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Object detection is a fundamental task in computer vision. It has two primary types: one-stage 
detectors known for their high speed and efficiency, and two-stage detectors, which offer higher 
accuracy but are often slower due to their complex architecture. Balancing these two aspects has been 
a significant challenge in the field. RetinaNet, a premier single-stage object detector, is renowned for 
its remarkable balance between speed and accuracy. Its success is largely due to the groundbreaking 
focal loss function, which adeptly addresses the issue of class imbalance prevalent in object detection 
tasks. This innovative approach significantly enhances detection accuracy while maintaining high 
speed, making RetinaNet an ideal choice for a wide range of real-world applications. However, its 
performance decreases when applied to datasets containing objects with unique characteristics, 
such as objects with elongated or squat shapes. In such cases, the default anchor parameters may 
not fully meet the requirements of these specialized objects. To overcome this limitation, we present 
an enhancement to the RetinaNet model to improve its ability to handle variations in objects across 
different domains. Specifically, we propose an optimization algorithm based on Differential Evolution 
(DE) that adjusts anchor scales and ratios while determining the most appropriate number of these 
parameters for each dataset based on the annotated data. Through extensive experiments on datasets 
spanning diverse domains such as the Karlsruhe Institute of Technology and Toyota Technological 
Institute (KITTI), the Unconstrained Face Detection Dataset (UFDD), the TomatoPlantFactoryDataset, 
and the widely used Common Objects in Context (COCO) 2017 benchmark, we demonstrate that our 
proposed method significantly outperforms both the original RetinaNet and anchor-free methods by a 
considerable margin.
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Introdction
Object detection is a pivotal task in computer vision, involving the identification and localization of objects 
within images or video frames. Its applications span a wide range of fields, including autonomous vehicles1,2, 
surveillance3,4, medical imaging5,6 and augmented reality7,8. The evolution of object detection methods has seen 
remarkable progress over the last decade, transitioning from traditional methods to more sophisticated deep 
learning-based methods. In early traditional methods, such as the Scale-Invariant Feature Transform (SIFT)9 
and the Histogram of Oriented Gradients (HOG)10, extracting strong features from images was crucial. Both 
methods typically used sliding window techniques to detect objects, which, despite their effectiveness, were 
computationally expensive and lacked real-time capabilities. With the emergence of machine learning, more 
sophisticated techniques like the Deformable Part Models (DPM)11, emerged. These significantly enhanced the 
detection accuracy by modeling objects as a collection of parts. A significant breakthrough in object detection 
emerged with the advent of deep learning, particularly Convolutional Neural Networks (CNNs)12,13, which 
substantially enhanced the performance of object detectors and surpassed the capabilities of traditional methods.

A key component in many state-of-the-art object detection models12,13 are anchor boxes14, also known 
as default boxes15, which are predefined bounding boxes of various scales and ratios that propose potential 
locations of objects within an image for localization. Each object detector defines anchors with different scales 
and ratios. For example, in the two-stage method Faster R-CNN12, the authors use three scales with box areas of 
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{1282, 2562, 5122}, and three aspect ratios {1:1, 1:2, 2:1}, resulting in a total of 9 anchors. The one-stage method 
Single Shot MultiBox Detector(SSD)14 extends this configuration by adding two additional aspect ratios {1:3 , 
3:1} to better detect objects with elongated or squat shapes. Figure 1 illustrates the default anchor boxes used 
in both models. Other methods, such as Cascade R-CNN13, RefineDet16, and Guided Anchoring17, also adopt 
a similar strategy and incorporate anchor boxes with standardized scales and ratios to cover a wider range of 
object shapes and improve accuracy. However, these default anchor boxes may not be suitable for detecting 
objects with specific characteristics. For example, in the KITTI dataset18, which is widely used in autonomous 
driving research, objects such as pedestrians and cyclists are often much smaller and have different shapes 
compared to cars. Thus, the default anchor boxes may not align well with these objects, leading to decreased 
detection performance. Figure 2 shows the differences in shape and size between pedestrians, cyclists, and cars. 
For anchor-based methods to achieve higher performance, they require careful tuning of anchor parameters 
to better align with object characteristics. The selection of these parameters, including the number, scales, 
and aspect ratios of anchors significantly impacts both detection accuracy and computational efficiency. An 
inappropriate selection of these parameters can hinder anchor-based methods from accurately localizing objects, 
resulting in lower accuracy. To address these challenges, researchers have developed anchor-free methods, which 
bypass the need for predefined anchor boxes by directly predicting object locations and dimensions within the 
image. Notable examples of such approaches include FSAF19 and FCOS20, which focus on the object’s center 
as the primary reference for detection, classifying them as center-based methods. In contrast, keypoint-based 
methods, such as CenterNet21 and ExtremeNet22, leverage self-learned keypoints to define bounding boxes, 
moving beyond the sole reliance on the object center. Although anchor-free methods eliminate the dependence 
on predefined anchor boxes, they come with certain limitations. Specifically, these methods face challenges in 
detecting small and occluded objects, as they rely solely on image features to predict bounding boxes. Moreover, 

Fig. 2.  The variations in size and shape between cyclist and pedestrian compared to car. Images from KITTI 
dataset18.

 

Fig. 1.  A visualization of anchor boxes of Faster R-CNN12 and SSD14.

 

Scientific Reports |        (2025) 15:20101 2| https://doi.org/10.1038/s41598-025-02888-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


anchor-free methods often demand greater computational resources than anchor-based methods, since they 
perform bounding box predictions at every spatial location within the image. This leads to increased inference 
time and higher computational complexity for the object detector. To overcome the challenges posed by previous 
methods, we propose an enhancement to the RetinaNet23 model by developing a novel optimization algorithm 
based on DE24 for optimizing anchor parameters. The algorithm automatically selects the most appropriate 
anchor scales, aspect ratios, and their numbers, addressing the limitations associated with manual tuning. 
To validate the effectiveness of the proposed enhancement, we conducted comprehensive experiments across 
diverse datasets spanning multiple domains, including KITTI18, UFDD25, TomatoPlantFactoryDataset26 and 
COCO 201727.

