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Optimizing RetinaNet anchors
using differential evolution for
improved object detection

Asaad Mohammed, Hosny M. Ibrahim & Nagwa M. Omar™*

Object detection is a fundamental task in computer vision. It has two primary types: one-stage
detectors known for their high speed and efficiency, and two-stage detectors, which offer higher
accuracy but are often slower due to their complex architecture. Balancing these two aspects has been
asignificant challenge in the field. RetinaNet, a premier single-stage object detector, is renowned for
its remarkable balance between speed and accuracy. Its success is largely due to the groundbreaking
focal loss function, which adeptly addresses the issue of class imbalance prevalent in object detection
tasks. This innovative approach significantly enhances detection accuracy while maintaining high
speed, making RetinaNet an ideal choice for a wide range of real-world applications. However, its
performance decreases when applied to datasets containing objects with unique characteristics,

such as objects with elongated or squat shapes. In such cases, the default anchor parameters may

not fully meet the requirements of these specialized objects. To overcome this limitation, we present
an enhancement to the RetinaNet model to improve its ability to handle variations in objects across
different domains. Specifically, we propose an optimization algorithm based on Differential Evolution
(DE) that adjusts anchor scales and ratios while determining the most appropriate number of these
parameters for each dataset based on the annotated data. Through extensive experiments on datasets
spanning diverse domains such as the Karlsruhe Institute of Technology and Toyota Technological
Institute (KITTI), the Unconstrained Face Detection Dataset (UFDD), the TomatoPlantFactoryDataset,
and the widely used Common Objects in Context (COCO) 2017 benchmark, we demonstrate that our
proposed method significantly outperforms both the original RetinaNet and anchor-free methods by a
considerable margin.

Keywords RetinaNet, Anchor optimization, Differential evolution, Object detection, Deep learning,
Computer vision

Introdction
Object detection is a pivotal task in computer vision, involving the identification and localization of objects
within images or video frames. Its applications span a wide range of fields, including autonomous vehicles!?,
surveillance®?, medical imaging™® and augmented reality”®. The evolution of object detection methods has seen
remarkable progress over the last decade, transitioning from traditional methods to more sophisticated deep
learning-based methods. In early traditional methods, such as the Scale-Invariant Feature Transform (SIFT)’
and the Histogram of Oriented Gradients (HOG)'?, extracting strong features from images was crucial. Both
methods typically used sliding window techniques to detect objects, which, despite their effectiveness, were
computationally expensive and lacked real-time capabilities. With the emergence of machine learning, more
sophisticated techniques like the Deformable Part Models (DPM)!!, emerged. These significantly enhanced the
detection accuracy by modeling objects as a collection of parts. A significant breakthrough in object detection
emerged with the advent of deep learning, particularly Convolutional Neural Networks (CNNs)!%!3, which
substantially enhanced the performance of object detectors and surpassed the capabilities of traditional methods.
A key component in many state-of-the-art object detection models'>!* are anchor boxes', also known
as default boxes'>, which are predefined bounding boxes of various scales and ratios that propose potential
locations of objects within an image for localization. Each object detector defines anchors with different scales
and ratios. For example, in the two-stage method Faster R-CNN'2, the authors use three scales with box areas of
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(a) Faster R-CNN anchors. (b) SSD anchors, the extended aspect ratios (1:3, 3:1) are
highlighted in yellow.

Fig. 1. A visualization of anchor boxes of Faster R-CNN'? and SSD'*.
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Fig. 2. The variations in size and shape between cyclist and pedestrian compared to car. Images from KITTI
dataset®.

{1282, 2562, 5122}, and three aspect ratios {1:1, 1:2, 2:1}, resulting in a total of 9 anchors. The one-stage method
Single Shot MultiBox Detector(SSD)'* extends this configuration by adding two additional aspect ratios {1:3 ,
3:1} to better detect objects with elongated or squat shapes. Figure 1 illustrates the default anchor boxes used
in both models. Other methods, such as Cascade R-CNN!3, RefineDet!®, and Guided Anchoring”, also adopt
a similar strategy and incorporate anchor boxes with standardized scales and ratios to cover a wider range of
object shapes and improve accuracy. However, these default anchor boxes may not be suitable for detecting
objects with specific characteristics. For example, in the KITTI dataset!®, which is widely used in autonomous
driving research, objects such as pedestrians and cyclists are often much smaller and have different shapes
compared to cars. Thus, the default anchor boxes may not align well with these objects, leading to decreased
detection performance. Figure 2 shows the differences in shape and size between pedestrians, cyclists, and cars.
For anchor-based methods to achieve higher performance, they require careful tuning of anchor parameters
to better align with object characteristics. The selection of these parameters, including the number, scales,
and aspect ratios of anchors significantly impacts both detection accuracy and computational efficiency. An
inappropriate selection of these parameters can hinder anchor-based methods from accurately localizing objects,
resulting in lower accuracy. To address these challenges, researchers have developed anchor-free methods, which
bypass the need for predefined anchor boxes by directly predicting object locations and dimensions within the
image. Notable examples of such approaches include FSAF!® and FCOS?, which focus on the object’s center
as the primary reference for detection, classifying them as center-based methods. In contrast, keypoint-based
methods, such as CenterNet?! and ExtremeNet?2, leverage self-learned keypoints to define bounding boxes,
moving beyond the sole reliance on the object center. Although anchor-free methods eliminate the dependence
on predefined anchor boxes, they come with certain limitations. Specifically, these methods face challenges in
detecting small and occluded objects, as they rely solely on image features to predict bounding boxes. Moreover,
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anchor-free methods often demand greater computational resources than anchor-based methods, since they
perform bounding box predictions at every spatial location within the image. This leads to increased inference
time and higher computational complexity for the object detector. To overcome the challenges posed by previous
methods, we propose an enhancement to the RetinaNet?> model by developing a novel optimization algorithm
based on DE? for optimizing anchor parameters. The algorithm automatically selects the most appropriate
anchor scales, aspect ratios, and their numbers, addressing the limitations associated with manual tuning.
To validate the effectiveness of the proposed enhancement, we conducted comprehensive experiments across
diverse datasets spanning multiple domains, including KITTI'®, UFDD?, TomatoPlantFactoryDataset?® and
COCO 2017%.
The primary contributions can be outlined as follows:

« Developed a novel optimization algorithm based on DE that automatically selected the most suitable anchor
parameters for the RetinaNet model based on annotated data.

o Conducted extensive experiments across multiple datasets from diverse domains to validate the impact of
optimized anchors on detection accuracy.

