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Abstract: Video violence detection has gained significant attention in recent years due to
its applications in surveillance and security. This paper proposes a two-stage framework
for detecting violent actions in video sequences. The first stage leverages GMFlow, a
pre-trained optical flow network, to capture the temporal motion between consecutive
frames, effectively encoding motion dynamics. In the second stage, we integrate these
optical flow images with RGB frames and feed them into a CBAM-enhanced ResNet3D
network to capture complementary spatiotemporal features. The attention mechanism
provided by CBAM enables the network to focus on the most relevant regions in the frames,
improving the detection of violent actions. We evaluate the proposed framework on three
widely used datasets: Hockey Fight, Crowd Violence, and UBI-Fight. Our experimental
results demonstrate superior performance compared to several state-of-the-art methods,
achieving AUC scores of 0.963 on UBI-Fight and accuracies of 97.5% and 94.0% on Hockey
Fight and Crowd Violence, respectively. The proposed approach effectively combines
GMFlow-generated optical flow with deep 3D convolutional networks, providing robust
and efficient detection of violence in videos.

Keywords: video violence detection; GMFlow; optical flow; CBAM (convolutional block
attention module); ResNet3D; anomaly detection

MSC: 68T07

1. Introduction

Violence detection is a critical application in video analysis, offering significant bene-
fits in various domains. It is a powerful tool for filtering sensitive media content, protecting
users from exposure to unwanted material, and supporting law enforcement in forensic
investigations. Beyond their role in public safety, violence detection systems can prevent
the dissemination of violent content on social networks, forums, and educational platforms.
These systems are equally valuable for maintaining safe environments by restricting vi-
olent material in sensitive settings such as workplaces, schools, and public spaces. With
the increasing prevalence of video surveillance systems, automated violence detection
has become indispensable for crime prevention, crowd management, and enhancing the
effectiveness of intelligent security systems. This study aims to develop a robust and
scalable deep learning framework that effectively integrates motion and spatial features

Mathematics 2025, 13, 1226

https://doi.org/10.3390/math13081226


https://doi.org/10.3390/math13081226
https://doi.org/10.3390/math13081226
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-6764-8969
https://orcid.org/0009-0000-5890-0923
https://orcid.org/0000-0002-4270-2268
https://orcid.org/0000-0002-8513-570X
https://orcid.org/0000-0002-4333-2852
https://doi.org/10.3390/math13081226
https://www.mdpi.com/article/10.3390/math13081226?type=check_update&version=4

Mathematics 2025, 13, 1226

2 of 20

for accurate and generalizable video violence detection. Beyond its strong classification
performance, our framework has practical implications for real-time security and surveil-
lance systems. The GMFlow-based optical flow extraction mechanism operates efficiently
in sequential video frames, while CBAM-enhanced ResNet3D processes motion and spatial
cues in parallel, making the model well-suited for real-time violence detection in public
spaces, transportation hubs, and law enforcement applications. Using weak supervision,
the approach reduces the need for detailed frame-level annotations, facilitating easier de-
ployment in large-scale monitoring systems. Future optimizations, such as model pruning
and quantization, could further enhance the inference speed, making the system even more
viable for real-world applications.

Deep learning has revolutionized video analysis, particularly in violence detection,
by enabling models to automatically learn hierarchical and discriminative representations
from raw data, surpassing traditional handcrafted feature-based methods that often suffer
from limited generalizability [1,2]. Recent advancements in convolutional and recurrent
neural networks have significantly enhanced the ability to extract robust spatiotemporal
features and model temporal sequences, while attention mechanisms further improve
the focus on critical spatial and temporal regions [3-6]. These innovations have set new
benchmarks in violence detection and classification, showcasing the effectiveness of deep
learning in handling complex motion dynamics in diverse scenarios. Beyond violence
detection, deep learning has achieved remarkable success in various domains, including
image inpainting, especially object removal [7,8], object detection and recognition [9-11],
and security applications [12], further demonstrating its versatility and transformative
impact in computer vision and artificial intelligence research.

Research in video violence detection spans three primary paradigms: supervised,
unsupervised, and weakly supervised learning. Supervised methods dominate the field,
leveraging frame-level annotations to achieve high accuracy, but are often constrained by
their reliance on exhaustive manual labeling and their limited generalizability to unseen
scenarios. Unsupervised methods, which focus on anomaly detection by assuming that
violent events deviate from normal patterns, eliminate the need for explicit labels but
struggle to capture the nuanced characteristics of violence. Weakly supervised approaches
provide a scalable alternative, utilizing video-level annotations to balance performance
and resource efficiency. By reducing dependency on detailed labels while maintaining
competitive accuracy, weakly supervised learning is particularly suited for large-scale
applications, addressing the challenges posed by limited annotations and the growing
volume of video data. Nevertheless, video violence detection remains a complex task,
further complicated by the subjective nature of violence, variations in environmental
conditions, and the ever-growing volume of video data being generated.

In this paper, we propose a two-stage network architecture for video violence detection
that seamlessly integrates motion and appearance cues to achieve robust and balanced
performance. The first stage utilizes the GMFlow pre-trained network [13] to generate
optical flow images, effectively capturing the temporal dynamics of motion within video
sequences. Optical flow serves as a detailed representation of movement patterns, provid-
ing crucial insights into temporal behavior for analyzing violent actions. Recognizing that
motion alone is insufficient to detect violence accurately, the second stage incorporates RGB
frames alongside optical flow images to leverage both spatial and temporal information.
Specifically, the first frame of every two-frame sequence used for optical flow computation
is selected, ensuring an efficient yet comprehensive spatial representation. These inputs
are then processed by a ResNet3D-based architecture [14], enhanced with Convolutional
Block Attention Modules (CBAM) [15] integrated into the residual blocks. CBAM improves
the network’s ability to focus on critical spatial regions and channel features, enabling
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more effective extraction of spatiotemporal patterns essential for distinguishing violent
actions from non-violent ones. The overall design of this two-stage framework is depicted
in Figure 1, providing an overview of its components and workflow. This integration of
motion and spatial cues addresses key challenges in violence detection, ensuring a scalable
and effective solution for real-world applications.
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Figure 1. Illustration of our two-stage video violence detection framework. Stage 1 extracts motion
cues using GMFlow optical flow, while Stage 2 integrates these cues with RGB frames in a CBAM-
enhanced ResNet3D network for improved spatiotemporal feature extraction.