The primary contributions can be outlined as follows:

•	 Developed a novel optimization algorithm based on DE that automatically selected the most suitable anchor 
parameters for the RetinaNet model based on annotated data.

•	 Conducted extensive experiments across multiple datasets from diverse domains to validate the impact of 
optimized anchors on detection accuracy.

•	 Demonstrated that optimizing anchor parameters significantly outperformed anchor-free methods, reinforc-
ing the effectiveness of anchor-based approaches when properly tuned.

Related work
Anchor optimization is a pivotal aspect of object detection models that rely on anchor-based methods12,23. In 
recent years, significant progress has been made through various approaches aimed at optimizing anchor boxes 
to enhance the performance of detection models across diverse datasets. We can categorize existing optimization 
methods into four categories: (1) clustering-based anchor optimization, (2) dynamic anchor generation 
approaches, (3) trainable variables and data-driven optimization, and (4) specialized anchor optimization 
approaches.

Clustering-based anchor optimization
A foundational approach to anchor optimization utilizes clustering techniques. YOLOv328 applies k-means 
clustering to bounding boxes in the training set to automatically determine optimal anchor sizes. Similarly, 
the authors in29 employ a clustering analysis method based on Intersection over Union (IoU), prioritizing the 
overlap between predicted and ground-truth boxes rather than relying solely on size and shape distribution. 
Another work30 introduces a perspective-aware methodology, which segments the image into key regions using 
clustering techniques and subsequently applies evolutionary algorithms to optimize anchors for each region. A 
notable method, Data-Driven Anchor Box Optimization31, enhances anchor selection in UAV-based maritime 
search and rescue (SAR) tasks by combining IoU-based clustering with k-means clustering. This refinement 
improves anchor selection for two-stage detectors such as Faster R-CNN, especially when paired with Feature 
Pyramid Networks (FPN). By leveraging clustering, these approaches ensure that anchor boxes better align 
with dataset characteristics, improving detection accuracy. A more recent example is KCFS-YOLOv5, proposed 
by Tian et al.32, which enhances object detection in satellite imagery by integrating K-means-based anchor 
selection with additional architectural modifications. The method combines K-means clustering to optimize 
anchor boxes with attention mechanisms and a Bidirectional Feature Pyramid Network (BiFPN) to improve 
feature fusion. However, all clustering-based methods share a major limitation, they require a predefined, fixed 
number of clusters. This rigidity prevents anchors from fully capturing the diversity of object sizes and shapes 
in the dataset, leading to suboptimal performance when applied to varying datasets. In contrast, our proposed 
DE-based optimization method dynamically adjusts both the number and sizes of anchors during optimization. 
Instead of relying on static clustering results, DE iteratively refines anchor configurations based on an adaptive 
evolutionary strategy, ensuring an optimal distribution of anchors that effectively captures variations in object 
scales and aspect ratios.

Dynamic anchor generation approaches
Dynamic anchor generation Approaches allow models to generate and modify anchors on-the-fly. For instance, 
MetaAnchor33 utilizes residual learning in combination with a two-layer neural network to dynamically generate 
anchors, allowing the model to adapt to variations in object sizes and shapes. Another approach, Differentiable 
Anchoring34, introduces a parallel branch alongside the classification and bounding box regression branches, 
enabling the model to learn anchor box sizes dynamically rather than relying on predefined values. While these 
methods enhance anchor flexibility, they introduce additional hyperparameters that require careful tuning, 
which increases the training complexity and computational overhead. Furthermore, these methods may still 
struggle to generalize across different datasets without extensive manual adjustments, as they lack a mechanism 
to efficiently explore high-dimensional search spaces for optimal anchor configurations. Our proposed DE-based 
optimization overcomes these limitations by eliminating the need for additional hyperparameters and complex 
model modifications. Instead of relying on manual tuning or predefined network structures, DE autonomously 
explores the search space, allowing for a more adaptive and dataset-agnostic optimization process. This ensures 
that anchor configurations remain robust across different datasets without requiring extensive adjustments.

Trainable variables optimization
Another class of anchor optimization approaches treats anchor shapes as trainable parameters within the model. 
For instance, the approach in35 optimizes anchor shapes using backpropagation, enabling models to refine 
anchors dynamically to fit dataset-specific characteristics. While this approach offers a high degree of flexibility, 
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it comes with significant computational overhead, increasing both training and inference complexity. One of the 
primary challenges associated with trainable anchor variables is the risk of overfitting. Since the model learns 
anchor configurations directly from the training set, it may struggle to generalize to unseen data, especially if the 
dataset is small or imbalanced. Additionally, these methods require multiple backpropagation steps and careful 
hyperparameter tuning, leading to longer convergence times and increased training instability. Our proposed 
DE-based optimization method directly addresses these challenges by optimizing anchor configurations 
externally rather than embedding them within the model itself. This eliminates the need for additional learnable 
parameters, reducing the risk of overfitting while maintaining adaptability across different datasets. Unlike 
trainable variable-based methods, DE efficiently explores the search space and optimizes anchor configurations 
without requiring backpropagation, making it computationally more efficient and stable.

Specialized anchor optimization approaches
Several specialized anchor optimization strategies have been introduced to address specific object detection 
challenges, including small object detection, depth-based adaptation, semantic-driven anchor refinement, and 
metaheuristic-based optimization.