« Demonstrated that optimizing anchor parameters significantly outperformed anchor-free methods, reinforc-
ing the effectiveness of anchor-based approaches when properly tuned.

Related work

Anchor optimization is a pivotal aspect of object detection models that rely on anchor-based methods
recent years, significant progress has been made through various approaches aimed at optimizing anchor boxes
to enhance the performance of detection models across diverse datasets. We can categorize existing optimization
methods into four categories: (1) clustering-based anchor optimization, (2) dynamic anchor generation
approaches, (3) trainable variables and data-driven optimization, and (4) specialized anchor optimization
approaches.

12,23 In

Clustering-based anchor optimization

A foundational approach to anchor optimization utilizes clustering techniques. YOLOv3?® applies k-means
clustering to bounding boxes in the training set to automatically determine optimal anchor sizes. Similarly,
the authors in?® employ a clustering analysis method based on Intersection over Union (IoU), prioritizing the
overlap between predicted and ground-truth boxes rather than relying solely on size and shape distribution.
Another work®® introduces a perspective-aware methodology, which segments the image into key regions using
clustering techniques and subsequently applies evolutionary algorithms to optimize anchors for each region. A
notable method, Data-Driven Anchor Box Optimization“, enhances anchor selection in UAV-based maritime
search and rescue (SAR) tasks by combining IoU-based clustering with k-means clustering. This refinement
improves anchor selection for two-stage detectors such as Faster R-CNN, especially when paired with Feature
Pyramid Networks (FPN). By leveraging clustering, these approaches ensure that anchor boxes better align
with dataset characteristics, improving detection accuracy. A more recent example is KCFS-YOLOVS5, proposed
by Tian et al.’2, which enhances object detection in satellite imagery by integrating K-means-based anchor
selection with additional architectural modifications. The method combines K-means clustering to optimize
anchor boxes with attention mechanisms and a Bidirectional Feature Pyramid Network (BiFPN) to improve
feature fusion. However, all clustering-based methods share a major limitation, they require a predefined, fixed
number of clusters. This rigidity prevents anchors from fully capturing the diversity of object sizes and shapes
in the dataset, leading to suboptimal performance when applied to varying datasets. In contrast, our proposed
DE-based optimization method dynamically adjusts both the number and sizes of anchors during optimization.
Instead of relying on static clustering results, DE iteratively refines anchor configurations based on an adaptive
evolutionary strategy, ensuring an optimal distribution of anchors that effectively captures variations in object
scales and aspect ratios.

Dynamic anchor generation approaches

Dynamic anchor generation Approaches allow models to generate and modify anchors on-the-fly. For instance,
MetaAnchor?? utilizes residual learning in combination with a two-layer neural network to dynamically generate
anchors, allowing the model to adapt to variations in object sizes and shapes. Another approach, Differentiable
Anchoring, introduces a parallel branch alongside the classification and bounding box regression branches,
enabling the model to learn anchor box sizes dynamically rather than relying on predefined values. While these
methods enhance anchor flexibility, they introduce additional hyperparameters that require careful tuning,
which increases the training complexity and computational overhead. Furthermore, these methods may still
struggle to generalize across different datasets without extensive manual adjustments, as they lack a mechanism
to efficiently explore high-dimensional search spaces for optimal anchor configurations. Our proposed DE-based
optimization overcomes these limitations by eliminating the need for additional hyperparameters and complex
model modifications. Instead of relying on manual tuning or predefined network structures, DE autonomously
explores the search space, allowing for a more adaptive and dataset-agnostic optimization process. This ensures
that anchor configurations remain robust across different datasets without requiring extensive adjustments.

Trainable variables optimization

Another class of anchor optimization approaches treats anchor shapes as trainable parameters within the model.
For instance, the approach in* optimizes anchor shapes using backpropagation, enabling models to refine
anchors dynamically to fit dataset-specific characteristics. While this approach offers a high degree of flexibility,
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it comes with significant computational overhead, increasing both training and inference complexity. One of the
primary challenges associated with trainable anchor variables is the risk of overfitting. Since the model learns
anchor configurations directly from the training set, it may struggle to generalize to unseen data, especially if the
dataset is small or imbalanced. Additionally, these methods require multiple backpropagation steps and careful
hyperparameter tuning, leading to longer convergence times and increased training instability. Our proposed
DE-based optimization method directly addresses these challenges by optimizing anchor configurations
externally rather than embedding them within the model itself. This eliminates the need for additional learnable
parameters, reducing the risk of overfitting while maintaining adaptability across different datasets. Unlike
trainable variable-based methods, DE efficiently explores the search space and optimizes anchor configurations
without requiring backpropagation, making it computationally more efficient and stable.

Specialized anchor optimization approaches

Several specialized anchor optimization strategies have been introduced to address specific object detection
challenges, including small object detection, depth-based adaptation, semantic-driven anchor refinement, and
metaheuristic-based optimization.

