
2021 IEEE Smart Information Systems and Technologies (SIST)

28-30 April, 2021, Nur-Sultan, Kazakhstan

Neural Network Estimation Model to Optimize

Timing and Schedule of Software Projects
Mohamed A. Hamada1, Abdelrahman Abdallah2*, Mahmoud Kasem3, Mohamed Abokhalil4

1Department of Information System, International IT University, Kazakhstan, Dr.mmhamada@gmail.com
2*Department of Machine Learning & Data Science, Satbayev University, Kazakhstan, abdoelsayed2016@gmail.com

3Department of Machine Learning & Data Science, Satbayev University, Kazakhstan, mahmouds.192@gmail.com
4Department of Information Technology, Assiut University, Egypt, mohammed1994hamdyy@gmail.com

Abstract — Software projects have a probability of high

failure rates that appear to linger around 60% for

significant IT projects. Estimating time and project schedule

are crucial tasks and extremely influence the project

outcomes. Artificial Intelligence now can provide multiple

solutions for most problems of software projects. This

article aims to develop a Neural Network estimation model

to manipulate the problem of timing for software projects.

The model can predict the estimation value of project time

which optimizes the scheduling process, the developed

model achieved high accuracy after testing through the test

datasets.

Keywords— deep learning; neural networks; project

management; artificial intelligence; time optimization

I. INTRODUCTION

The growing interest in the field of software project

development leads to an increase in the number of

software products that are developed by IT companies for

solving various business problems [1]. Estimation of

timing and schedule one of the main project development

activity which causes the failure of software development

[2,3]. This is due to an incorrect assessment of the

complexity of the project, Technical defects in software

products, improper qualifications of developers, and other

factors. Improving the accuracy of determining the

complexity of the project and predicting the time of

software development will greatly simplify and

systematize the management of IT projects, as well as

save resources, which enriches the value of this research.

Accordingly, improving the accuracy of estimating

terms, labor intensity in man-hours, and other parameters

in the future can significantly reduce financial costs and

losses from the project going beyond the allotted time

[1,3].

Since the 80s of the 20th century, many methods have

been developed for calculating the term and

laboriousness, but they have several disadvantages and

are more adapted to the outdated procedural style of

development.

Also, in recent years areas of neural networks,

machine learning, artificial intelligence has been actively

developing. Models built using these methods, with

proper training and tuning on the right data sets, can

generate accurate results that are approaching or even

exceeding an expert estimate [4,5,6,7,8,9,10].

Therefore, this work is devoted to the research and

analysis of evaluation methods, models based on neural

networks, and the construction of an artificial neural

network model that can effectively assess the timing and

complexity of an IT project [11,12].

The purpose of the research is to test the suitability of

classical estimation methods superimposed on a neural

network model for evaluating the parameters of a wide

range of various IT projects.

Our research objectives are:

• Analysis of classical methods for evaluating

project parameters.

• Analysis of modern assessment methods

• Development of a model for the evaluation

of modern IT projects

• Testing the developed model on current

datasets

The subject of the research is a preliminary

assessment of the properties of the project (time and labor

intensity). The object of the research is IT projects, which

include the development of software, databases,

information systems, software, and hardware systems, as

well as neural networks as an evaluation method.

The research methodological apparatus uses such

methods as the research of articles and scientific sources,

the analysis of neural network architectures, data

collection, markup, and modeling, followed by a

comparative analysis of the results.

The main hypothesis of the research is that with the

help of a correctly constructed and trained neural network

model, based on the parameters of COCOMO [13,14,18]

systems and others, it is possible to estimate the actual

terms of the project with sufficient accuracy (while

analyzing the qualifications of employees, possible risks

from the customer, etc.).

This research has a high degree of novelty, because,

in the field of constantly changing technologies, IT

project management methods (Scrum, Agile, etc.), and

approaches, the old methods and evaluation algorithms

no longer work, or require many hard-to-calculate

parameters (function points, SLOC) for the correct

evaluation. Accordingly, they are not suitable for new IT 20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

m
ar

t I
nf

or
m

at
io

n
Sy

st
em

s a
nd

 T
ec

hn
ol

og
ie

s (
SI

ST
) |

 9
78

-1
-7

28
1-

74
70

-9
/2

0/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
SI

ST
50

30
1.