Small Object Detection: One approach36 employs the Crow Search Algorithm (CSA) to optimize anchor ratios 
and scales, specifically enhancing small object detection in high-resolution aerial imagery. While this method 
improves detection performance for small targets, its reliance on predefined scales and aspect ratios makes it less 
adaptable to datasets with diverse object distributions. Depth-Based Anchor Optimization: Another method37 
leverages depth information to dynamically estimate anchor sizes based on object distances within a scene. 
This ensures that anchor boxes better correspond to object sizes in 3D space. However, this approach is highly 
dependent on accurate depth estimation, making it vulnerable to errors when dealing with noisy or incomplete 
depth data. Semantic-Guided Anchor Adaptation: Semantic cues have also been used to refine anchor placement, 
particularly in specialized domains such as Synthetic Aperture Radar (SAR) imagery38. While this method 
improves detection performance in structured environments, it is highly sensitive to segmentation errors, which 
can lead to suboptimal anchor configurations and degraded performance. Metaheuristic-Based Optimization: 
Recent works have explored the use of metaheuristic algorithms to optimize anchor related parameters and 
model configurations, particularly in domain-specific contexts like remote sensing. For example, Elgamily et 
al.39 applied a suite of metaheuristic and hybrid metaheuristic optimizers including Genetic Algorithms (GA), 
Particle Swarm Optimization (PSO), and GA-PSO hybrids to tune hyperparameters of YOLOv740 and YOLOv841 
for object detection in satellite imagery. Their results demonstrated notable improvements in detection accuracy 
and robustness, especially for small and densely packed objects. However, their method primarily focused on 
tuning general model-level hyperparameters, not anchor configurations directly, which can limit adaptability 
across different datasets. Our proposed method overcomes these limitations by dynamically evolving anchor 
configurations without relying on fixed scales, depth information, or semantic segmentation. Unlike depth-
based or semantic-guided techniques, DE operates directly on object distributions within the dataset, making it 
a more robust and adaptable solution for diverse object detection tasks. Moreover, in contrast to metaheuristic-
based methods, which primarily focus on tuning general model-level hyperparameters, the proposed method 
specifically targets anchor box optimization. This allows it to achieve more precise localization and scale 
adaptation, especially in datasets with high object variability, without requiring architecture-specific adjustments. 
A detailed comparison of previous methods, including their strengths and weaknesses, is provided in Table 1.

Proposed work
We begin this section by providing a comprehensive overview of the RetinaNet23 architecture, which forms the 
backbone of our approach. Subsequently, we detail the proposed algorithm for optimizing RetinaNet’s anchor 
parameters.

RetinaNet model
RetinaNet23 is a state-of-the-art one-stage object detection model. It addresses the common class imbalance 
problem in object detection tasks through a novel focal loss function. This loss function down weights the 
loss assigned to well-classified examples, and focusing more on hard examples, which significantly improves 
detection performance. The architecture of the model is built upon a ResNet backbone network42 combined 
with a Feature Pyramid Network (FPN)43. The former network is responsible for extracting high-level features 
from the input images, then proceed these features to FPN network43. The FPN network43 then enhances the 
standard feature hierarchy of the backbone network with lateral connections and top-down pathways, creating 
a rich multi-scale feature pyramid. Which allows RetinaNet23 to detect objects at multiple scales effectively. The 
model also employs two subnetworks, a classification subnet, that predicts the probability of object presence 
at each spatial position, and a bounding box regression subnet, that refines the anchor boxes to better fit the 
detected objects. Figure 3 provides visual illustration of the RetinaNet architecture. Due to its innovative design, 
RetinaNet combines the speed advantage of one-stage detectors while maintaining the accuracy associated with 
two-stage detectors, making it highly efficient for real-world applications. So, we selected RetinaNet23 as the 
backbone of our work.

The proposed RetinaNet anchors optimization
The process of anchor generation in RetinaNet23 involves creating anchors with areas ranging from 322 to 5122 
across pyramid levels P3 to P7. At each level, three aspect ratios {1:2, 1:1, 2:1} and three scales { 20/3, 21/3, 22/3

} are used to create a diverse set of anchors. This configuration allows the model to detect objects of various sizes 
and shapes. Unfortunately, these default anchor parameters may not be optimal for all datasets, particularly 
for objects with unique shapes and aspect ratios18,25,44. To address this limitation, we introduce a DE24-based 

Scientific Reports |        (2025) 15:20101 4| https://doi.org/10.1038/s41598-025-02888-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


optimization algorithm that systematically tunes anchor scales, aspect ratios, and the total number of anchors 
for improved detection performance. DE is a population-based optimization algorithm designed to optimize 
both continuous and discrete variables, making it well-suited for selecting the most effective anchor parameters 
in RetinaNet23. Unlike traditional gradient-based methods, DE does not require derivative information and 
can efficiently explore high-dimensional search spaces while avoiding local minima. The optimization process 
consists of two main phases: Initialization and Evolution.

Initialization Phase: In this phase, a population of candidate solutions at generation G (G ∈ {1, . . . , Gmax}) 
is PG = {XG

j : j = 1, 2, . . . , N}   where N denotes the size of population. Each candidate solution XG
j  in 

the population is a vector of variable size, XG
j = {xG

0,j , xG
1,j , . . . , xG

D−1,j}, where D represents the size of the 
vector. These vectors define a potential set of scales, aspect ratios, and their respective counts. Each element XG

z,j  
within the vector is initialized using a randomized approach as described in Eq. (1):

	 XG
z,j = Xlow,z + (Xupp,z − Xlow,z) ∗ rand(0, 1)� (1)

where z indexes the element in the vector z ∈ {0, 1, . . . , D − 1}, and Xlow,z, Xupp,z represent the lower and 
upper bounds search space of the z-th element, respectively. For our specific case, the boundary values for scales 
and aspect ratios are derived from the bounding box coordinates in the annotated dataset. Let k be the number 
of anchor boxes in the dataset. The i- th anchor box, where i ∈ {0, 1, . . . , k − 1}, is denoted as Ki, and defined 
by its corner coordinates (x1,i, y1,i, x2,i, y2,i) ∈ R4, where (x1,i, y1,i) and (x2,i, y2,i) denote the top-left and 
bottom-right corners, respectively. The scale Si of an anchor Ki is computed as the ratio of the anchor area to 
the image size, as shown in Eq. (2):

Fig. 3.  RetinaNet model architecture, as depicted in23.