Small Object Detection: One approach® employs the Crow Search Algorithm (CSA) to optimize anchor ratios
and scales, specifically enhancing small object detection in high-resolution aerial imagery. While this method
improves detection performance for small targets, its reliance on predefined scales and aspect ratios makes it less
adaptable to datasets with diverse object distributions. Depth-Based Anchor Optimization: Another method*’
leverages depth information to dynamically estimate anchor sizes based on object distances within a scene.
This ensures that anchor boxes better correspond to object sizes in 3D space. However, this approach is highly
dependent on accurate depth estimation, making it vulnerable to errors when dealing with noisy or incomplete
depth data. Semantic-Guided Anchor Adaptation: Semantic cues have also been used to refine anchor placement,
particularly in specialized domains such as Synthetic Aperture Radar (SAR) imagery®. While this method
improves detection performance in structured environments, it is highly sensitive to segmentation errors, which
can lead to suboptimal anchor configurations and degraded performance. Metaheuristic-Based Optimization:
Recent works have explored the use of metaheuristic algorithms to optimize anchor related parameters and
model configurations, particularly in domain-specific contexts like remote sensing. For example, Elgamily et
al.*® applied a suite of metaheuristic and hybrid metaheuristic optimizers including Genetic Algorithms (GA),
Particle Swarm Optimization (PSO), and GA-PSO hybrids to tune hyperparameters of YOLOv7’ and YOLOv8*!
for object detection in satellite imagery. Their results demonstrated notable improvements in detection accuracy
and robustness, especially for small and densely packed objects. However, their method primarily focused on
tuning general model-level hyperparameters, not anchor configurations directly, which can limit adaptability
across different datasets. Our proposed method overcomes these limitations by dynamically evolving anchor
configurations without relying on fixed scales, depth information, or semantic segmentation. Unlike depth-
based or semantic-guided techniques, DE operates directly on object distributions within the dataset, making it
a more robust and adaptable solution for diverse object detection tasks. Moreover, in contrast to metaheuristic-
based methods, which primarily focus on tuning general model-level hyperparameters, the proposed method
specifically targets anchor box optimization. This allows it to achieve more precise localization and scale
adaptation, especially in datasets with high object variability, without requiring architecture-specific adjustments.
A detailed comparison of previous methods, including their strengths and weaknesses, is provided in Table 1.

Proposed work

We begin this section by providing a comprehensive overview of the RetinaNet?? architecture, which forms the
backbone of our approach. Subsequently, we detail the proposed algorithm for optimizing RetinaNet’s anchor
parameters.

RetinaNet model

RetinaNet? is a state-of-the-art one-stage object detection model. It addresses the common class imbalance
problem in object detection tasks through a novel focal loss function. This loss function down weights the
loss assigned to well-classified examples, and focusing more on hard examples, which significantly improves
detection performance. The architecture of the model is built upon a ResNet backbone network*? combined
with a Feature Pyramid Network (FPN)*. The former network is responsible for extracting high-level features
from the input images, then proceed these features to FPN network®’. The FPN network*® then enhances the
standard feature hierarchy of the backbone network with lateral connections and top-down pathways, creating
a rich multi-scale feature pyramid. Which allows RetinaNet?* to detect objects at multiple scales effectively. The
model also employs two subnetworks, a classification subnet, that predicts the probability of object presence
at each spatial position, and a bounding box regression subnet, that refines the anchor boxes to better fit the
detected objects. Figure 3 provides visual illustration of the RetinaNet architecture. Due to its innovative design,
RetinaNet combines the speed advantage of one-stage detectors while maintaining the accuracy associated with
two-stage detectors, making it highly efficient for real-world applications. So, we selected RetinaNet? as the
backbone of our work.

The proposed RetinaNet anchors optimization

'The process of anchor generation in RetinaNet?® involves creating anchors with areas ranging from 32 to 5122
across pyramid levels P3 to Pr. At each level, three aspect ratios {1:2, 1:1, 2:1} and three scales { 2078 91/3 92/3
} are used to create a diverse set of anchors. This configuration allows the model to detect objects of various sizes
and shapes. Unfortunately, these default anchor parameters may not be optimal for all datasets, particularly
for objects with unique shapes and aspect ratios'®*>*4. To address this limitation, we introduce a DE**-based
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Category Method Strengths ‘Weaknesses
YOLOV3% Automatically determines anchor sizes Requires a fixed number of clusters
Effective for datasets with well-defined objects May not generalize to diverse object distributions
Data-Driven Anchor Optimization®! Differential es anchors based on dataset characteristics ﬁlegz;rseesslfr;%;ilralbeilg;it;ﬁtl?ts eEsue to
Clustering- P Effective in specialized applications like UAV SAR ning ¥y
by usdermg backpropagation
ase
optimization : 3 29 Focuses on overlap rather than just size Still requires a predefined cluster count
Faster R-CNN+FP+GN+K-means Can improve anchor-object alignment Limited adaptability to varied datasets
Combines K-means anchor optimization with attention Relies on fixed cluster count
KCFS-YOLOv53? mechanisms and BiFPN ; e -
. . - Architecture-specific; limited generalization
Improves detection accuracy in satellite imagery
. MetaAnchor® Dynamically generates anchors Introduces additional hyperparameters
DY‘;lamlc Adapts to variations in object sizes Increases training complexity
anchor
i . . . Learns optimal anchor sizes automaticall Adds computational overhead
generation 34 P ! r Y 13 €
Differentiable Anchoring Enhances detection without manual tuning May struggle to generalize across datasets
3;?;:;12 lse Opt (k-means)®® Learns anchor configurations directly from data Risk of overfitting to training data
optimization P Enhances accuracy in domain-specific applications Adds computational overhead
RetinaNet with Anchor Optimization | Optimizes anchor scales and ratios Uses fixed scales/ratios, limiting adaptabilit
P! P! g adap Y
(Small Object Detection)®® Effective for small object detection May not generalize to different datasets
Denth-based Anchor Optimization®” Adjusts anchor sizes dynamically using depth Relies on accurate depth information
Specialized P P Enhances scene-specific detection Sensitive to noise in depth measurements
anchor . HTCA% Uses semantic cues for anchor refinement Dependent on accurate semantic segmentation
optimization Improves performance in structured environments Errors in segmentation lead to suboptimal anchors
YOLOV7/YOLOVS + GA/PSO Applies Genetic Algorithms, PSO, and hybrid metaheuristics to | Focuses on global hyperparameter tuning, not
Optimization®® improve detection in satellite imagery anchor-specific optimization
P Boosts accuracy, especially for small and dense objects Requires careful tuning of optimizer parameters

Table 1. Comparison of various object detection methods with anchor optimization techniques.

