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Abstract — Software projects have a probability of high 

failure rates that appear to linger around 60% for 

significant IT projects. Estimating time and project schedule 

are crucial tasks and extremely influence the project 

outcomes. Artificial Intelligence now can provide multiple 

solutions for most problems of software projects.  This 

article aims to develop a Neural Network estimation model 

to manipulate the problem of timing for software projects. 

The model can predict the estimation value of project time 

which optimizes the scheduling process, the developed 

model achieved high accuracy after testing through the test 

datasets. 

 

Keywords— deep learning; neural networks; project 

management; artificial intelligence; time optimization 

I. INTRODUCTION  

The growing interest in the field of software project 

development leads to an increase in the number of 

software products that are developed by IT companies for 

solving various business problems [1]. Estimation of 

timing and schedule one of the main project development 

activity which causes the failure of software development 

[2,3]. This is due to an incorrect assessment of the 

complexity of the project, Technical defects in software 

products, improper qualifications of developers, and other 

factors. Improving the accuracy of determining the 

complexity of the project and predicting the time of 

software development will greatly simplify and 

systematize the management of IT projects, as well as 

save resources, which enriches the value of this research. 

Accordingly, improving the accuracy of estimating 

terms, labor intensity in man-hours, and other parameters 

in the future can significantly reduce financial costs and 

losses from the project going beyond the allotted time 

[1,3]. 

Since the 80s of the 20th century, many methods have 

been developed for calculating the term and 

laboriousness, but they have several disadvantages and 

are more adapted to the outdated procedural style of 

development. 

Also, in recent years areas of neural networks, 

machine learning, artificial intelligence has been actively 

developing. Models built using these methods, with 

proper training and tuning on the right data sets, can 

generate accurate results that are approaching or even 

exceeding an expert estimate [4,5,6,7,8,9,10]. 

Therefore, this work is devoted to the research and 

analysis of evaluation methods, models based on neural 

networks, and the construction of an artificial neural 

network model that can effectively assess the timing and 

complexity of an IT project [11,12]. 

The purpose of the research is to test the suitability of 

classical estimation methods superimposed on a neural 

network model for evaluating the parameters of a wide 

range of various IT projects. 

Our research objectives are:  

• Analysis of classical methods for evaluating 

project parameters. 

• Analysis of modern assessment methods 

• Development of a model for the evaluation 

of modern IT projects 

• Testing the developed model on current 

datasets 

The subject of the research is a preliminary 

assessment of the properties of the project (time and labor 

intensity). The object of the research is IT projects, which 

include the development of software, databases, 

information systems, software, and hardware systems, as 

well as neural networks as an evaluation method. 

The research methodological apparatus uses such 

methods as the research of articles and scientific sources, 

the analysis of neural network architectures, data 

collection, markup, and modeling, followed by a 

comparative analysis of the results. 

The main hypothesis of the research is that with the 

help of a correctly constructed and trained neural network 

model, based on the parameters of COCOMO [13,14,18] 

systems and others, it is possible to estimate the actual 

terms of the project with sufficient accuracy (while 

analyzing the qualifications of employees, possible risks 

from the customer, etc.). 

This research has a high degree of novelty, because, 

in the field of constantly changing technologies, IT 

project management methods (Scrum, Agile, etc.), and 

approaches, the old methods and evaluation algorithms 

no longer work, or require many hard-to-calculate 

parameters (function points, SLOC) for the correct 

evaluation. Accordingly, they are not suitable for new IT 20
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projects and a more adapted solution is needed. The 

research has sufficient theoretical significance (improving 

and combining existing methods, testing them on new 

data sets) and highly practical, since the developed model 

with some adaptation will improve the accuracy of the 

estimation, reduce the financial and reputation costs of 

software companies, and information systems. 

The main results of the research – the developed 

model – were tested on the main datasets of the NASA 

[15] and ISBG [16] series, showing high accuracy. Tests 

were also conducted on a limited number of real IT 

projects from the areas of web projects and VR projects. 

The project structure consists of an analysis of existing 

project evaluation methods, an overview of the data sets 

used, a description of the architecture of the developed 

model, and its testing on data sets. 

II. LITERATURE REVIEW 

Software development cost and duration estimation 

research areas have a long and interest history from the 

20th century to the current day. It successively passed 

stages from expert judgment, simple basic algorithms, 

statistic regressions to machine learning and neural 

network. 

Each of the models developed by the community has 

several advantages and disadvantages. 

Thus, expert evaluation and the Delphi method [17] allow 

you to generalize and use the experience of experts and 

work well in conditions when projects are quite similar 

and put-on stream (for example, in outsourcing 

companies, in a well-coordinated team with assigned 

development processes, with experienced project 

managers). However, they are subject to human factors, 

and they also tend to systematically overestimate or 

underestimate the timing or complexity of the project. 