 

Category Method Strengths Weaknesses

Clustering-
based 
optimization

YOLOv328 Automatically determines anchor sizes
 Effective for datasets with well-defined objects

 Requires a fixed number of clusters
 May not generalize to diverse object distributions

Data-Driven Anchor Optimization31 Differential es anchors based on dataset characteristics
Effective in specialized applications like UAV SAR

 Requires large labeled datasets
 Increases training instability due to 
backpropagation

Faster R-CNN+FP+GN+K-means29  Focuses on overlap rather than just size
 Can improve anchor-object alignment

 Still requires a predefined cluster count
 Limited adaptability to varied datasets

KCFS-YOLOv532
 Combines K-means anchor optimization with attention 
mechanisms and BiFPN
  Improves detection accuracy in satellite imagery

 Relies on fixed cluster count
 Architecture-specific; limited generalization

Dynamic 
anchor 
generation

MetaAnchor33  Dynamically generates anchors
  Adapts to variations in object sizes

 Introduces additional hyperparameters
 Increases training complexity

Differentiable Anchoring34  Learns optimal anchor sizes automatically
 Enhances detection without manual tuning

 Adds computational overhead
 May struggle to generalize across datasets

Trainable 
variables 
optimization

Opt (k-means)35  Learns anchor configurations directly from data
 Enhances accuracy in domain-specific applications

 Risk of overfitting to training data 
 Adds computational overhead

Specialized 
anchor 
optimization

RetinaNet with Anchor Optimization 
(Small Object Detection)36

 Optimizes anchor scales and ratios
 Effective for small object detection

 Uses fixed scales/ratios, limiting adaptability
 May not generalize to different datasets

Depth-based Anchor Optimization37  Adjusts anchor sizes dynamically using depth
 Enhances scene-specific detection

 Relies on accurate depth information
 Sensitive to noise in depth measurements

HTC+38  Uses semantic cues for anchor refinement
 Improves performance in structured environments

 Dependent on accurate semantic segmentation
 Errors in segmentation lead to suboptimal anchors

YOLOv7/YOLOv8 + GA/PSO 
Optimization39

 Applies Genetic Algorithms, PSO, and hybrid metaheuristics to 
improve detection in satellite imagery
 Boosts accuracy, especially for small and dense objects

 Focuses on global hyperparameter tuning, not 
anchor-specific optimization
 Requires careful tuning of optimizer parameters

Table 1.  Comparison of various object detection methods with anchor optimization techniques.
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Si =

√
(x2,i − x1,i) × (y2,i − y1,i)

W × H
� (2)

where W and H represent the image width and height, respectively. To determine the minimum and maximum 
scale boundaries for optimization, we use the following equations:

	
Smin = min

0≤i<k

(√
(x2,i − x1,i) × (y2,i − y1,i)

W × H

)
� (3)

	
Smax = max

0≤i<k

(√
(x2,i − x1,i) × (y2,i − y1,i)

W × H

)
� (4)

Similarly, the aspect ratio Ri of an anchor Ki is defined as the ratio of its height to width, as given in Eq. (5):

	
Ri =

(
y2,i − y1,i

x2,i − x1,i

)
� (5)

The minimum and maximum aspect ratio boundaries are computed as:

	
Rmin = min

0≤i<k

(
y2,i − y1,i

x2,i − x1,i

)
� (6)

	
Rmax = max

0≤i<k

(
y2,i − y1,i

x2,i − x1,i

)
� (7)

Lastly, the number of scales and aspect ratios is selected manually based on dataset characteristics.
Evolution Phase: In this phase, the algorithm performs three key operations: mutation, crossover, and 

selection.
Mutation: A mutant vector V G

j  is generated for each target vector XG
j  at generation G, as shown in Eq. (8):

	 V G
j = XG

a + F ∗ (XG
b − XG

c )� (8)

where, F  is the scaling factor (typically in the range [0,1]), and XG
a , XG

b , and XG
c  are randomly chosen vectors 

from the population, ensuring a ̸= b ̸= c ̸= j..
Crossover: The crossover operation is performed between the target vector XG

j = {xG
1,j , xG

2,j , . . . , xG
D,j} and 

the mutant vector V G
j = {vG

1,j , vG
2,j , . . . , vG

D,j} to create a trial vector UG
j . governed by a crossover probability 

Cr , as described in Eq. (9):

	
uG

m,j =
{

vG
m,j if randj ≤ Cr

xG
m,j otherwise � (9)

where m ∈ {1, 2, . . . , D} and Cr ∈ [0, 1].
Selection: The final step selects the best solutions among the trial and target vectors. If a trial vector achieves 

a better objective function score, it replaces the corresponding target vector in the next generation. If not, the 
target vector is carried forward to the next generation. The objective function is designed to maximize IoU score 
between a predicted bounding box, Bpred and a ground truth bounding box, Bgt, as defined in Eq. (10)45:

	
IoU = Area(Bpred ∩ Bgt)

Area(Bpred ∪ Bgt)
� (10)

A higher IoU value indicates better alignment between the predicted and actual object locations. The evolution 
phase continues until the stopping criterion is met, either achieving the desired IoU threshold or reaching the 
maximum number of generations.

Compared to traditional optimization techniques such as Bayesian optimization46, genetic algorithms47, and grid 
search48, DE24 is computationally efficient, self-adaptive, and highly effective at finding globally optimal solutions 
without requiring extensive hyperparameter tuning. Grid Search, despite its simplicity, suffers from an exponential 
increase in computational cost as the number of parameters grows, making it impractical for high-dimensional search 
spaces. Bayesian optimization, while efficient in continuous spaces, struggles with discrete variables and demands 
significant computational resources to model the search space probabilistically. Genetic algorithms, though capable 
of avoiding local minima, require careful tuning of crossover and mutation rates, leading to increased complexity. In 
contrast, DE balances exploration and exploitation, allowing for efficient optimization with minimal hyperparameter 
dependencies. The results demonstrate that DE-based anchor optimization significantly improves object detection 
accuracy, outperforming both manually tuned anchor-based methods and anchor-free approaches. A detailed 
comparison of these optimization techniques is provided in Table 2, emphasizing the advantages of DE in terms of 
scalability, adaptability, and computational efficiency. The pseudocode of DE is presented in Algorithm 1.
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Algorithm 1.  Differential evolution-based anchor optimization for RetinaNet

Fig. 4.  A sample of images from the KITTI dataset, showcasing different object categories and environmental 
conditions.