(a) ResNet

(b) feature pyramid net

Fig. 3. RetinaNet model architecture, as depicted in?*
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optimization algorithm that systematically tunes anchor scales, aspect ratios, and the total number of anchors
for improved detection performance. DE is a population-based optimization algorithm designed to optimize
both continuous and discrete variables, making it well-suited for selecting the most effective anchor parameters
in RetinaNet?. Unlike traditional gradient-based methods, DE does not require derivative information and
can efficiently explore high-dimensional search spaces while avoiding local minima. The optimization process
consists of two main phases: Initialization and Evolution.

Imtzalzzatzon Phase: In this phase, a population of candidate solutions at generation G (G € {1, ..., Gmaq })
is P¢ = {X :j=1,2,...,N} where N denotes the 51ze of p (Eulatlon Each candidate solutlon X;i
the population is a vector of var1able size, X JG = {z§ i ¢ "iy---»TDH_1,,}» where D represents the size of the
vector. These vectors define a potential set of scales, aspect ratios, and their respective counts. Each element X & ;
within the vector is initialized using a randomized approach as described in Eq. (1):

ng = Xlow,z + (Xupp,z - Xlow,z) * rand(07 1) (1)

where z indexes the element in the vector z € {0,1,..., D — 1}, and Xiow,z, Xupp,» represent the lower and
upper bounds search space of the z-th element, respectively. For our specific case, the boundary values for scales
and aspect ratios are derived from the bounding box coordinates in the annotated dataset. Let k be the number
of anchor boxes in the dataset. The i- th anchor box, where ¢ € {0, 1,. — 1}, is denoted as K;, and defined
by its corner coordinates (1., y1,i, Z2,i, y2,;) € R*, where (21,1, y1, Z) cmd (22,5, y2,;) denote the top-left and
bottom-right corners, respectively. The scale S; of an anchor K is computed as the ratio of the anchor area to
the image size, as shown in Eq. (2):
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o (332,1' - Ltr,i) X (Z/Q,i - yl,i) 2
Si= \/ W x H @

where W and H represent the image width and height, respectively. To determine the minimum and maximum
scale boundaries for optimization, we use the following equations:

. ($2i*x1i)x(y2i*y1i)
S iIl — ) ) ) ’ 3
min = ik \/ W x H 3)
($2z‘ —l’ri) X (y2i _yli)
Smax = ma : : : : 4
0121‘<Xk \/ W x H @)
Similarly, the aspect ratio R; of an anchor K; is defined as the ratio of its height to width, as given in Eq. (5):
R, = (yz,i —yu> )
T2 — L1
The minimum and maximum aspect ratio boundaries are computed as:
Ruin = min <M> (6)
0<i<k T2,i — T1,4
Roiax = max <M> 7)
0<i<k \ T2,i — T1,5

Lastly, the number of scales and aspect ratios is selected manually based on dataset characteristics.

Evolution Phase: In this phase, the algorithm performs three key operations: mutation, crossover, and
selection.

Mutation: A mutant vector VjG is generated for each target vector X ]G at generation G, as shown in Eq. (8):

Ve = X$ + Fx(Xy - X5) (8)

where, F is the scaling factor (typically in the range [0,1]), and X & X bG ,and X& are randomly chosen vectors
from the population, ensuring a # b # ¢ # j..

Crossover: The crossover %peratlon is performed between the target vector X = {mf e z5 I L8 ;yand
the mutant vector V = {v7;, v§ iy VD ]} to create a trial vector U @ governed by a crossover probablllty
C'y, as described in Eq 9):

)

Upy i = !
md z, ; otherwise

G { ern,j if rand; < C\
wherem € {1,2,...,D}and C, € [0, 1].

Selection: The final step selects the best solutions among the trial and target vectors. If a trial vector achieves
a better objective function score, it replaces the corresponding target vector in the next generation. If not, the
target vector is carried forward to the next generation. The objective function is designed to maximize IoU score
between a predicted bounding box, Bpreq and a ground truth bounding box, Bg, as defined in Eq. (10)*:

Area(Bpreda N Bgt)

IoU= ——=v+————2
© Area(Bpred U Bgt)

(10)

A higher IoU value indicates better alignment between the predicted and actual object locations. The evolution
phase continues until the stopping criterion is met, either achieving the desired IoU threshold or reaching the
maximum number of generations.

Compared to traditional optimization techniques such as Bayesian optimization®, genetic algorithms?, and grid
search®®, DE* is computationally efficient, self-adaptive, and highly effective at finding globally optimal solutions
without requiring extensive hyperparameter tuning. Grid Search, despite its simplicity, suffers from an exponential
increase in computational cost as the number of parameters grows, making it impractical for high-dimensional search
spaces. Bayesian optimization, while efficient in continuous spaces, struggles with discrete variables and demands
significant computational resources to model the search space probabilistically. Genetic algorithms, though capable
of avoiding local minima, require careful tuning of crossover and mutation rates, leading to increased complexity. In
contrast, DE balances exploration and exploitation, allowing for efficient optimization with minimal hyperparameter
dependencies. The results demonstrate that DE-based anchor optimization significantly improves object detection
accuracy, outperforming both manually tuned anchor-based methods and anchor-free approaches. A detailed
comparison of these optimization techniques is provided in Table 2, emphasizing the advantages of DE in terms of
scalability, adaptability, and computational efficiency. The pseudocode of DE is presented in Algorithm 1.
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1: Input: Population size N, generations G, scaling factor F, crossover probability Cr
2: Output: Optimized anchor parameters (scales, aspect ratios, number of anchors)
3: Initialization:
4: Define search boundaries Spin, Smax; Rmin, Rmax
s: Initialize population PY = {XJG :j=12,..,N}
6: for each candidate solution XjG do
7: Initialize XZG using:
XzG’j = Xiow,z + (Xupp,z — Xiow,z) x rand(0, 1)
8: end for

9: Evolution:
10: for G = 1 to G4y do
11: for each candidate solution X]G do

12: Mutation: Generate mutant vector:

VE=XO+Fx (X0 -X0), a#b#c#]

13: Crossover: Generate trial vector:
G vgj, if rand < Cr
Hm,j = xG’ otherwise
m,j’
14: Selection: Evaluate fitness using IoU:
ToU — Area(Bpred N By)
Area(Bpreq UBy)
15: if Fitness(UjG) > Fitness(XjG) then
16: Replace XJG with UJ-G
17: end if
18: end for
19: end for

20: Return Optimized anchor scales, aspect ratios, and counts

Algorithm 1. Differential evolution-based anchor optimization for RetinaNet

Optimization method Scalability | Handles discrete & continuous | Avoids local minima | Computational cost | Hyperparameter tuning
Grid search®® Low x x High Extensive

Bayesian algorithm*® Moderate | x v Very high Medium

Genetic algorithm®” High v v High High

Differential evolution (DE)** | High v v Moderate Low

Table 2. Comparison of different optimization techniques.