20
21

.9
46

58
87

Authorized licensed use limited to: Chungbuk National Univ. Downloaded on October 31,2025 at 02:23:08 UTC from IEEE Xplore. Restrictions apply.

projects and a more adapted solution is needed. The

research has sufficient theoretical significance (improving

and combining existing methods, testing them on new

data sets) and highly practical, since the developed model

with some adaptation will improve the accuracy of the

estimation, reduce the financial and reputation costs of

software companies, and information systems.

The main results of the research – the developed

model – were tested on the main datasets of the NASA

[15] and ISBG [16] series, showing high accuracy. Tests

were also conducted on a limited number of real IT

projects from the areas of web projects and VR projects.

The project structure consists of an analysis of existing

project evaluation methods, an overview of the data sets

used, a description of the architecture of the developed

model, and its testing on data sets.

II. LITERATURE REVIEW

Software development cost and duration estimation

research areas have a long and interest history from the

20th century to the current day. It successively passed

stages from expert judgment, simple basic algorithms,

statistic regressions to machine learning and neural

network.

Each of the models developed by the community has

several advantages and disadvantages.

Thus, expert evaluation and the Delphi method [17] allow

you to generalize and use the experience of experts and

work well in conditions when projects are quite similar

and put-on stream (for example, in outsourcing

companies, in a well-coordinated team with assigned

development processes, with experienced project

managers). However, they are subject to human factors,

and they also tend to systematically overestimate or

underestimate the timing or complexity of the project.

The COCOMO[18] evaluation method and its

improved version, COCOMO II, allow you to evaluate

the timing and complexity of project development, but

the accuracy of their work strongly depends on how

detailed the model was selected, as well as in what units

the complexity of the project is measured. Due to its age,

the evaluation method does not consider the features of

modern IT projects development, other design, and

development principles (object-oriented model,

components, microservices, reuse of code and libraries,

increased number of frameworks and plugins).

Genetic algorithms [19] differ in several features

and usually, the quality of their evaluation depends

heavily on the implementation features. Each company

needs to develop a suitable algorithm again. Also, due to

its nature, evaluating the timing and complexity of a

project using a genetic algorithm can take up many

computing resources, as well as have a nonlinear

complexity depending on the number of input parameters.

Models based on neural networks [5,6] usually do not

require a thorough detailed study of the logical model

(which is often virtually impossible to develop correctly

for any large project). We can also select the data that is

relevant to the project and sort it by priority. The

technique of training a neural network on input data

provides great opportunities. Many available architecture

options make it possible to choose the appropriate one or

test several possible architectures. Not the last place in

the list of advantages of models based on neural networks

is occupied by the worldwide trend to popularize neural

networks, which gives a huge advantage in the ability to

choose the infrastructure. Many cloud providers offer

ready-made services for configuring, training, validating,

and running the model. A huge number of development

environments (Jupyter Notebook, Anaconda, RStudio,

SAS, and others) allows you to gradually train internal

specialists to work with this technology.

However, models based on neural networks and

using machine learning have several disadvantages. The

model can detect false correlations where there are none.

For example, we feed the model the volume values of test

databases [8,9,10], and the model begins to consider the

performance of the command to depend on the size of the

databases, which may be incorrect.

A big problem is the dependence of models on

the quality and quantity of input data. It is quite difficult

to collect an array of data of acceptable quantity and

quality, especially in the field of software development

and maintenance.

The best choice of model depends on the context

project specifics, development team, and model

requirements. If all processes and their development

properties are standardized and do not change, and top

managers need a common tool for approximate parameter

estimation, the proven COCOMO and COCOMO II

[13,14,18] will be a good choice. However, if the

development takes place in an environment of constantly

changing requirements (flexible methodologies, Scrum),

technologies (new programming languages, frameworks,

technologies, and methodologies (DevOps), then the

classic algorithms for assessing complexity will not work

here and you will need to develop your model using new

technologies.

Neural networks play a key role in the

developed models. It is their inputs that provide data

about the project, the composition, features of the project

team, requirements, customer characteristics,

environmental properties, and others. The data format is

adapted to the features of the neural network and its

architecture.

The area of evaluating the timing, complexity,

and other parameters of the project requires the

development of a universal framework/information

system with the possibility of changing the characteristics

of the evaluated project and the project team [28,29].

In this paper, we have developed a model that

aims to provide a universal evaluation of software

projects, regardless of the scope and type of project, with

Authorized licensed use limited to: Chungbuk National Univ. Downloaded on October 31,2025 at 02:23:08 UTC from IEEE Xplore. Restrictions apply.

the ability to adapt to a specific project team and

environment.