 

Optimization method Scalability Handles discrete & continuous Avoids local minima Computational cost Hyperparameter tuning

Grid search48 Low × × High Extensive

Bayesian algorithm46 Moderate × ✓ Very high Medium

Genetic algorithm47 High ✓ ✓ High High

Differential evolution (DE)24 High ✓ ✓ Moderate Low

Table 2.  Comparison of different optimization techniques.
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 Experiments

In this section, we first provide an overview of each dataset used in our experiments. Then, we describe the 
experimental setup and implementation details of both the RetinNet23 and our proposed optimization algorithm. 
Finally, we present and discuss the results obtained on each dataset, and the performance of the Optimized 
RetinaNet (OptRetinaNet) is evaluated against the original RetinaNet23 and a diverse set of recent object 
detectors, including anchor-free methods19,20, transformer-based architectures49,50, and recent unsupervised 
methods51,52.

Datasets
KITTI18 dataset : is a widely used in autonomous driving research. It provides 7481 images for training and 
7518 images for testing, each accompanied by camera calibration files to ensure accurate spatial representation. 
It includes annotations for various object classes such as cars, pedestrians, cyclists and other objects, which 
makes it a comprehensive resource for training and evaluating object detection models in complex urban 
environments.A sample of images from the KITTI dataset, is presented in Fig. 4.

UFFD25 dataset : is a challenging dataset specifically designed to evaluate face detection models under various 
adverse conditions. It comprises 6424 images with 10,895 face annotations, capturing a wide range of real-world 
environmental weather conditions and other degradations such as lens impediments, motion blur and focus 
blur. Additionally, it includes many distractor images containing non-human faces such as animal face or no 
faces at all, which are crucial for measuring the performance of face detectors in rejecting non-face images. A 
sample of images from the UFDD dataset, is presented in Fig. 5.

Fig. 6.  A sample of images from the TomatoPlantFactory dataset, showcasing various challenges in tomato 
detection, including complex ambient lighting, occlusions and background clutter.

 

Fig. 5.  A sample of images from the UFFD dataset, showcasing various face detection challenges, including 
motion blur, lens impediments, haze, rain, and illumination variations.
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TomatoPlantFactoryDataset26: is a comprehensive collection of high quality images, which is designed to 
facilitate advanced research in tomato plant detection. It comprises 520 images with 9112 tomato fruit instances 
classified as red and green tomatoes. Unlike existing datasets, which typically feature lower-quality images at 
around 1 MP (1270 × 720) due to poor sensor performance, this dataset offers significantly higher imaging 
quality and more pixel information. Furthermore, it is enriched by the presence of complex ambient lighting, 
which poses additional challenges for tomato object detection, and making the dataset particularly valuable for 
developing and testing robust detection algorithms. A sample of images from the TomatoPlantFactoryDataset, 
is presented in Fig. 6.

MS COCO 201727 dataset: The Microsoft Common Objects in Context (MS COCO) 2017 dataset is a widely 
recognized benchmark in the field of object detection, segmentation, and image captioning. It comprises 
approximately 118,000 training images and 5,000 validation images, with over 2.5 million annotated object 
instances spanning 80 everyday object categories. Each image typically contains multiple objects at different 
scales and orientations, often appearing in non-iconic views and within cluttered scenes characteristics that 
make COCO particularly challenging and realistic. A sample of images from the MS COCO 2017, is presented 
in Fig. 7. A summary of the datasets used, including the number of images, annotations, object classes, key 
challenges, and domain, is presented in Table 3.

Experimental setup and implementation details
Computational environment
All experiments were conducted on a high-performance machine equipped with an NVIDIA GeForce GTX 
1080 Ti GPU, 32 GB of RAM, and an Intel Core i7 @ 3.40GHz CPU. The implementation was carried out using 
the MMDetection framework 53.

Implementation parameters
For the proposed differential optimization algorithm, the population size was set to 30, and the algorithm was 
run for 100 generations. The scaling factor F  was set to 0.5, and the crossover probability Cr was set to 0.9. 
For anchor parameters, we adopted the same configurations for base sizes, strides, and pyramid levels as those 
employed in the original RetinaNet 23. For training, we utilized pre-trained weights from the ImageNet 54 dataset 
to initialize the network. We employed mini-batch stochastic gradient descent (SGD) as the optimizer, with 
momentum set to 0.9 and weight decay set to 0.0001. The model was trained with an initial learning rate of 
0.01 for the first 120,000 iterations, after which the learning rate was reduced by a factor of 10 every 40,000 
iterations, continuing for a total of 240,000 iterations. To enhance generalization, data augmentation techniques 

Dataset Total images Annotations Object classes Key challenges Domain

KITTI18 7481 (train) 7518 
(test) 80.256 Cars, pedestrians, cyclists, others Occlusions, varying lighting, perspective distortion Autonomous 

driving

UFFD25 6424 10,895 Human faces, non-human faces, 
no-face images

Motion blur, lens impediments, non-human 
distractors Face detection

TomatoPlantFactory26 520 9112 Red tomatoes, green tomatoes Complex ambient lighting, high object density Agricultural 
object detection

MS COCO 201727 118K (train) 5000 (val) 886,284 80 common objects (e.g., person, 
car, dog, etc.)

Small object detection, cluttered scenes, high inter-
class variation

General-purpose 
object detection

Table 3.  Summary of the datasets used in this study, including image counts, annotations, object classes, key 
challenges, and domains.

 

Fig. 7.  A sample images from the MS COCO 2017 dataset, showcasing diverse object categories and real-
world scene complexity.
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were applied, including image resizing to 1333×800 while preserving aspect ratio, random horizontal flipping 
p = 0.5, color jitter with brightness, contrast, and saturation adjustments in the range of (0.8, 1.2), and scaling 
variations between 0.8 and 1.2. Padding with a size divisor of 32 ensured compatibility with FPN, while multi-
scale testing without flipping improved robustness across object sizes. This configuration optimized anchor 
adaptability and detection performance while maintaining computational efficiency.