We evaluate the effectiveness of the proposed two-stage framework on three bench-
mark datasets: Hockey [16], Crowd [17], and UBI-Fights [18]. These datasets encompass
diverse scenarios and challenges, providing a robust platform to assess the generalization
and adaptability of our method. Experimental results reveal that the framework excels
in the weakly supervised setting, showcasing its ability to capture complex violence pat-
terns while minimizing reliance on detailed annotations. This highlights the potential
of the proposed approach for scalable and practical applications in real-world violence
detection tasks.

The key contributions of this paper are summarized as follows:

1. A two-stage deep learning framework for video violence detection, integrating
GMFlow-based motion encoding with a CBAM-enhanced ResNet3D network to
capture both temporal and spatial features effectively.

2. Robust motion representation using GMFlow, which generates dense optical flow
features, improving the model’s ability to understand movement patterns critically
for detecting violent actions.

3. Enhanced spatiotemporal feature extraction with CBAM allows the network to selec-
tively focus on the most relevant regions, leading to improved discrimination between
violent and non-violent activities.

4.  Extensive evaluation on three diverse benchmark datasets (Hockey Fight, Crowd
Violence, and UBI-Fight), demonstrating the generalizability of our method across
different violence scenarios and environmental conditions.

5. Competitive state-of-the-art performance, achieving high accuracy and AUC scores
while reducing reliance on detailed frame-level annotations, making the framework
suitable for scalable real-world applications.

The remainder of this paper is organized as follows: Section 2 reviews related work,
including existing approaches in supervised, unsupervised, and weakly supervised video
violence detection. Section 3 details the proposed two-stage framework, including the opti-
cal flow computation and attention-enhanced ResNet3D architecture. Section 4 describes
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the experimental setup, datasets, evaluation metrics, and results and analysis. Finally,
Section 5 concludes the paper and discusses future research directions.

2. Related Work

Video violence detection has gained important attention because of its critical applica-
tions in public safety and surveillance systems. The advancements in deep learning have
helped the modeling of complex spatiotemporal patterns and motion dynamics in video
data, significantly improving the field. Supervised methods, which are based on frame-level
annotations, have shown remarkable accuracy by leveraging architectures such as 3D Con-
volutional Neural Networks (3D CNNs) [19] and hybrid models integrating Convolutional
Neural Networks (CNNs) with Long Short-Term Memory (LSTM) networks [20]. These
methods are very effective at capturing complex motion patterns and temporal dependen-
cies, which are essential for distinguishing violent from non-violent actions. However,
their dependence on frame-level annotated datasets, which are often scarce, limits their
scalability and applicability in real-world scenarios. To address these challenges, weakly
supervised approaches, which utilize video-level annotations, have gained importance by
reducing the annotation load while maintaining competitive performance. This section
reviews state-of-the-art methods in video violence detection, with a particular focus on
weakly supervised and unsupervised learning approaches.

2.1. Unsupervised Methods

Unsupervised methods are designed to detect anomalies without relying on labeled
data, either through fully unsupervised learning or semi-supervised learning, also known
as one-class classification. In fully unsupervised frameworks, the goal is to separate
normal and abnormal video segments by employing techniques such as clustering, pseudo-
labeling, and anomaly scoring, enabling their application in scenarios where annotations
are unavailable.

For instance, DyAnNet [21] and C2FPL [22] generate pseudo-labels to distinguish be-
tween normal and abnormal segments in videos. DyAnNet employs isolation tree-based
clustering to create pseudo anomaly and dynamicity scores from both RGB and optical
flow streams, refining these scores with a cross-branch feed-forward network based on I3D.
C2FPL [22], on the other hand, proposes a two-stage pseudo-label generation framework
using hierarchical clustering and statistical testing to generate segment-level labels for training
an anomaly detector. Hu et al. [23] introduce Temporal Masked Auto-Encoding (TMAE), a
method that masks temporal patches in spatial-temporal cubes and uses a vision transformer
to predict them. Anomalies are detected when these predictions are inaccurate, and TMAE
is further enhanced by applying it to optical flow for better performance. Additionally, Tao
et al. [24] present FRD-UVAD, a model for unsupervised video anomaly detection that em-
ploys cascade cross-attention transformers and a disruption process to refine features and
improve pseudo-label generation.

Another common approach in unsupervised methods is reconstruction-based anomaly
detection, which utilizes models like autoencoders to learn normal patterns and reconstruct
video frames. Anomalies are detected when the reconstruction error overrides a predefined
threshold. Luo et al. [25] propose a ConvLSTM-AE framework that combines Convolutional
Neural Networks (CNNs) for appearance encoding with ConvLSTM for motion encoding,
capturing both spatial and motion regularities of normal events. Gong et al. [26] introduce
MemAE, a memory-augmented autoencoder that strengthens anomaly detection by using
a memory module to retrieve relevant normal data for reconstruction, amplifying the
reconstruction error for anomalies. Wang et al. [27] present DF-ConvLSTM-VAE, a model
designed to address challenges related to unbalanced data and time-series issues, thus
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enhancing video anomaly detection. However, these methods are prone to overfitting,
particularly when identifying subtle violent behaviors.