The COCOMO[18] evaluation method and its 

improved version, COCOMO II, allow you to evaluate 

the timing and complexity of project development, but 

the accuracy of their work strongly depends on how 

detailed the model was selected, as well as in what units 

the complexity of the project is measured. Due to its age, 

the evaluation method does not consider the features of 

modern IT projects development, other design, and 

development principles (object-oriented model, 

components, microservices, reuse of code and libraries, 

increased number of frameworks and plugins). 

Genetic algorithms [19] differ in several features 

and usually, the quality of their evaluation depends 

heavily on the implementation features. Each company 

needs to develop a suitable algorithm again. Also, due to 

its nature, evaluating the timing and complexity of a 

project using a genetic algorithm can take up many 

computing resources, as well as have a nonlinear 

complexity depending on the number of input parameters. 

Models based on neural networks [5,6] usually do not 

require a thorough detailed study of the logical model 

(which is often virtually impossible to develop correctly 

for any large project). We can also select the data that is 

relevant to the project and sort it by priority. The 

technique of training a neural network on input data 

provides great opportunities. Many available architecture 

options make it possible to choose the appropriate one or 

test several possible architectures. Not the last place in 

the list of advantages of models based on neural networks 

is occupied by the worldwide trend to popularize neural 

networks, which gives a huge advantage in the ability to 

choose the infrastructure. Many cloud providers offer 

ready-made services for configuring, training, validating, 

and running the model. A huge number of development 

environments (Jupyter Notebook, Anaconda, RStudio, 

SAS, and others) allows you to gradually train internal 

specialists to work with this technology. 

However, models based on neural networks and 

using machine learning have several disadvantages. The 

model can detect false correlations where there are none. 

For example, we feed the model the volume values of test 

databases [8,9,10], and the model begins to consider the 

performance of the command to depend on the size of the 

databases, which may be incorrect. 

A big problem is the dependence of models on 

the quality and quantity of input data. It is quite difficult 

to collect an array of data of acceptable quantity and 

quality, especially in the field of software development 

and maintenance.  

The best choice of model depends on the context 

project specifics, development team, and model 

requirements. If all processes and their development 

properties are standardized and do not change, and top 

managers need a common tool for approximate parameter 

estimation, the proven COCOMO and COCOMO II 

[13,14,18] will be a good choice. However, if the 

development takes place in an environment of constantly 

changing requirements (flexible methodologies, Scrum), 

technologies (new programming languages, frameworks, 

technologies, and methodologies (DevOps), then the 

classic algorithms for assessing complexity will not work 

here and you will need to develop your model using new 

technologies. 

Neural networks play a key role in the 

developed models. It is their inputs that provide data 

about the project, the composition, features of the project 

team, requirements, customer characteristics, 

environmental properties, and others. The data format is 

adapted to the features of the neural network and its 

architecture. 

The area of evaluating the timing, complexity, 

and other parameters of the project requires the 

development of a universal framework/information 

system with the possibility of changing the characteristics 

of the evaluated project and the project team [28,29]. 

In this paper, we have developed a model that 

aims to provide a universal evaluation of software 

projects, regardless of the scope and type of project, with 
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the ability to adapt to a specific project team and 

environment. 

Further development and research in this area, 

improvements, and adaptation of neural networks in the 

future can significantly change the area of project 

management related to software development. Regular 

and widespread use of adaptive models and frameworks 

for estimating deadlines and costs can reduce the 

frequency of budget overruns or delays. This step will 

increase the profitability of the IT industry and make it 

almost as predictable as the more conservative technical 

sectors – construction, aviation, and mechanical 

engineering, which will have an exceptionally positive 

impact on the global economy. 

III. RESEARCH METHODOLOGY 

The methods used in this work relate both to work 

with data processing and preparation, as well as to the 

development and verification of the model itself for 

estimating the time and complexity of software. 

a.  Data processing 

Properly processed and systematized data should be 

used as the data that serves as the basis for the 

development and construction of the model. Since this 

work is devoted to estimating the timing and complexity 

of software development, the main source data here are 

the properties and parameters of existing projects. 

Before bringing existing and collected data to a 

general view, we need to formulate a list of variables and 

their format, i.e., in essence, to form a sample to which 

all external experimental data will be converted. 

The main common data that the model should have at 

the input to correctly estimate the timing and complexity 

of software development are the following: 

1. Project complexity 

2. The number, structure, and experience of 

developers 

3. Experience of the project manager and his 

assistants 

4. «Quality» of the customer – how well he or she sets 

tasks, evaluates deadlines, sends requirements with 

changes, frequency, and quality of communications. 