Evaluation metrics
To assess the performance of proposed method, we use Average Precision (AP)45, a widely adopted metric for 
evaluating detection accuracy. The IoU threshold defines when a predicted bounding box is considered a valid 
detection, as formulated in Eq. (10). AP denotes the average precision value of the model under each recall value, 
representing the area under the Precision-Recall (P-R) curve. It provides a comprehensive measure of detection 
accuracy for a given category, balancing both precision and recall. The AP metric is computed as:

	
AP =

∫ 1

0
P (r)dr� (11)

where is the precision as a function of recall. For the KITTI18 dataset, we follow standard evaluation settings by 
using an IoU threshold of 0.7 for cars and 0.5 for pedestrians and cyclists. These thresholds align with KITTI 
benchmark requirements, ensuring fair comparisons. For the UFFD25 dataset, we use an IoU threshold of 0.5, 
following prior face detection studies. Similarly, for the TomatoPlantFactoryDataset26, an IoU threshold of 0.5 is 
applied, consistent with agricultural object detection benchmarks55. For the MS COCO 201727 dataset, we adopt 
the official COCO style evaluation, reporting AP, AP50, AP75, APS , APM , and APL, which capture average 
precision at multiple IoU thresholds and across object sizes (small, medium, large). These metrics provide a 
standardized and comprehensive view of detection performance on a challenging and diverse benchmark.

Results and discussion
For the KITTI18 dataset, the scale search boundary was set to [0.001, 0.52], where 0.001 represents the minimum 
scale as shown in Eq. (3) and 0.52 represents the maximum scale as shown in Eq. (4). Similarly, the aspect ratio 
search boundary was set to [0.25, 10], with 0.25 corresponding to the minimum ratio as shown in Eq. (6) and 10 
corresponding to the maximum ratio as shown in Eq. (7). The number of scales and aspect ratios was determined 
through multiple experimental iterations, and it was found that using a range of 3–10 values effectively captures 
the diversity of object sizes while balancing detection accuracy and model complexity. The final optimized 
anchor configuration consisted of five aspect ratios [0.25, 0.45, 1.0, 2.15, 2.85] and three scales [0.3, 0.4, 0.5]. 
Since the ground truth annotations for the testing dataset are not available, the training set was split into a 3:1 
ratio for training and validation. The evaluation metric used was AP, a standard metric for object detection. IoU 
thresholds were set to 0.7 for cars and 0.5 for pedestrians and cyclists, following KITTI18 dataset benchmarking 
standards. The results show that OptRetinaNet outperforms all evaluated models, achieving the highest AP 
scores for both ResNet-50 and ResNet-101 backbones. With ResNet-50, OptRetinaNet reached 90.3% AP for 
cars, 84.2% for pedestrians, and 91.0% for cyclists, significantly improving over the baseline RetinaNet, which 
achieved 89.6%, 80.8%, and 86.5%, respectively. The anchor-free methods FCOS and FSAF performed worse, 
especially in pedestrian and cyclist detection, where OptRetinaNet provided a 3.4% and 4.5% boost, respectively. 
DETR, while competitive, achieved only 90.1%, 82.6%, and 88.8%, falling short of the optimized RetinaNet 
configuration. When switching to ResNet-101, OptRetinaNet achieved even greater accuracy, reaching 93.2% 
for cars, 84.5% for pedestrians, and 90.6% for cyclists, outperforming all other models, including DETR, which 
obtained 91.7%, 83.9%, and 90.2%. The deeper ResNet-101 backbone provided an overall boost in AP across all 
models, confirming that a stronger feature extractor enhances object detection, but OptRetinaNet benefited the 
most, demonstrating the robustness of the optimized anchor configuration. Additionally, transformer-based 

Model Backbone Car (%) Pedestrian (%) Cyclist (%)

FCOS20

ResNet50

87.4 80.2 86.7

FSAF19 87.9 81.8 86.0

DETR49 90.1 82.6 88.8

RetinaNet23 89.6 80.8 86.5

OptRetinaNet 90.3 84.2 91.0

FCOS20

ResNet101

88.7 81.6 88.2

FSAF19 89.3 83.4 87.6

DETR49 91.7 83.9 90.22

RetinaNet23 92.9 75.8 88.9

OptRetinaNet 93.2 84.5 90.6

Swin-T50 Swin transformer 84.5 74.6 82.4

YOLOv841 EfficientNet-B4 87.4 71.8 81.0

Table 4.  The detailed results for object detection on the KITTI18 are presented in terms of AP. Significant 
values are in bold.
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models like Swin Transformer (Swin-T) and YOLOv8 performed worse, with Swin-T achieving only 84.5%, 
74.6%, and 82.4% across the three classes, and YOLOv8 scoring 87.4%, 71.8%, and 81.0%, indicating that CNN-
based architectures remain superior for the KITTI dataset. The results demonstrate that OptRetinaNet’s anchor 
optimization strategy effectively improves detection across various object categories, particularly benefiting 
pedestrian and cyclist detection, which are challenging for standard RetinaNet and anchor-free approaches. 
The detailed results are summarized in Table 4, while Fig. 8 visualizes detection examples. Additionally, Fig. 9 
illustrates AP performance over epochs, showing how detection accuracy steadily improves over time, while Fig. 
10 presents training loss curve, highlighting the model’s stability and convergence.

For the UFDD25 dataset, the scale search boundary was set to [0.003, 0.94], where 0.003 represents the 
minimum scale as shown in Eq. (3) and 0.94 represents the maximum scale as shown in Eq. (4). Similarly, the 
boundary search for aspect ratios was set to [0.21, 6.9], where 0.21 corresponds to the minimum ratio as shown 
in Eq. (6) and 6.9 corresponds to the maximum ratio as shown in Eq. (7). The search boundary for the number 
of detected values was established through a series of experimental iterations. It was determined that a range of 5 
to 15 optimally captures the diversity of face objects in the dataset. The resulting optimal values were four aspect 
ratios [0.2, 0.6, 1.0, 1.5] and two scales [0.2, 0.5]. The dataset was partitioned into 1,781 images for training, 296 
images for validation, and 892 images for testing. For evaluation, we applied a 0.5 IoU threshold. Compared to 
RetinaNet, which achieved AP scores of 76.2% and 80.0% when using ResNet50 and ResNet101, respectively, 

Fig. 9.  AP performance across epochs, illustrating improvements in detection accuracy over time.