Prediction-based methods, another class of unsupervised approaches, aim to predict
future frames based on past video sequences, detecting anomalies when predicted frames
deviate significantly from the ground truth. Liu et al. [28] propose a video prediction-based
method that compares predicted future frames with actual frames, incorporating both
spatial and temporal (optical flow) constraints to improve normal event prediction and
anomaly detection. Li et al. [29] introduce a context-based anomaly detection method using
a generative adversarial network (GAN), where a two-branch generator network predicts
future frames by considering both preceding and succeeding video frames. The final
anomaly score is derived from these predictions. While unsupervised methods eliminate
the need for labeled data, they often struggle with distinguishing subtle violent actions
due to their reliance on anomaly-based assumptions. Weakly supervised learning offers a
middle ground by leveraging video-level labels, reducing annotation effort while retaining a
degree of supervision to improve discrimination between violent and non-violent activities.

2.2. Weakly Supervised Methods

Unlike unsupervised methods, which attempt to detect anomalies without explicit
labels, weakly supervised approaches utilize video-level annotations to provide indirect
supervision. This allows the model to learn meaningful patterns without requiring frame-
level labels, striking a balance between performance and annotation efficiency. By focusing
on coarse labels rather than detailed per-frame supervision, weakly supervised learning en-
ables scalable video analysis while still achieving competitive accuracy. This characteristic
makes weak supervision particularly suitable for large-scale applications, where annotating
every frame of a video is impractical. As a result, these methods are gaining popularity
due to their ability to reduce annotation effort while maintaining strong performance in
violence detection tasks.

A prominent strategy in weakly supervised learning is Multiple Instance Learning
(MIL) [30], where a video is treated as a collection of instances and instance-level labels
are inferred based on video-level annotations. MIL-based frameworks prioritize the top-K
video segments most likely to contain violent content, optimizing the learning of discrimi-
native features. Sultani et al. [31] proposed a weakly supervised deep multiple-instance
ranking framework for anomaly detection, utilizing video-level labels in a MIL setup. Their
method employs sparsity and temporal smoothness constraints for improved anomaly
localization while introducing a large-scale dataset featuring 128 h of surveillance videos
across 13 anomaly categories.

Generative models have also been explored in weakly supervised settings. Hasan
et al. [32] proposed a model for detecting regular motion patterns in long video sequences,
addressing challenges such as ambiguous and cluttered scenes. Their approach uses two
autoencoder-based models: one leveraging handcrafted spatiotemporal features and the
other employing a fully convolutional autoencoder for end-to-end learning. Wang et al. [33]
introduced S?-VAE, which combines a shallow Stacked Fully Connected Variational Au-
toEncoder (S F-VAE) for modeling data distributions with a deep Skip Convolutional VAE
(S C-VAE), integrating CNNs, VAEs, and skip connections to enhance anomaly detection.

Recent advancements in attention mechanisms and transformer-based architectures
have further enhanced weakly supervised methods. Lee et al. [6] proposed a three-stage
architecture combining feature extraction via CNNs, temporal sequence modeling with
LSTMs and attention mechanisms, and long-range temporal analysis through a transformer
encoder. Deshpande et al. [34] utilized transformer-based Videoswin features along with an
attention layer integrating dilated convolutions and self-attention to capture temporal de-
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pendencies for generating frame-level anomaly scores from video-level labels. Jin et al. [35]
extended transformer-based approaches to aerial video anomaly detection, proposing
Anomaly Detection with Transformers (ANDTs) for UAV-captured aerial videos. Their
method treats consecutive frames as tubelets and applies a transformer encoder for feature
extraction and a decoder for frame prediction, detecting anomalies with unpredictable
temporal dynamics.

To improve temporal feature modeling, Degardin et al. [36] introduced an iterative
self-supervised learning framework for anomaly detection. This framework employs two
experts to iteratively expand the training dataset by incorporating confidently classified
instances. Their approach integrates a Bayesian framework for filtering instances, a novel
loss function for optimizing score distribution, and a decision fusion scheme using deci-
sion trees. Hwang et al. [5] explored real-time violent crime detection by reconstructing
frames into smaller image sizes and applying a Convolutional Block Attention Module
(CBAM) [15] to a 3D convolutional residual neural network to focus on key spatiotemporal
regions. Chen et al. [37] proposed the Glance and Focus Network (GFN), which integrates
spatiotemporal information to enhance anomaly localization in surveillance videos.

Finally, methods focusing on robust temporal modeling have emerged to detect subtle
anomalies. Tian et al. [38] introduced Robust Temporal Feature Magnitude (RTFM) learning,
which employs dilated convolutions and self-attention to capture temporal dependencies.
RTFM enhances weakly supervised learning by effectively identifying subtle anomalies
within video sequences.

Table 1 provides a comparative analysis of existing supervised, unsupervised, and
weakly supervised methods, outlining their strengths, limitations, and how our proposed
framework addresses these challenges.

Table 1. Comparison of existing methods and our proposed approach.

Method Type Strengths Weaknesses Our Approach (Advantages)
. Requires frame-level annotations, Reduces annotation effort by
. . High accuracy; learns N ) L .
Supervised Learning fino-orained features and poor generalization to unseen using weak supervision while
& ’ data. maintaining accuracy.
' . No need for labeled data; can Struggles.wuh dlst.mgulshmg Uses optical ﬂon to gnhance.
Unsupervised Learning detect anomalies subtle violent actions; may motion representation, improving

’ misclassify normal motion. detection of subtle violent cues.

Weakly Supervised Learning
(Existing)

Enhances weak supervision by
integrating both motion
(GMFlow) and spatial attention
(CBAM-enhanced ResNet3D) for
better spatiotemporal feature
extraction.

Still lacks fine-grained temporal
localization; performance varies
across datasets.

Balances annotation effort and
accuracy; more scalable.

Weakly supervised methods and the integration of motion and appearance features
offer complementary strategies for video violence detection. While weakly supervised
approaches leverage video-level annotations to reduce labeling effort, they often lack
accurate temporal and spatial localization. In contrast, integrating motion (e.g., optical
flow) and appearance (e.g., RGB frames) enhances spatiotemporal modeling, enabling the
detection of fine-grained violent actions.