5. The ability to reuse the code or modules. 

6. Used technologies, languages, frameworks 

Based on these requirements, we can create a general 

list of variables-columns that must be in the dataset to 

ensure that they can be used in the development or 

validation of the model: 

1. Project year 

2. Platform 

3. The number of development languages 

4. The number and experience of the development 

team 

5. Project duration in months 

6. The size of the project 

7. The design 

8.Type of development (new project or 

support/revision of an existing one) 

9. Percentage of reusing code and modules 

10. Reliability requirements 

11. Architecture. 

b. Research methods 

Theoretical methods [20] are intended for researching 

without direct interaction with the object. The theoretical 

methods used in this paper are listed below. 

1. The analysis is the mental division of an object 

into its parts, elements, and attributes.  

2. Synthesis is the opposite process of combining 

the parts and features of an object selected during 

analysis into a single whole. In this paper, the 

analysis was used to find ways to solve the main 

goal of the study – to estimate the timing and 

complexity of software development. To do this, 

the evaluation process itself was divided into a 

set of features that should be evaluated 

(Complexity, Duration, and Laboriousness) 

Empirical methods [20] used in this work include the 

study of literature, documents, and results of 

activities, measurement, and expert assessments. The 

study of literature, documents, and research on the 

topic is the main empirical method of this work. Since 

the topic of this research is on the one hand quite 

extensive (due to the intersection with the research on 

neural networks and machine learning), and on the 

other hand – small (due to the small number of 

serious works on this topic), it becomes obvious that a 

special protocol for systematic study and review of 

literature should be developed. A diagram of the 

literature selection and sorting process is shown in Fig 

1. 

c. Datasets 

Existing datasets (Kemerer, Maxwell, Albrecht, and 

others) [21,22,23] have a low relevance and low 

compatibility with each other, and this work has collected 

data about projects based on the author’s own experience 

as a developer. All information was grouped into 13 main 

features during analysis: 

- Name is the name of the project. The information 

characteristic for distinguishing project during 

debugging, configuration, and testing of the 

model. For some projects, the real name was 

changed to a conditional one for data protection 

reasons. 

- Year is the year when the project started 

developing. Information characteristic. 

- Platform is the main (and only one in the case of 

non-cross-platform development) platform of the 

project, where it was first tested and passed the 

customer acceptance procedures. During the 

analysis, the following possible options were 

identified: Desktop, Mobile, and Web. For cross-

platform projects, as well as those where there 
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was no unambiguous dominance of any option, 

the Generic option was left. 

- Language means the main development language. 

It is a programming language that was used to 

develop the main modules and plugins for the 

project. However, the Generic option is left for 

the microservice architecture (see below) and for 

some projects. 

 

Figure 1.  Literature review processing stages 

- Team is the composition of the project team. In 

this work, the following formula of estimating the 

project team was used: 

                             (1) 

 

where n is the number of developers; Ri is the rank of 

developer, rated on the generally accepted Junior, 

Middle, and Senior scale. 

  is the time spent by the developer on the project. It 

means a mode of operation: 

                                   (2)  

That is, the ratio of the number of hours that the 

developer works on the average project per day to 8 (the 

standard daily norm). For full time developers, this 

indicator will be equal to 1. 

- Size Metric is the project size estimation metric. 

Since estimation using the Use Case points or 

Feature points methodologies is associated with a 

large amount of work and is not always possible, 

and the sources of all projects were available, the 

LOC (count of lines of code) metric was chosen 

for compiling the dataset. Size is the project size 

in LOC. 

- Development Mode is the type of work – a 

completely new project or reworking/fixing an 

existing one. 

- Code Reuse means an indicator of re-use of code, 

modules, or libraries. It is estimated from 0% to 

100%. 

- Architecture is the software architecture of the 

project. The analyzed projects were mostly based 

on a multi-layer or micro-service architecture. 

- Customer Quality is an indicator of the 

customer’s «quality». Despite the absence of this 

parameter in most existing works, the frequency 

and quality of communication with the customer, 

the number of additional requests and 

requirements for the project, put forward after the 

start of development, directly affects the final 

period of project implementation. This parameter 

varies from 1 to 3. 

- Project Management Quality is an indicator of 

the experience and suitability of the project 

manager, his/hers assistants, administrators (if 

available), and the maturity of project 

management in the team and company. 

- Duration means the actual period of project 

implementation from initiation to delivery to the 

customer. 

Fig. 2 show the dataset features correlation with project’s 

duration. 

d. Model 

Based on the collected dataset we have built a 

deep learning model to predict the duration of the project. 

Deep neural networks can re-use the features computed in 

each hidden layer in higher hidden layers. This enables a 

deep neural network to exploit compositional structure in 

a function, and to approximate many natural functions 

with fewer weights and units. 