Fig. 4. A sample of images from the KITTI dataset, showcasing different object categories and environmental
conditions.

Scientific Reports|  (2025) 15:20101 | https://doi.org/10.1038/s41598-025-02888-x nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Fig. 5. A sample of images from the UFFD dataset, showcasing various face detection challenges, including
motion blur, lens impediments, haze, rain, and illumination variations.

Fig. 6. A sample of images from the TomatoPlantFactory dataset, showcasing various challenges in tomato
detection, including complex ambient lighting, occlusions and background clutter.

Experiments

In this section, we first provide an overview of each dataset used in our experiments. Then, we describe the
experimental setup and implementation details of both the RetinNet?* and our proposed optimization algorithm.
Finally, we present and discuss the results obtained on each dataset, and the performance of the Optimized
RetinaNet (OptRetinaNet) is evaluated against the original RetinaNet?> and a diverse set of recent object
detectors, including anchor-free methods!®?’, transformer-based architectures**°, and recent unsupervised
methods®!2,

Datasets

KITTI'® dataset : is a widely used in autonomous driving research. It provides 7481 images for training and
7518 images for testing, each accompanied by camera calibration files to ensure accurate spatial representation.
It includes annotations for various object classes such as cars, pedestrians, cyclists and other objects, which
makes it a comprehensive resource for training and evaluating object detection models in complex urban
environments.A sample of images from the KITTI dataset, is presented in Fig. 4.

UFFD? dataset : is a challenging dataset specifically designed to evaluate face detection models under various
adverse conditions. It comprises 6424 images with 10,895 face annotations, capturing a wide range of real-world
environmental weather conditions and other degradations such as lens impediments, motion blur and focus
blur. Additionally, it includes many distractor images containing non-human faces such as animal face or no
faces at all, which are crucial for measuring the performance of face detectors in rejecting non-face images. A
sample of images from the UFDD dataset, is presented in Fig. 5.
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Fig. 7. A sample images from the MS COCO 2017 dataset, showcasing diverse object categories and real-
world scene complexity.

KITTI'® 7481 (train) 7518 80.256 Cars, pedestrians, cyclists, others | Occlusions, varying lighting, perspective distortion é\ﬁ‘t,(i);lgmous
UFFD? 10,895 Human faces, non-human faces, N_Iotlon blur, lens impediments, non-human Face detection
no-face images distractors
. - . . . Agricultural
6
TomatoPlantFactory? 9112 Red tomatoes, green tomatoes Complex ambient lighting, high object density object detection
MS COCO 201727 118K (train) 5000 (val) | 886,284 80 common objects (e.g., person, | Small ob']egt detection, cluttered scenes, high inter- Ge'neral-purpose
car, dog, etc.) class variation object detection

Table 3. Summary of the datasets used in this study, including image counts, annotations, object classes, key
challenges, and domains.

TomatoPlantFactoryDataset*®: is a comprehensive collection of high quality images, which is designed to
facilitate advanced research in tomato plant detection. It comprises 520 images with 9112 tomato fruit instances
classified as red and green tomatoes. Unlike existing datasets, which typically feature lower-quality images at
around 1 MP (1270 x 720) due to poor sensor performance, this dataset offers significantly higher imaging
quality and more pixel information. Furthermore, it is enriched by the presence of complex ambient lighting,
which poses additional challenges for tomato object detection, and making the dataset particularly valuable for
developing and testing robust detection algorithms. A sample of images from the TomatoPlantFactoryDataset,
is presented in Fig. 6.

MS COCO 20177 dataset: The Microsoft Common Objects in Context (MS COCO) 2017 dataset is a widely
recognized benchmark in the field of object detection, segmentation, and image captioning. It comprises
approximately 118,000 training images and 5,000 validation images, with over 2.5 million annotated object
instances spanning 80 everyday object categories. Each image typically contains multiple objects at different
scales and orientations, often appearing in non-iconic views and within cluttered scenes characteristics that
make COCO particularly challenging and realistic. A sample of images from the MS COCO 2017, is presented
in Fig. 7. A summary of the datasets used, including the number of images, annotations, object classes, key
challenges, and domain, is presented in Table 3.

Experimental setup and implementation details

Computational environment

All experiments were conducted on a high-performance machine equipped with an NVIDIA GeForce GTX
1080 Ti GPU, 32 GB of RAM, and an Intel Core i7 @ 3.40GHz CPU. The implementation was carried out using
the MMDetection framework 3,

Implementation parameters

For the proposed differential optimization algorithm, the population size was set to 30, and the algorithm was
run for 100 generations. The scaling factor F' was set to 0.5, and the crossover probability Cr was set to 0.9.
For anchor parameters, we adopted the same configurations for base sizes, strides, and pyramid levels as those
employed in the original RetinaNet 2. For training, we utilized pre-trained weights from the ImageNet >* dataset
to initialize the network. We employed mini-batch stochastic gradient descent (SGD) as the optimizer, with
momentum set to 0.9 and weight decay set to 0.0001. The model was trained with an initial learning rate of
0.01 for the first 120,000 iterations, after which the learning rate was reduced by a factor of 10 every 40,000
iterations, continuing for a total of 240,000 iterations. To enhance generalization, data augmentation techniques
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were applied, including image resizing to 1333 %800 while preserving aspect ratio, random horizontal flipping
p = 0.5, color jitter with brightness, contrast, and saturation adjustments in the range of (0.8, 1.2), and scaling
variations between 0.8 and 1.2. Padding with a size divisor of 32 ensured compatibility with FPN, while multi-
scale testing without flipping improved robustness across object sizes. This configuration optimized anchor
adaptability and detection performance while maintaining computational efficiency.