Multiple-instance learning (MIL) has facilitated scalable video analysis, but its effec-
tiveness can be further improved by incorporating detailed motion and spatial features.
By bridging the gap between weak supervision and fine-grained feature extraction, com-
bining these approaches enhances detection accuracy and enables more precise anomaly
localization in large-scale datasets. This synergy demonstrates that weakly supervised
learning and feature integration can be jointly leveraged to develop robust systems capable
of handling large-scale datasets while achieving fine-grained anomaly detection.
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2.3. Integration of Motion and Appearance Features

Recent works emphasize the importance of integrating motion and appearance fea-
tures for robust violence detection. Optical flow captures temporal motion dynamics but
often lacks spatial context, making its integration with RGB data crucial. Two-stream
networks, which process RGB frames for spatial features and optical flow for temporal
dynamics, have emerged as a popular solution. Carreira et al. [39] introduced the Two-
Stream Inflated 3D ConvNet (I3D), which extends 2D ConvNet filters into 3D to learn
spatiotemporal features from videos. Pre-trained on the large-scale Kinetics dataset, I3D
effectively captures both spatial and temporal patterns. Zhang et al. [40] proposed a model
integrating YOLO-v3 with FlowNet 2.0 for video object detection, improving detection
accuracy through flow-guided partial warp and optical flow compression. Yi Zhu et al. [41]
advanced this approach with hidden two-stream CNNs, an end-to-end architecture that
extracts motion information directly from raw video inputs, simplifying preprocessing
while maintaining competitive performance. Park et al. [4] demonstrated the importance
of combining optical flow and RGB data for accurate violence detection, underscoring the
critical role of integrating motion and appearance features in real-world scenarios.

3. Approach

This section introduces the proposed two-stage video violence detection framework,
designed to effectively integrate motion and spatial features for robust recognition of violent
actions. The framework leverages optical flow to capture temporal dynamics and RGB
frames to extract spatial details, which are processed using a CBAM-enhanced ResNet3D
network. By analyzing complementary spatiotemporal features, the method identifies key
patterns indicative of violent actions, such as sudden aggressive movements and chaotic
crowd behavior.

A key aspect of our approach is its weakly supervised nature, which enables learning
from video-level labels without the need for explicit frame-wise annotations. This is
particularly advantageous for large-scale video datasets where obtaining fine-grained
annotations is impractical. Our method addresses the inherent challenges of weakly
supervised learning, particularly the difficulty of associating specific frames with violent
actions. GMFlow provides motion representations that capture dynamic changes, while
CBAM-enhanced ResNet3D focuses on spatial features, enhancing the identification of
violence-relevant patterns. The model is trained to associate violence with particular frame
segments by combining motion cues and spatial-temporal features, effectively bridging the
gap between coarse video-level labels and fine-grained frame-wise predictions. During
training, the model optimizes its classification by learning which spatiotemporal features
contribute most to distinguishing violent from non-violent actions. GMFlow generates
motion representations emphasizing dynamic changes, guiding the network to focus on
movement-heavy regions. The CBAM module enhances attention to spatially crucial areas,
reinforcing the identification of violence-relevant patterns.

Figure 1 illustrates the workflow, showcasing the integration of the framework’s
components for effective violence detection. In the first stage, GMFlow [13], a state-of-
the-art optical flow estimation network, generates dense optical flow images to represent
temporal dynamics and movement patterns within video sequences. The framework
processes the input video by extracting frames at intervals of n rather than using all frames.
For each pair of consecutive frames I and I + 1, optical flow is estimated to detect motion
dynamics, while the Ith RGB frame is retained for the next stage to serve as appearance
cues. In the second stage, the optical flow images are combined with the retained RGB
frames to leverage both spatial and temporal information simultaneously. The CBAM-
enhanced ResNet3D network processes these inputs, focusing on critical spatiotemporal
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regions to distinguish violent actions from non-violent ones. This integrated approach
addresses challenges such as complex motion patterns, subtle aggression cues, and varying
environmental conditions.

3.1. Stage 1: Motion Feature Extraction with GMFlow

In this subsection, we present a detailed overview of GMFlow [13], the first stage of
our framework, which serves as a pre-trained model for dense optical flow estimation.
Violent actions in videos are often characterized by abrupt and chaotic motion patterns,
which optical flow effectively captures. By estimating the magnitude and direction of
movement between consecutive frames, GMFlow identifies significant motion variations
that may indicate violent behavior, offering a robust representation of temporal dynamics.

3.1.1. GMFlow Framework Overview

GMFlow [13] redefines optical flow estimation as a global matching task, making it
particularly effective for identifying large displacements and abrupt movements, which are
characteristic of violent actions. Its architecture integrates a transformer-based module for
feature enhancement, a global correlation layer for feature matching, and a self-attention
mechanism for efficient flow propagation. These components work together to accurately
capture motion dynamics in complex scenarios. The detailed structure of GMFlow is
illustrated in Figure 2.

A.  Feature Extraction and Enhancement: GMFlow extracts dense features from two
consecutive video frames using a shared convolutional backbone. To enhance these
features, a transformer-based module applies both self- and cross-attention mecha-
nisms enriched with fixed 2D positional encodings. This module models spatial and
temporal dependencies between frames effectively. A shifted local window attention
strategy, inspired by the Swin Transformer [42], balances computational efficiency
and accuracy by operating within adaptive local regions.

B.  Global Matching and Flow Estimation: Enhanced features from both frames are
compared using a global correlation matrix, measuring the similarity of each pixel
in one frame with all pixels in the other. This matrix is normalized with a softmax
operation, enabling differentiable training and sub-pixel accuracy. The resulting
matching distribution determines pixel correspondences, which compute the optical
flow as the displacement between matched pixel coordinates.

