32.8 84.1 77.6 47.9 58.2

C+L C+L 88.5 63.1 38.9 74.6 67.8 79.1 82.5 59.8 89.4 88.7 74.4 76.5

C+L+R C+L+R 89.8 67.8 44.5 77.6 68.3 81.8 85.3 65.6 93.4 91.1 75.9 78.1

Table 10.  Per-class 3D detection results (mAP, NDS) for FDSNet under different sensor configurations on the 
nuScenes validation set.

 

FDSNet Configuration Params (M) GFLOPs GPU Memory (GB) FPS mAP↑ NDS↑
C + R 68.5 318 6.2 31.0 47.9 58.2

C + L 78.9 365 7.0 27.1 74.4 76.5

C + L + R 82.4 412 7.8 24.3 75.9 78.1

Table 9.  Computational efficiency, runtime, and accuracy of FDSNet under different sensor configurations on 
the nuScenes validation set.

 

Fusion strategy Switching mode NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
Mid-Fusion Fixed 75.4 73.2 0.404 0.226 0.289 0.252 0.118

Late-Fusion Fixed 76.5 74.3 0.395 0.223 0.281 0.238 0.112

FDSNet (Ours) Dynamic 78.1 75.9 0.385 0.219 0.275 0.229 0.105

Table 8.  Ablation study on fusion strategy and dynamic switching using all three modalities (Camera + 
LiDAR + Radar) on the nuScenes validation set.

 

Scientific Reports |        (2025) 15:44209 17| https://doi.org/10.1038/s41598-025-25693-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Data availability
This study relies on the publicly available nuScenes dataset30, which can be accessed through the official website 
at: https://www.nuscenes.org/nuscenes. The dataset is openly accessible and was used in accordance with its 
respective terms of use. The corresponding author N. M. O should be contacted if someone wants to request the 
data from this study.
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