Evaluation metrics

To assess the performance of proposed method, we use Average Precision (AP)*, a widely adopted metric for
evaluating detection accuracy. The IoU threshold defines when a predicted bounding box is considered a valid
detection, as formulated in Eq. (10). AP denotes the average precision value of the model under each recall value,
representing the area under the Precision-Recall (P-R) curve. It provides a comprehensive measure of detection
accuracy for a given category, balancing both precision and recall. The AP metric is computed as:

1
AP:/ P(r)dr (11)
0

where is the precision as a function of recall. For the KITTI'® dataset, we follow standard evaluation settings by
using an IoU threshold of 0.7 for cars and 0.5 for pedestrians and cyclists. These thresholds align with KITTI
benchmark requirements, ensuring fair comparisons. For the UFED?’ dataset, we use an IoU threshold of 0.5,
following prior face detection studies. Similarly, for the TomatoPlantFactoryDataset?, an IoU threshold of 0.5 is
applied, consistent with agricultural object detection benchmarks®. For the MS COCO 2017% dataset, we adopt
the official COCO style evaluation, reporting AP, APsy, APrs, APs, APar, and APr, which capture average
precision at multiple JoU thresholds and across object sizes (small, medium, large). These metrics provide a
standardized and comprehensive view of detection performance on a challenging and diverse benchmark.

Results and discussion

For the KITTI'® dataset, the scale search boundary was set to [0.001, 0.52], where 0.001 represents the minimum
scale as shown in Eq. (3) and 0.52 represents the maximum scale as shown in Eq. (4). Similarly, the aspect ratio
search boundary was set to [0.25, 10], with 0.25 corresponding to the minimum ratio as shown in Eq. (6) and 10
corresponding to the maximum ratio as shown in Eq. (7). The number of scales and aspect ratios was determined
through multiple experimental iterations, and it was found that using a range of 3-10 values effectively captures
the diversity of object sizes while balancing detection accuracy and model complexity. The final optimized
anchor configuration consisted of five aspect ratios [0.25, 0.45, 1.0, 2.15, 2.85] and three scales [0.3, 0.4, 0.5].
Since the ground truth annotations for the testing dataset are not available, the training set was split into a 3:1
ratio for training and validation. The evaluation metric used was AP, a standard metric for object detection. IoU
thresholds were set to 0.7 for cars and 0.5 for pedestrians and cyclists, following KITTI'® dataset benchmarking
standards. The results show that OptRetinaNet outperforms all evaluated models, achieving the highest AP
scores for both ResNet-50 and ResNet-101 backbones. With ResNet-50, OptRetinaNet reached 90.3% AP for
cars, 84.2% for pedestrians, and 91.0% for cyclists, significantly improving over the baseline RetinaNet, which
achieved 89.6%, 80.8%, and 86.5%, respectively. The anchor-free methods FCOS and FSAF performed worse,
especially in pedestrian and cyclist detection, where OptRetinaNet provided a 3.4% and 4.5% boost, respectively.
DETR, while competitive, achieved only 90.1%, 82.6%, and 88.8%, falling short of the optimized RetinaNet
configuration. When switching to ResNet-101, OptRetinaNet achieved even greater accuracy, reaching 93.2%
for cars, 84.5% for pedestrians, and 90.6% for cyclists, outperforming all other models, including DETR, which
obtained 91.7%, 83.9%, and 90.2%. The deeper ResNet-101 backbone provided an overall boost in AP across all
models, confirming that a stronger feature extractor enhances object detection, but OptRetinaNet benefited the
most, demonstrating the robustness of the optimized anchor configuration. Additionally, transformer-based

Model Backbone Car (%) | Pedestrian (%) | Cyclist (%)
FCOS* 87.4 80.2 86.7
FSAFY 87.9 81.8 86.0
DETR* ResNet50 90.1 82.6 88.8
RetinaNet* 89.6 80.8 86.5
OptRetinaNet 90.3 84.2 91.0
FCOS* 88.7 81.6 88.2
FSAFY 89.3 83.4 87.6
DETR* ResNet101 91.7 83.9 90.22
RetinaNet? 92.9 75.8 88.9
OptRetinaNet 93.2 84.5 90.6
Swin-T% Swin transformer | 84.5 74.6 82.4
YOLOv8*! EfficientNet-B4 87.4 71.8 81.0

Table 4. The detailed results for object detection on the KITTI!® are presented in terms of AP. Significant
values are in bold.
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Fig. 8. Some detection results from the four models on the KITTI'® dataset.
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Fig. 9. AP performance across epochs, illustrating improvements in detection accuracy over time.

models like Swin Transformer (Swin-T) and YOLOV8 performed worse, with Swin-T achieving only 84.5%,
74.6%, and 82.4% across the three classes, and YOLOVS scoring 87.4%, 71.8%, and 81.0%, indicating that CNN-
based architectures remain superior for the KITTI dataset. The results demonstrate that OptRetinaNet’s anchor
optimization strategy effectively improves detection across various object categories, particularly benefiting
pedestrian and cyclist detection, which are challenging for standard RetinaNet and anchor-free approaches.
The detailed results are summarized in Table 4, while Fig. 8 visualizes detection examples. Additionally, Fig. 9
illustrates AP performance over epochs, showing how detection accuracy steadily improves over time, while Fig.
10 presents training loss curve, highlighting the model’s stability and convergence.

For the UFDD? dataset, the scale search boundary was set to [0.003, 0.94], where 0.003 represents the
minimum scale as shown in Eq. (3) and 0.94 represents the maximum scale as shown in Eq. (4). Similarly, the
boundary search for aspect ratios was set to [0.21, 6.9], where 0.21 corresponds to the minimum ratio as shown
in Eq. (6) and 6.9 corresponds to the maximum ratio as shown in Eq. (7). The search boundary for the number
of detected values was established through a series of experimental iterations. It was determined that a range of 5
to 15 optimally captures the diversity of face objects in the dataset. The resulting optimal values were four aspect
ratios [0.2, 0.6, 1.0, 1.5] and two scales [0.2, 0.5]. The dataset was partitioned into 1,781 images for training, 296
images for validation, and 892 images for testing. For evaluation, we applied a 0.5 IoU threshold. Compared to
RetinaNet, which achieved AP scores of 76.2% and 80.0% when using ResNet50 and ResNet101, respectively,
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Fig. 10. Training loss over epochs, demonstrating model convergence and stability.