Our models contain 6 layers: the first and fifth 

layers contain 64 features with SELU [24] and linear 

activation function [25], the second and fourth layers 

contain 128 features with RELU activation function, the 

third layer contains 256 features, and the output layer to 

predict the duration of the project. 

 
Figure 2.  Dataset features correlation with project’s duration    

The training of the networks was achieved with 

the Stochastic Gradient Descent algorithm [26] using 

mini batches of size 16. The data were divided into 

training (70%) and testing (30%), and the networks were 
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all regularized using early stopping and gradient norms, 

and the dropout mechanism and weight decay for some of 

the networks. Network parameters have all been 

randomly initialized from a uniform distribution, which is 

a good initialization technique for deep networks. 

e. Experiments 

The proposed and tested models have all been 

implemented using the Pytorch library for Python, which 

enables the straightforward use of highly optimized 

mathematical operations on GPUs via Python. PyTorch 

[27] is a Python package with two high-level features: 

tensor computing (like NumPy) with heavy GPU 

acceleration and deep neural networks built on a tape-

based auto-grade framework. The tests were performed 

on a computer with 2x-Intel(R) Xeon(R) E-5-2680 and 4x 

"NVIDIA Tesla k20x" CPUs. 

IV. RESULT 

The average error value and standard deviation 

were recorded as parameters that reflect the quality of the 

model and the achievement of results. 

Our model achieves an average error is 0.38 and a 

standard deviation is 3.35. The results of model 

validation on a test sample are presented in Table.1. 

TABLE 1 MODEL VALIDATION ON TEST DATASET 

Real 

duration 12 68 12 24 16 32 3 36 

Predicted 

duration 12 67 18 28 16 26 2 37 

 

Project Evaluation Survey is base part for the 
stage of selecting problems and methods of its resolution. 

During the survey, 50 respondents were interviewed and 

answers to 7 questions were collected. 

72% of respondents work in information 

technology, 16% in Finance and Economics, 4% in 

Healthcare, and 2% in Education. Most respondents 

participated in projects as Project manager/Assistant 

(46.7%), Analyst (42.2%), Developer (62.2%), Teamlead 

(20%), see Fig. 3. 

 
Figure 3.  Project roles 

According to the respondents’ answers, most 

projects used expert estimation methods by a large 

margin (82.2%), to a lesser extent – Delphi or algorithmic 

evaluation shown in Fig 4. Whereas the average accuracy 

of the preliminary estimation according to the opinions of 

the respondents was 3.22 (see Fig. 5). 

According to the survey’s data, the majority 

(55.6%) of respondents believe that the use of automated 

tools, artificial intelligence models and machine learning 

can significantly improve the accuracy of the preliminary 

estimation of the duration and complexity of the project. 

Based on the analysis of the survey results, the following 

conclusions can be made: 

1. The vast majority of IT professionals have 

participated in project implementation one or more times. 

2. During the course of a career, a person 

performs different roles, sometimes even within the same 

project (for example, simultaneously the role of team 

leader and analyst, or project manager and administrator, 

developer and analyst, etc.) 

3. Despite the rapidly developing industry and 

general trends towards automation, many components of 

project management still use classical methods. For 

example, most projects used top-down evaluation or 

expert evaluation. Proven methods such as the COCOMO 

algorithm, parametric estimation, and others are rarely 

used in current projects. 

4. The accuracy of classical methods is 

susceptible to systematic errors. 

5. Applying new and improving old methods of 

preliminary project estimation can significantly improve 

the accuracy of the assessment. The use of methods based 

on neural network models and machine learning, 

according to the results of the survey, can give a good 

boost in this area. 

 

 

Figure 4.  Methods used for project evaluation 

V. CONCLUSION 

The main research papers in the field of 

estimating the time and complexity estimation of the 

project were analyzed in this work. In the process of the 

analysis, as well as based on the results of the survey, the 

need to improve estimating methods and to develop new 

models was identified. 
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Neural network architecture was chosen as the 

basis for the model as a promising technology. The 

developed model, consisting of 6 layers, showed fairly 

high results on a test sample from the dataset compiled by 

the author. 

Of course, the developed model needs further 

improvement, training, and validation on large amounts 

of real data from projects. However, it can be used for 

parallel estimation of real future projects in experimental 

mode already now. 

 

 

Figure 5.  Accuracy of preliminary project estimation 

The big advantage of the developed architecture 

is that input data can be easily collected from completed 

projects if there is a certain amount of project 

documentation, logs, and version control system data. 

This makes it easier to integrate the model into the 

pipeline for estimating and implementing software 

development projects in teams and companies. 

Two scientific articles that revealed the 

differences and features of existing datasets, as well as 

recommendations on the process of collecting data on the 

project, were written during the research process. 

This work makes a large contribution and has 

high scientific novelty in the area of project management 

and information technology. 
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