C.  Flow Propagation and Refinement: To handle occluded and out-of-boundary regions,
GMFlow employs a self-attention-based flow propagation mechanism. This ensures
consistent flow estimation across the frame. Refinement is achieved by upscaling
the initial flow predictions to higher resolution and applying residual learning,
improving accuracy without significant computational overhead.

One of the key advantages of GMFlow is its robustness in handling challenging scenar-
ios such as occlusion and low-frame-rate videos. The global matching mechanism enables
the model to infer motion in occluded regions by leveraging contextual information from
non-occluded areas, reducing the impact of missing pixel correspondences. Additionally,
GMFlow’s ability to process long-range dependencies allows it to maintain motion continu-
ity even in low-frame-rate videos, where conventional flow estimation methods struggle
with large temporal gaps. This ensures reliable motion encoding, enhancing the detection
of violent actions in complex environments.
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Transformer
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Figure 2. Overview of GMFlow: a global matching-based framework for optical flow estimation.
The architecture integrates transformer-based feature enhancement, global feature matching, and
flow refinement.

3.1.2. Motion Representation Output

In this subsection, we present the outputs generated by the GMFlow module, which
are subsequently used in conjunction with RGB frames in the next stage to differentiate
between violent and normal behaviors. The GMFlow module produces dense optical flow
images for each consecutive frame pair, capturing the magnitude and direction of motion
with high accuracy. These optical flow images serve as a detailed representation of temporal
dynamics, enabling the framework to effectively analyze complex motion patterns often
associated with violent actions.

By leveraging GMFlow’s precise motion estimation, the framework minimizes the
need for explicit temporal annotations, ensuring a robust and efficient approach to violence
detection. Figure 3 illustrates examples from multiple datasets, showcasing the generated
optical flow outputs. In each example, the leftmost images represent consecutive frames
from a video sequence, while the image on the right depicts the corresponding optical flow,
providing a visual representation of the captured temporal motion dynamics.

Figure 3. Illustrative examples of input video frames and their corresponding optical flow outputs.
The top row displays samples from the Hockey dataset, while the bottom rows present samples
from the UBI-Fight dataset (left) and the Crowd dataset (right). Each example consists of two
consecutive input frames (left) and the computed optical flow representation (right), highlighting
motion dynamics.
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3.2. Stage 2: Spatial-Temporal Feature Integration with CBAM-Enhanced ResNet3D

In this subsection, we provide a detailed explanation of the second stage of our
network, which is built upon the ResNet architecture with enhanced residual blocks
integrated with the CBAM. While optical flow effectively captures temporal dynamics, it
inherently lacks the spatial context required to interpret complex scene details and subtle
actions. To overcome this limitation, the second stage of the framework combines RGB
frames with the optical flow images generated by GMFlow in the first stage. Specifically,
the first frame from each pair used in optical flow computation is selected to provide
complementary spatial information.

This dual-input approach allows the network to leverage both spatial and temporal
features, enabling a more thorough analysis of video sequences to detect violent actions.
First, we provide an overview of the entire second stage of the CBAM-enhanced ResNet3D
architecture. Subsequently, in a dedicated subsection, we delve into the CBAM mechanism,
detailing its two components: channel attention and spatial attention.

3.2.1. CBAM-Enhanced ResNet3D Architecture

The CBAM-enhanced ResNet3D network effectively processes the combined RGB and
optical flow inputs to model spatial-temporal features. As depicted in Figure 4, the architecture
leverages 3D convolutions to capture temporal dependencies while incorporating the Con-
volutional Block Attention Module (CBAM) [15] to enhance feature representation through
attention mechanisms. The second-stage network comprises three primary components:

1. Input Block: The input data, consisting of RGB frames and optical flow images,
are initially processed through a 3D convolutional layer. This layer has a kernel
size of 7 X 7 x 7, with a temporal stride of 1 and spatial stride of 2. The layer is
designed to extract low-level spatial-temporal features from consecutive frames. After
convolution, the output is normalized using batch normalization to stabilize the
learning process and improve convergence. A ReLU activation function is then
applied element-wise to introduce non-linearity. This block is followed by a max-
pooling layer with a kernel size of 3, a stride of 2, and padding of 1, which further
reduces spatial dimensions and enhances the representation of the input data.

2. Residual Blocks with CBAM: The core of the architecture is composed of a series of
residual blocks, each augmented with the Convolutional Block Attention Module
(CBAM) [15]. These blocks are responsible for capturing hierarchical spatial-temporal
features by utilizing 3D convolutions. The network employs a ResNet34-3D back-
bone, which is structured into four stages of residual blocks with configurations of
[3,4,6,3], corresponding to the respective layers in the architecture. As shown in
Figure 5, each residual block consists of two 3D convolutional layers with kernel sizes
of 3 x 3 x 3, with batch normalization applied between the convolutional layers, fol-
lowed by a ReLU activation. The CBAM block is integrated between the second batch
normalization and the ReLU activation, enhancing feature representation through a
two-fold attention mechanism: channel attention and spatial attention. Additionally,
each residual block incorporates a skip connection that connects the output of the
CBAM block to the input after applying a1 x 1 x 1 3D convolution, followed by batch
normalization, facilitating the learning of residuals.

3. Prediction Block: Following the feature extraction process, the network passes the
output through an adaptive average pooling layer to reduce dimensionality. The
pooled features are then flattened and fed into a fully connected (FC) layer for the
classification task, where the network categorizes the input sequence as either violent
or non-violent.
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Figure 4. Overview of the CBAM-enhanced ResNet3D architecture for violent action detection. The model
integrates RGB frames and optical flow inputs to extract comprehensive spatial-temporal features.
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Figure 5. Structure of a residual block integrated with CBAM. The block combines residual learning
with channel and spatial attention mechanisms to enhance feature selection.

3.2.2. CBAM Mechanisms for Attention-Enhanced Feature Extraction

CBAM refines feature representations in each residual block through two complemen-
tary attention mechanisms:

*  Channel Attention: This mechanism prioritizes important feature channels by perform-
ing global pooling along spatial dimensions. It learns attention weights that highlight
channels most relevant to violent action detection, as shown in Figure 6 (top).