 

Fig. 8.  Some detection results from the four models on the KITTI18 dataset.
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OptRetinaNet exhibited significant improvements, reaching 79.7% with ResNet50 and 81.8% with ResNet101. 
This represents a 3.5% increase over RetinaNet when using ResNet50 and a 1.8% increase with ResNet101, 
demonstrating the effectiveness of the optimized anchor parameters in capturing the diverse and complex facial 
shapes in the UFDD dataset. Furthermore, OptRetinaNet consistently outperformed other models, including 
FCOS, FSAF, and DETR across both backbones. Notably, when utilizing ResNet101, OptRetinaNet achieved the 
highest performance, surpassing DETR (80.7%), FCOS (81.2%), and FSAF (80.3%), confirming its robustness 
under challenging face detection conditions such as occlusions, lighting variations, and motion blur. The detailed 
results are summarized in Table 5, emphasizing how OptRetinaNet consistently outperforms other anchor-based 
and anchor-free models. Figure 11 presents the visualized detection results from different models on the UFDD 
dataset, further demonstrating the superiority of OptRetinaNet in handling real-world face detection challenges 
under various degradations, such as haze, rain, and motion blur. Additionally, Figs. 12 and 13 illustrate the AP 
performance and training loss curve, respectively. Figure 12 shows how detection accuracy improves over time, 
highlighting the effectiveness of our optimization in refining anchor configurations and increasing AP scores 
across epochs. Figure 13 presents the training loss over epochs, confirming that our method maintains stable 
convergence and improved model generalization.

For the TomatoPlantFactoryDataset26, the scale search boundary was set to [0.001, 0.84], where 0.001 
represents the minimum scale as shown in Eq. (3) and 0.84 represents the maximum scale as shown in Eq. (4). 
Similarly, the boundary search for aspect ratios was set to [0.16, 5.7], where 0.16 corresponds to the minimum 
ratio as shown in Eq. (6) and 5.7 corresponds to the maximum ratio as shown in Eq. (7). The search boundary 
for the number of values was determined through experimental testing and optimized to range between 4 and 
12, ensuring effective detection of tomato objects across various conditions. The resulting optimal values were 
three aspect ratios [0.5, 1.0, 2] which is identical to default anchor ratios of original RetinaNet23, and three scales 
[0.2, 0.5, 0.8]. Since the TomatoPlantFactoryDataset does not provide predefined splits for training, validation, 
or testing, we divided the dataset into 3:1 ratio for training and validation, respectively. For evaluation, we 
used a 0.5 IoU threshold, as used in55 which is a common value used in agricultural object detection tasks, to 
calculate the AP. Compared to RetinaNet, which achieved AP of 85.3% for red tomatoes and 87.5% for green 
tomatoes, OptRetinaNet exhibited a substantial improvement, reaching AP of 90.2% for red tomatoes and 91.4% 

Model Backbone AP (%)

FCOS20

ResNet50

79.4

FSAF19 78.8

DETR49 79.3

RetinaNet23 76.2

OptRetinaNet 79.7

FCOS20

ResNet101

81.2

FSAF19 80.3

DETR49 80.7

RetinaNet23 80.0

OptRetinaNet 81.8

Swin-T50 Swin transformer 73.9

YOLOv841 EfficientNet-B4 78.9

Table 5.  The detailed results for object detection on the UFDD25 dataset are presented in terms of AP. 
Significant values are in bold.

 

Fig. 10.  Training loss over epochs, demonstrating model convergence and stability.
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for green tomatoes. This translates to an increase of 4.9% for red tomatoes and 3.9% for green tomatoes. This 
performance boost demonstrates that while OptRetinaNet maintains the original aspect ratios of RetinaNet, its 
optimized anchor scales are key to achieving higher accuracy in object detection tasks. OptRetinaNet has also 
surpassed both FCOS and FSAF, as shown in Table 6 and visualized in Fig. 14. Furthermore, the detailed results 
in Table 6 confirm OptRetinaNet’s superior performance, as it achieved 91.6% for red tomatoes and 93.1% for 
green tomatoes with ResNet101, outpacing DETR and other competing methods. Additionally, Figs. 15 and 16 
illustrate the AP performance and the training loss curve, respectively.

For the MSCOCO 2017 dataset27, the scale search boundary was set to [0.06, 1.3], where 0.06 represents the 
minimum scale as shown in Eq. (3) and 1.3 represents the maximum scale as shown in Eq. (4). Similarly, the 
boundary search for aspect ratios was set to [0.15, 7.5], where 0.15 corresponds to the minimum ratio as shown 
in Eq. (6) and 7.5 corresponds to the maximum ratio as shown in Eq. (7). The search boundary for the number of 
values was determined through experimental testing and optimized to range between 3 and 12, ensuring effective 

Fig. 12.  AP performance across epochs, illustrating improvements in detection accuracy over time.

 

Fig. 11.  Some detection results from the four models on the UFDD25 dataset in different weather condition 
and degradation.
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detection of objects across various conditions. The resulting optimal values were five aspect ratios [0.5, 1.2, 1.5, 
2.4, 3.7], and five scales [0.09, 0.13, 0.25, 0.5, 1.0]. For evaluation, we used evaluation metrics here. Compared 
to the baseline RetinaNet, which achieved an AP of 40.8% with a ResNeXt-101 backbone and 39.1% with 
ResNet-101, the proposed OptRetinaNet achieved significantly higher detection performance on the MS COCO 
2017 dataset. OptRetinaNet attained an AP of 45.2% using ResNet-50 and 48.2% using ResNet-101, representing 
relative gains of 4.4% and 9.1%, respectively. These improvements extend across all evaluation metrics, including 
AP50, AP75, and size-specific AP scores (APS, APM, APL). Notably, OptRetinaNet (ResNet-101) improved APS 
from 21.8% in the baseline RetinaNet to 35.9%, indicating superior performance in detecting small objects, 
one of the key challenges in dense object detection. Beyond improving upon RetinaNet, OptRetinaNet also 
outperformed several contemporary one-stage and transformer-based detection frameworks. It surpassed FCOS 
44.7% AP, FSAF 37.2% AP, DETR 44.9% AP, and UP-DETR 43.1% AP, while maintaining a simpler architectural 
design based on standard ResNet backbones. Although state-of-the-art models such as YOLO 51.2% AP and 
Swin-T 50.5% AP achieved higher APs overall, OptRetinaNet demonstrated a competitive balance between 
performance and computational efficiency. In particular, OptRetinaNet’s AP75 score of 51.6% and APL of 63.9% 
with ResNet-101 further underscore its strength in precise localization and large-object detection. These results 
confirm that OptRetinaNet’s performance is primarily attributed to its DE-based optimization of anchor scales 
and aspect ratios, which allows the model to more effectively align with the diverse object size distribution 
present in complex dataset. This effectiveness is further supported by the detailed results in Table 7, with visual 
performance comparisons provided in Fig. 17. Additionally, Figs. 18 and 19 depict the model’s AP trends and 
training loss curves, emphasizing OptRetinaNet’s stable convergence and enhanced learning dynamics.