Model Backbone AP (%)
FCOS? 79.4
FSAFY 78.8
DETR* ResNet50 79.3
RetinaNet? 76.2
OptRetinaNet 79.7
FCOS* 81.2
FSAF" 80.3
DETR¥ ResNet101 80.7
RetinaNet? 80.0
OptRetinaNet 81.8
Swin-T%° Swin transformer | 73.9
YOLOv8* EfficientNet-B4 | 78.9

Table 5. The detailed results for object detection on the UFDD?’ dataset are presented in terms of AP.
Significant values are in bold.

OptRetinaNet exhibited significant improvements, reaching 79.7% with ResNet50 and 81.8% with ResNet101.
This represents a 3.5% increase over RetinaNet when using ResNet50 and a 1.8% increase with ResNet101,
demonstrating the effectiveness of the optimized anchor parameters in capturing the diverse and complex facial
shapes in the UFDD dataset. Furthermore, OptRetinaNet consistently outperformed other models, including
FCOS, FSAF, and DETR across both backbones. Notably, when utilizing ResNet101, OptRetinaNet achieved the
highest performance, surpassing DETR (80.7%), FCOS (81.2%), and FSAF (80.3%), confirming its robustness
under challenging face detection conditions such as occlusions, lighting variations, and motion blur. The detailed
results are summarized in Table 5, emphasizing how OptRetinaNet consistently outperforms other anchor-based
and anchor-free models. Figure 11 presents the visualized detection results from different models on the UFDD
dataset, further demonstrating the superiority of OptRetinaNet in handling real-world face detection challenges
under various degradations, such as haze, rain, and motion blur. Additionally, Figs. 12 and 13 illustrate the AP
performance and training loss curve, respectively. Figure 12 shows how detection accuracy improves over time,
highlighting the effectiveness of our optimization in refining anchor configurations and increasing AP scores
across epochs. Figure 13 presents the training loss over epochs, confirming that our method maintains stable
convergence and improved model generalization.

For the TomatoPlantFactoryDataset?®, the scale search boundary was set to [0.001, 0.84], where 0.001
represents the minimum scale as shown in Eq. (3) and 0.84 represents the maximum scale as shown in Eq. (4).
Similarly, the boundary search for aspect ratios was set to [0.16, 5.7], where 0.16 corresponds to the minimum
ratio as shown in Eq. (6) and 5.7 corresponds to the maximum ratio as shown in Eq. (7). The search boundary
for the number of values was determined through experimental testing and optimized to range between 4 and
12, ensuring effective detection of tomato objects across various conditions. The resulting optimal values were
three aspect ratios [0.5, 1.0, 2] which is identical to default anchor ratios of original RetinaNet?3, and three scales
[0.2, 0.5, 0.8]. Since the TomatoPlantFactoryDataset does not provide predefined splits for training, validation,
or testing, we divided the dataset into 3:1 ratio for training and validation, respectively. For evaluation, we
used a 0.5 IoU threshold, as used in®® which is a common value used in agricultural object detection tasks, to
calculate the AP. Compared to RetinaNet, which achieved AP of 85.3% for red tomatoes and 87.5% for green
tomatoes, OptRetinaNet exhibited a substantial improvement, reaching AP of 90.2% for red tomatoes and 91.4%
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Fig. 11. Some detection results from the four models on the UFDD?® dataset in different weather condition
and degradation.
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Fig. 12. AP performance across epochs, illustrating improvements in detection accuracy over time.

for green tomatoes. This translates to an increase of 4.9% for red tomatoes and 3.9% for green tomatoes. This
performance boost demonstrates that while OptRetinaNet maintains the original aspect ratios of RetinaNet, its
optimized anchor scales are key to achieving higher accuracy in object detection tasks. OptRetinaNet has also
surpassed both FCOS and FSAEF, as shown in Table 6 and visualized in Fig. 14. Furthermore, the detailed results
in Table 6 confirm OptRetinaNet’s superior performance, as it achieved 91.6% for red tomatoes and 93.1% for
green tomatoes with ResNet101, outpacing DETR and other competing methods. Additionally, Figs. 15 and 16
illustrate the AP performance and the training loss curve, respectively.

For the MSCOCO 2017 dataset?’, the scale search boundary was set to [0.06, 1.3], where 0.06 represents the
minimum scale as shown in Eq. (3) and 1.3 represents the maximum scale as shown in Eq. (4). Similarly, the
boundary search for aspect ratios was set to [0.15, 7.5], where 0.15 corresponds to the minimum ratio as shown
in Eq. (6) and 7.5 corresponds to the maximum ratio as shown in Eq. (7). The search boundary for the number of
values was determined through experimental testing and optimized to range between 3 and 12, ensuring effective
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Fig. 13. Training loss over epochs, demonstrating model convergence and stability.