*  Spatial Attention: Complementing channel attention, spatial attention highlights key
regions within each frame by generating an attention map based on inter-channel rela-
tionships. This mechanism enables the network to focus on interactions or movements
indicative of violence, as depicted in Figure 6 (bottom).

CBAM enhances feature representation by applying two sequential attention modules:
channel attention and spatial attention. The channel attention module computes global
feature importance using both average pooling and max pooling operations, followed
by a shared multi-layer perceptron (MLP), allowing the network to amplify the most
informative feature channels. The spatial attention module then refines feature localization
by applying a spatial weight map to highlight action-relevant regions, focusing on where
violent movements occur.

The ResNet3D architecture effectively combines spatial and temporal features by
integrating CBAM into the residual blocks. Leveraging both RGB and optical flow inputs,
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the network achieves a holistic representation of video data. This dual-modality approach
ensures robust detection of violent actions, even in challenging scenarios with subtle motion
patterns, complex backgrounds, or occlusions. The enhanced spatial-temporal feature
representation enables the framework to generalize effectively across diverse datasets and
complex video sequences.

MLP

e A
MaxPool
CL 1 |
Refined ; Conv-Layer |
Feature "
AvgPool

Figure 6. CBAM mechanisms: Top: Channel attention emphasizes relevant feature channels. Bottom:

» @ Amr:n

Spatial attention highlights key regions in the input.

At the end of the proposed approach, the entire two-stage framework can be summa-
rized as follows: The input video is first processed by the GMFlow network in the first
stage to generate optical flow images for each sequential frame pair. Specifically, the optical
flow is computed for frame pairs corresponding to indices N x I and N x I + 1, where [ is
an integer sequence (0,1, 2,...). In the second stage , these generated optical flow frames
are concatenated with the corresponding N x I RGB frames from the video. This combined
input is then fed into the CBAM-enhanced ResNet3D network, which effectively learns
complementary spatial and temporal features. Integrating these two stages, the framework
achieves robust and efficient video violence detection.

4. Experiments and Results

In this section, we provide a comprehensive evaluation of our proposed two-stage
video violence detection framework. The discussion begins with an overview of the datasets
utilized for training and evaluation, emphasizing their diversity and significance in the
context of violence detection. We then detail the experimental setup, including network
configurations, training strategies, and implementation specifics. Standard evaluation
metrics are defined and employed to quantitatively measure the framework’s performance.
The results of our approach are analyzed and benchmarked against state-of-the-art methods,
demonstrating the superiority of integrating GMFlow-generated optical flow with the
CBAM-enhanced ResNet3D architecture for capturing spatial-temporal dynamics. Lastly,
we offer an in-depth discussion of the framework’s strengths, limitations, potential for
practical applications, and opportunities for future enhancement.

4.1. Datasets

We evaluated the proposed framework on three widely recognized datasets tailored
for violence detection: Hockey Fight [16], Crowd Violence [17], and UBI-Fight [18]. These
datasets present diverse challenges, ensuring a comprehensive evaluation of our model’s
performance. Details of each dataset are outlined below:
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*  Hockey Fight Dataset: This dataset consists of 1000 video sequences evenly divided
into two categories: fights and non-fights. The videos are captured during hockey
matches, making the dataset ideal for detecting aggressive behaviors in confined and
fast-paced environments.

*  Crowd Violence Dataset: Specifically curated to address the detection and classifica-
tion of violent crowd behavior, this dataset comprises 246 videos, evenly split into
123 violent and 123 non-violent scenarios. The videos, collected from YouTube, feature
a diverse range of real-world challenges, including varying scene types, video quali-
ties, and surveillance conditions. To enhance usability, all videos were de-interlaced,
stored as AVI files, and resized to 320 x 240 pixels, making this dataset a robust
benchmark for uncontrolled, in-the-wild conditions.

e  UBI-Fight Dataset: The UBI-Fight dataset serves as a comprehensive benchmark for
detecting fighting events in surveillance footage. It contains 1000 videos, including
216 sequences of real-life fighting scenarios and 784 showcasing everyday activities. To
ensure relevance, extraneous content such as video introductions and news segments
was meticulously removed during curation. The dataset spans diverse environments
and scenarios, capturing footage under varying conditions such as different times of
day, uncontrolled poses, inconsistent lighting, and varying spatial scales. Frequent
occlusions and complex interactions further challenge the detection process, making
this dataset a robust testbed for evaluating video-based anomaly detection models.

A statistical summary of the datasets is presented in Table 2, offering a clear compari-
son of the number of videos and their violent and non-violent categorizations.

Table 2. Statistical overview of the datasets used for violence detection.

Dataset Total Videos Violent Non-Violent FPS

Hockey 1000 500 500 25

Crowd 246 123 123 25
UBI-Fight 1000 216 784 30

4.2. Experimental Setup

Each video dataset was resized to an image resolution of 256 x 256 to maintain con-
sistency across inputs. The datasets were split into 80% for training and 20% for testing
to ensure a fair evaluation. The experimental workflow was divided into two stages: In
the first stage, optical flow images were generated using the pre-trained GMFlow network,
which required no additional training. Instead, its pre-trained weights were loaded to
process the video datasets and extract optical flow images, representing the temporal
motion of video sequences. In the second stage, the CBAM-enhanced ResNet3D network
was trained using both RGB frames and the optical flow images generated in Stage 1. This
integration allowed the model to effectively capture complementary spatial and temporal
features crucial for detecting violent actions.

The training spanned 200 epochs using the AdamW optimizer with an initial learning
rate of 4 x 10~* , which was progressively reduced via a cosine annealing scheduler to
stabilize convergence. The batch size was set to 4, balancing GPU memory constraints with
effective model training. The loss function employed was cross-entropy loss, suitable for
the binary classification task (violent vs. non-violent).