Dataset availability
This study utilized publicly available datasets. The datasets used in this study can be accessed as follows:

•	 KITTI dataset: available at https://www.cvlibs.net/datasets/kitti/.
•	 UFFD dataset: available at https://ufdd.info/.
•	 TomatoPlantFactoryDataset: available at https://data.mendeley.com/datasets/8h3s6jkyff/1.

Model Backbone Red tomato (%) Green tomato (%)

FCOS20

ResNet50

88.5 89.5

FSAF19 87.3 88.5

DETR49 89.4 90.0

RetinaNet23 85.3 87.5

OptRetinaNet 90.2 91.4

FCOS20

ResNet101

90.3 89.8

FSAF19 89.9 91.3

DETR49 90.4 92.6

RetinaNet23 89.0 89.6

OptRetinaNet 91.6 93.1

Swin-T50 Swin transformer 77.9 83.4

YOLOv841 EfficientNet-B4 84.5 85.7

Table 6.  The detailed results for object detection on the TomatoPlantFactoryDataset26 dataset are presented in 
terms of AP. Significant values are in bold.

 

Fig. 13.  Training loss over epochs, demonstrating model convergence and stability.
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Fig. 16.  Training loss over epochs, demonstrating model convergence and stability.

 

Fig. 15.  AP performance across epochs, illustrating improvements in detection accuracy over time.

 

Fig. 14.  Some detection results from the models on the TomatoPlantFactoryDataset26.
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•	 MS COCO 2017: available at https://cocodataset.org/#download.

All datasets are openly accessible and were used in accordance with their respective terms of use. No additional 
ethical approval was required for their use.

Limitations and future work
Limitations
The proposed approach may face challenges in detecting highly occluded objects, as anchor-based methods 
inherently rely on visible object features for accurate localization. In scenarios where objects are partially 
hidden or heavily obstructed, the optimization process may fail to generate effective anchors, leading to missed 
detections or reduced precision. Additionally, the iterative nature of differential evolution introduces a higher 
computational cost, particularly when applied to large-scale datasets with a vast number of object instances. 
This increased complexity may pose challenges in applications with limited computational resources, requiring 
the development of efficient acceleration techniques to enhance processing speed while maintaining detection 
accuracy.

Fig. 17.  Some detection results from the models on the MS COCO 201727.

 

Model Backbone AP (%) AP50 (%) AP75 (%) APS (%) APM (%) APL (%)

FCOS20 ResNeXt-64x4d-101 44.7 64.1 48.4 27.6 47.5 55.6

FSAF19 ResNet50 37.2 57.2 39.4 21.0 41.2 49.7

DETR49 ResNet50 44.9 64.7 47.7 23.7 49.5 62.3

RetinaNet23 ResNeXt-101 40.8 61.1 44.1 24.1 44.2 52.2

OptRetinaNet ResNet50 45.2 64.9 51.4 32.5 53.6 60.2

RetinaNet23 ResNet101 39.1 59.1 42.3 21.8 42.7 50.2

OptRetinaNet ResNet101 48.2 64.4 51.6 35.9 55.8 63.9

Swin-T50 Swin transformer 50.5 69.3 54.9 – – –

YOLO41 EfficientNet-B4 51.2 69.7 55.5 35.2 56.0 66.7

CutLER52 ResNet101 12.3 21.9 11.8 3.7 12.7 29.6

UP-DETR51 ResNet101 43.1 63.4 46.0 21.6 46.8 62.4

Table 7.  The detailed results for object detection on the MSCOCO 201727 dataset are presented in terms of AP. 
Significant values are in bold.
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Future work
To further improve the adaptability and efficiency of the proposed method, several future directions can be 
explored: Multi-Task Learning: Extending the approach to incorporate multi-task learning, such as jointly 
optimizing anchor configurations and feature representations, could enhance model generalization across 
different datasets. Self-Supervised Optimization: Exploring self-supervised learning for anchor adaptation could 
enable the model to refine anchor parameters without requiring large amounts of annotated data. Temporal 
Consistency for Video-Based Detection: Extending the method to video object detection by optimizing anchor 
configurations across frames could improve tracking stability in real-time applications. By addressing these 
limitations and expanding the methodology in future work, the proposed optimization strategy can be further 
refined to enhance robustness, reduce computational complexity, and improve detection accuracy in various 
real-world applications.

Data availability
The datasets used in this study are publicly available as follows: Dataset 1: KITTI dataset, accessible at ​h​t​t​p​s​:​/​/​w​
w​w​.​c​v​l​i​b​s​.​n​e​t​/​d​a​t​a​s​e​t​s​/​k​i​t​t​i​/​​​​ Dataset 2: UFFD dataset, accessible at https://ufdd.info/ Dataset 3: ​T​o​m​a​t​o​P​l​a​n​t​F​a​
c​t​o​r​y​D​a​t​a​s​e​t , accessible at https://data.mendeley.com/datasets/8h3s6jkyff/1 Dataset 4: MS COCO 2017 , ​a​c​c​e​s​
s​i​b​l​e at https://cocodataset.org/#download All datasets are openly accessible and were used in accordance with 
their respective terms of use.
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