Model Backbone Red tomato (%) | Green tomato (%)
FCOS* 88.5 89.5
FSAFY 87.3 88.5
DETR® ResNet50 89.4 90.0
RetinaNet? 85.3 87.5
OptRetinaNet 90.2 91.4
FCOS? 90.3 89.8
FSAFY 89.9 91.3
DETR* ResNet101 90.4 92.6
RetinaNet?? 89.0 89.6
OptRetinaNet 91.6 93.1
Swin-T>° Swin transformer | 77.9 83.4
YOLOv8*! EfficientNet-B4 84.5 85.7

Table 6. The detailed results for object detection on the TomatoPlantFactoryDataset?® dataset are presented in
terms of AP. Significant values are in bold.

detection of objects across various conditions. The resulting optimal values were five aspect ratios [0.5, 1.2, 1.5,
2.4, 3.7], and five scales [0.09, 0.13, 0.25, 0.5, 1.0]. For evaluation, we used evaluation metrics here. Compared
to the baseline RetinaNet, which achieved an AP of 40.8% with a ResNeXt-101 backbone and 39.1% with
ResNet-101, the proposed OptRetinaNet achieved significantly higher detection performance on the MS COCO
2017 dataset. OptRetinaNet attained an AP of 45.2% using ResNet-50 and 48.2% using ResNet-101, representing
relative gains of 4.4% and 9.1%, respectively. These improvements extend across all evaluation metrics, including
AP, AP, and size-specific AP scores (APS, AP, APL). Notably, OptRetinaNet (ResNet-101) improved AP
from 21.8% in the baseline RetinaNet to 35.9%, indicating superior performance in detecting small objects,
one of the key challenges in dense object detection. Beyond improving upon RetinaNet, OptRetinaNet also
outperformed several contemporary one-stage and transformer-based detection frameworks. It surpassed FCOS
44.7% AP, FSAF 37.2% AP, DETR 44.9% AP, and UP-DETR 43.1% AP, while maintaining a simpler architectural
design based on standard ResNet backbones. Although state-of-the-art models such as YOLO 51.2% AP and
Swin-T 50.5% AP achieved higher APs overall, OptRetinaNet demonstrated a competitive balance between
performance and computational efficiency. In particular, OptRetinaNets AP_. score of 51.6% and AP, of 63.9%
with ResNet-101 further underscore its strength in precise localization and large-object detection. These results
confirm that OptRetinaNet’s performance is primarily attributed to its DE-based optimization of anchor scales
and aspect ratios, which allows the model to more effectively align with the diverse object size distribution
present in complex dataset. This effectiveness is further supported by the detailed results in Table 7, with visual
performance comparisons provided in Fig. 17. Additionally, Figs. 18 and 19 depict the model’s AP trends and
training loss curves, emphasizing OptRetinaNet’s stable convergence and enhanced learning dynamics.

Dataset availability
This study utilized publicly available datasets. The datasets used in this study can be accessed as follows:

o KITTI dataset: available at https://www.cvlibs.net/datasets/Kkitti/.
o UFFD dataset: available at https://ufdd.info/.
« TomatoPlantFactoryDataset: available at https://data.mendeley.com/datasets/8h3s6jkyft/1.
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Fig. 14. Some detection results from the models on the TomatoPlantFactoryDataset?.
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Fig. 15. AP performance across epochs, illustrating improvements in detection accuracy over time.
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Fig. 16. Training loss over epochs, demonstrating model convergence and stability.
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Model Backbone AP (%) | AP, (%) | AP, (%) | AP (%) | AP, (%) | AP, (%)
FCOS? ResNeXt-64x4d-101 | 44.7 64.1 48.4 27.6 47.5 55.6
FSAF" ResNet50 37.2 57.2 39.4 21.0 41.2 49.7
DETR? ResNet50 44.9 64.7 47.7 23.7 49.5 62.3
RetinaNet?® | ResNeXt-101 40.8 61.1 44.1 24.1 44.2 522
OptRetinaNet | ResNet50 452 64.9 51.4 32.5 53.6 60.2
RetinaNet?> | ResNet101 39.1 59.1 423 21.8 42.7 50.2
OptRetinaNet | ResNet101 48.2 64.4 51.6 35.9 55.8 63.9
Swin-T>° Swin transformer 50.5 69.3 54.9 - - -
YOLO*! EfficientNet-B4 51.2 69.7 55.5 35.2 56.0 66.7
CutLER®? ResNet101 123 21.9 11.8 3.7 12.7 29.6
UP-DETR®! | ResNet101 43.1 63.4 46.0 21.6 46.8 62.4

Table 7. The detailed results for object detection on the MSCOCO 2017%7 dataset are presented in terms of AP.
Significant values are in bold.

Fig. 17. Some detection results from the models on the MS COCO 2017%.

o MS COCO 2017: available at https://cocodataset.org/#download.

All datasets are openly accessible and were used in accordance with their respective terms of use. No additional
ethical approval was required for their use.

Limitations and future work

Limitations

The proposed approach may face challenges in detecting highly occluded objects, as anchor-based methods
inherently rely on visible object features for accurate localization. In scenarios where objects are partially
hidden or heavily obstructed, the optimization process may fail to generate effective anchors, leading to missed
detections or reduced precision. Additionally, the iterative nature of differential evolution introduces a higher
computational cost, particularly when applied to large-scale datasets with a vast number of object instances.
This increased complexity may pose challenges in applications with limited computational resources, requiring
the development of efficient acceleration techniques to enhance processing speed while maintaining detection
accuracy.
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Fig. 18. AP performance across epochs, illustrating improvements in detection accuracy over time.
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Fig. 19. Training loss over epochs, demonstrating model convergence and stability.

Future work

To further improve the adaptability and efficiency of the proposed method, several future directions can be
explored: Multi-Task Learning: Extending the approach to incorporate multi-task learning, such as jointly
optimizing anchor configurations and feature representations, could enhance model generalization across
different datasets. Self-Supervised Optimization: Exploring self-supervised learning for anchor adaptation could
enable the model to refine anchor parameters without requiring large amounts of annotated data. Temporal
Consistency for Video-Based Detection: Extending the method to video object detection by optimizing anchor
configurations across frames could improve tracking stability in real-time applications. By addressing these
limitations and expanding the methodology in future work, the proposed optimization strategy can be further
refined to enhance robustness, reduce computational complexity, and improve detection accuracy in various
real-world applications.

Data availability

The datasets used in this study are publicly available as follows: Dataset 1: KITTI dataset, accessible at https://w
ww.cvlibs.net/datasets/kitti/ Dataset 2: UFFD dataset, accessible at https://ufdd.info/ Dataset 3: TomatoPlantFa
ctoryDataset , accessible at https://data.mendeley.com/datasets/8h3s6jkyft/1 Dataset 4: MS COCO 2017 , acces
sible at https://cocodataset.org/#download All datasets are openly accessible and were used in accordance with
their respective terms of use.
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