The training process was conducted on a high-performance NVIDIA GeForce RTX
4090 GPU, leveraging its computational power to expedite processing. The system ran
on Windows 11, ensuring compatibility with the latest software libraries. The model was
implemented in PyTorch [43], utilizing its flexibility and efficiency for seamless implementa-
tion and training. This structured setup, combined with advanced hardware and software,
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ensured effective model training while optimizing spatial-temporal feature integration for
robust violence detection.

Integrating GMFlow-generated optical flow with RGB frames posed several challenges.
First, the temporal misalignment issue—optical flow represents movement across two
consecutive frames, while RGB images capture static spatial features. To mitigate this,
we selected the first frame of each pair used for optical flow computation, ensuring a
consistent spatiotemporal representation. Second, differences in feature scales between
RGB and optical flow maps required normalization. We standardized optical flow values
and aligned their intensity range with RGB inputs to facilitate effective feature fusion.
Finally, model complexity was a consideration, as incorporating two different data streams
increased the network’s computational cost. To optimize efficiency, we employed CBAM to
selectively focus on essential spatial-temporal features, reducing unnecessary computations
and improving detection performance.

4.3. Evaluation Metrics

To evaluate the performance of our proposed framework, we adopt two widely
recognized metrics: Accuracy (ACC) and Area Under the Receiver Operating Characteristic
Curve (AUC). These metrics are selected to provide a well-rounded assessment of the
model’s ability to classify violent and non-violent actions.

(a) Accuracy (ACC): Accuracy is a fundamental metric that measures the proportion
of correctly classified instances out of the total instances. It is formally defined as:

TP+ TN

= 1
ACC TP+ TN+ FP+FN’ @

where TP, TN, FP, and FN represent true positives, true negatives, false positives, and
false negatives, respectively.

Accuracy provides an overall measure of the classification performance and is useful
for evaluating the proportion of correct predictions. However, it can be sensitive to class
imbalance, as it treats both classes equally without considering their proportions in the
dataset. In cases where the dataset is imbalanced, accuracy might be misleading, especially
when the majority class dominates the classification. Therefore, accuracy alone is not
sufficient, but it serves as a basic indicator of overall performance.

(b) Area Under the Curve (AUC): AUC is a more robust metric that assesses the
ranking ability of a binary classifier across all possible decision thresholds. It is derived
from the Receiver Operating Characteristic (ROC) curve, which plots the False Positive
Rate (FPR) on the x-axis against the True Positive Rate (TPR) on the y-axis.

The TPR and FPR are defined as follows:

TP FpP

TR=7p7 v "R= TN

()

AUC provides a scalar value ranging from 0 to 1, where a value closer to 1 indicates
excellent classification performance. A high AUC signifies that the model effectively
distinguishes between positive and negative classes, even in the presence of class imbalance.
In contrast to ACC, AUC evaluates how well the model ranks the instances, regardless of
the decision threshold, making it less sensitive to class distribution.

Using both ACC and AUC provides complementary insights into the model’s perfor-
mance. While ACC evaluates the overall correctness of predictions, AUC measures the
model’s ability to distinguish between violent and non-violent actions, particularly useful
in the context of class imbalance. Together, these metrics offer a comprehensive view of
the model’s effectiveness in classifying actions, balancing both overall performance and
discriminatory power.
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4.4. Results

The performance of the proposed framework was evaluated on three benchmark
datasets: Hockey Fight, Crowd Violence, and UBI-Fight. The evaluation metrics were
selected based on the characteristics of each dataset. Accuracy (ACC) was used for the
balanced Hockey Fight and Crowd Violence datasets, while the area under the receiver
operating characteristic curve (AUC) was employed for the unbalanced UBI-Fight dataset.

4.4.1. Performance on UBI-Fight Dataset

To address the imbalance in the UBI-Fight dataset, the AUC metric was used for
evaluation. As shown in Table 3, our method achieved an AUC of 0.963, outperforming
the state-of-the-art (SOTA) methods: Hasan et al. [32], Ravanbakhsh et al. [44], YS Chong
et al. [45], Wang et al. [33], Bruno et al. [18], Sultani et al. [31], Degardin et al. [36], and Park
et al. [4]. This demonstrates the robustness of the proposed framework in handling unbal-
anced datasets and its ability to capture complementary spatiotemporal representations.

Table 3. Performance comparison of the proposed framework with SOTA methods on the UBI-Fight
dataset (evaluated using AUC).

Method AUC

Hasan et al. [32] 0.528
Ravanbakhsh et al. [44] 0.533
YS Chong et al. [45] 0.541
Wang et al. [33] 0.610
Bruno et al. [18] 0.819
Sultani et al. [31] 0.892
Degardin et al. [36] 0.906
Park et al. [4] 0.952
Ours 0.963

4.4.2. Performance on Hockey Fight and Crowd Violence Datasets

For the balanced Hockey Fight and Crowd Violence datasets, ACC was used as
the evaluation metric. Table 4 presents the results, where our framework achieved an
accuracy of 97.5% on the Hockey Fight dataset and 94.0% on the Crowd Violence dataset.
Compared with four SOTA methods—Hasan et al. [32], Sultani et al. [31], C3D [19], and
Park et al. [4]—our approach demonstrated consistent improvement, showcasing its ability
to generalize effectively to different violence detection scenarios.

Table 4. Performance comparison of the proposed framework with SOTA methods on Hockey Fight
and Crowd Violence datasets (evaluated using ACC).

Method Hockey Fight Crowd Violence
Hasan et al. [32] 93.4 83.4
Sultani et al. [31] 96.8 94.5

Du Tran et al. [19] 96.5 84.44
Park et al. [4] 94.5 92.0
Ours 97.5 94.0

The results validate the proposed framework’s ability to achieve consistently high
performance across datasets with diverse characteristics. By integrating GMFlow-derived
optical flow and spatial features from RGB frames, the framework effectively captures com-
plementary spatiotemporal representations, achieving robust and versatile performance for
video violence detection tasks.
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To assess the generalization capability of our framework, we evaluated it on three
benchmark datasets, each representing distinct challenges in violence detection. The
Hockey Fight dataset captures structured, sports-based violent interactions, while the
Crowd Violence dataset presents complex real-world group interactions in uncontrolled
environments. UBI-Fight introduces additional diversity by including both staged and
real-world violent incidents, incorporating varying lighting, background complexity, and
camera perspectives. The strong performance of our model across these datasets (97.5% on
Hockey, 94.0% on Crowd, and 0.963 AUC on UBI-Fight) highlights its robustness in han-
dling different types of violent behaviors, demonstrating broad applicability beyond a
single dataset.

4.5. Limitations

While the proposed framework demonstrates high accuracy across benchmark
datasets, certain limitations must be acknowledged. The model’s performance can be
affected by environmental factors such as variations in lighting conditions, camera per-
spectives, and occlusions, which may impact the effectiveness of optical flow estimation.
Additionally, our approach primarily focuses on detecting violent actions with clear motion
cues, making it less effective in identifying subtle or non-physical aggression, such as
intimidation or threats. Another limitation is the generalizability of our model to unseen
real-world datasets, as the training datasets may not fully capture the diversity of violent
scenarios encountered in real-world surveillance applications.

Despite its benefits, weakly supervised learning has limitations. One major challenge
is the inability to localize violent segments within a video precisely, as labels are assigned at
the video level. This can lead to misclassifications, particularly in scenes with mixed violent
and non-violent activities. Additionally, weakly supervised models are more susceptible to
biases in training data, making them less reliable when applied to unseen scenarios.

These challenges point to important areas for future research, which are explored in
the following section.

4.6. Ablation Study: Evaluating the Impact of Optical Flow and CBAM

This subsection presents an ablation study to analyze the contributions of optical flow
generation and the CBAM-enhanced ResNet3D network to the overall performance of the
proposed framework. The objective is to examine how these components, individually and
collectively, influence the effectiveness of video violence detection. We trained and tested
four variations of the model to analyze their contributions:

1. Baseline: ResNet3D without CBAM and without the first stage (using RGB
frames only).

2. ResNet3D + CBAM: ResNet3D with CBAM but without the first stage (using RGB
frames only).

3. ResNet3D + Optical Flow: ResNet3D without CBAM but incorporating the first stage
(optical flow combined with RGB frames).

4.  Full Framework: ResNet3D with CBAM and the first stage (optical flow combined
with RGB frames).

The evaluation metrics remain consistent across all configurations to ensure a fair com-
parison. Specifically, we report the model’s accuracy (ACC) and improvement percentage
(%) relative to the baseline. As shown in Table 5, incorporating optical flow and CBAM inde-
pendently leads to performance gains, while the combination of both achieves the highest
accuracy. This demonstrates the complementary strengths of spatial attention mechanisms
(CBAM) and motion features (optical flow) in improving video violence detection.
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Table 5. Ablation study evaluating the impact of optical flow and CBAM on video violence detection.
Each configuration is assessed based on accuracy (ACC) and relative improvement over the baseline.
v/ indicates a component is used, while X indicates it is not.

Config. No. CBAM Optical Flow ACC (%) Improvement (%)
1 (Baseline) X X 94.0 -

2 (ResNet3D + CBAM) 4 X 95.0 +1.0

3 (ResNet3D + Optical Flow) X v 95.5 +1.5

4 (Full Framework) v v 97.5 +3.5

The findings from Table 5 confirm the significant contributions of both optical flow
and CBAM to the proposed framework’s performance. The model achieves enhanced
spatial-temporal feature representation by integrating these components, resulting in
superior accuracy.

The ablation study highlights the importance of combining motion and spatial atten-
tion mechanisms for robust violence detection. While ResNet3D alone provides a strong
baseline, integrating CBAM improves its ability to selectively focus on informative regions,
and the addition of optical flow enhances temporal feature representation. This synergy
underscores the necessity of both components for achieving state-of-the-art results on the
Hockey dataset.

5. Conclusions and Future Work

In this paper, we propose a two-stage framework for video violence detection that
integrates GMFlow-generated optical flow with a CBAM-enhanced ResNet3D architecture
to capture both spatial and temporal features. Our approach demonstrated superior
performance across multiple benchmark datasets, achieving high accuracy and AUC scores
when compared to state-of-the-art methods. The results prove the robustness and versatility
of our model in handling diverse video scenarios with varying complexities.

However, several options for future work could further enhance the effectiveness of the
proposed framework. First, we plan to use additional video features like audio and motion-
based cues to improve the model’s contextual understanding. Additionally, we aim to
explore applying semi-supervised or unsupervised learning techniques to strengthen large
amounts of unlabeled data, which could significantly improve the model’s generalization
and scalability. Finally, we intend to expand our framework’s applicability to a wider
range of real-world scenarios, such as detecting violence in highly dynamic or occluded
environments. By enhancing the robustness of the model to challenging situations, we
believe the framework can be adapted to broader video surveillance applications, such as
monitoring public spaces, events, and crowd behavior.

Furthermore, while our study focuses on model accuracy and robustness, a compre-
hensive computational cost analysis, including inference time and memory consumption,
remains an essential area for future exploration. Unlike some SOTA methods that primarily
report classification performance, future research will aim to provide a detailed evaluation
of computational efficiency, facilitating real-time deployment and resource optimization.
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Abbreviations

The following abbreviations are used in this manuscript:

CBAM Convolutional Block Attention Module
AUC Area Under the Curve

ACC Accuracy

CNNs  Convolutional Neural Networks
LSTM  Long Short-Term Memory

GAN Generative Adversarial Network
MIL Multiple Instance Learning

RTFM  Robust Temporal Feature Magnitude
13D Inflated 3D ConvNet

SOTA  State-Of-The-Art

RGB Red-Green-Blue
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