Further development and research in this area,

improvements, and adaptation of neural networks in the

future can significantly change the area of project

management related to software development. Regular

and widespread use of adaptive models and frameworks

for estimating deadlines and costs can reduce the

frequency of budget overruns or delays. This step will

increase the profitability of the IT industry and make it

almost as predictable as the more conservative technical

sectors – construction, aviation, and mechanical

engineering, which will have an exceptionally positive

impact on the global economy.

III. RESEARCH METHODOLOGY

The methods used in this work relate both to work

with data processing and preparation, as well as to the

development and verification of the model itself for

estimating the time and complexity of software.

a. Data processing

Properly processed and systematized data should be

used as the data that serves as the basis for the

development and construction of the model. Since this

work is devoted to estimating the timing and complexity

of software development, the main source data here are

the properties and parameters of existing projects.

Before bringing existing and collected data to a

general view, we need to formulate a list of variables and

their format, i.e., in essence, to form a sample to which

all external experimental data will be converted.

The main common data that the model should have at

the input to correctly estimate the timing and complexity

of software development are the following:

1. Project complexity

2. The number, structure, and experience of

developers

3. Experience of the project manager and his

assistants

4. «Quality» of the customer – how well he or she sets

tasks, evaluates deadlines, sends requirements with

changes, frequency, and quality of communications.

5. The ability to reuse the code or modules.

6. Used technologies, languages, frameworks

Based on these requirements, we can create a general

list of variables-columns that must be in the dataset to

ensure that they can be used in the development or

validation of the model:

1. Project year

2. Platform

3. The number of development languages

4. The number and experience of the development

team

5. Project duration in months

6. The size of the project

7. The design

8.Type of development (new project or

support/revision of an existing one)

9. Percentage of reusing code and modules

10. Reliability requirements

11. Architecture.

b. Research methods

Theoretical methods [20] are intended for researching

without direct interaction with the object. The theoretical

methods used in this paper are listed below.

1. The analysis is the mental division of an object

into its parts, elements, and attributes.

2. Synthesis is the opposite process of combining

the parts and features of an object selected during

analysis into a single whole. In this paper, the

analysis was used to find ways to solve the main

goal of the study – to estimate the timing and

complexity of software development. To do this,

the evaluation process itself was divided into a

set of features that should be evaluated

(Complexity, Duration, and Laboriousness)

Empirical methods [20] used in this work include the

study of literature, documents, and results of

activities, measurement, and expert assessments. The

study of literature, documents, and research on the

topic is the main empirical method of this work. Since

the topic of this research is on the one hand quite

extensive (due to the intersection with the research on

neural networks and machine learning), and on the

other hand – small (due to the small number of

serious works on this topic), it becomes obvious that a

special protocol for systematic study and review of

literature should be developed. A diagram of the

literature selection and sorting process is shown in Fig

1.

c. Datasets

Existing datasets (Kemerer, Maxwell, Albrecht, and

others) [21,22,23] have a low relevance and low

compatibility with each other, and this work has collected

data about projects based on the author’s own experience

as a developer. All information was grouped into 13 main

features during analysis:

- Name is the name of the project. The information

characteristic for distinguishing project during

debugging, configuration, and testing of the

model. For some projects, the real name was

changed to a conditional one for data protection

reasons.

- Year is the year when the project started

developing. Information characteristic.

- Platform is the main (and only one in the case of

non-cross-platform development) platform of the

project, where it was first tested and passed the

customer acceptance procedures. During the

analysis, the following possible options were

identified: Desktop, Mobile, and Web. For cross-

platform projects, as well as those where there

Authorized licensed use limited to: Chungbuk National Univ. Downloaded on October 31,2025 at 02:23:08 UTC from IEEE Xplore. Restrictions apply.

was no unambiguous dominance of any option,

the Generic option was left.

- Language means the main development language.

It is a programming language that was used to

develop the main modules and plugins for the

project. However, the Generic option is left for

the microservice architecture (see below) and for

some projects.

Figure 1. Literature review processing stages

- Team is the composition of the project team. In

this work, the following formula of estimating the

project team was used:

 (1)

where n is the number of developers; Ri is the rank of

developer, rated on the generally accepted Junior,

Middle, and Senior scale.

 is the time spent by the developer on the project. It

means a mode of operation:

 (2)

That is, the ratio of the number of hours that the

developer works on the average project per day to 8 (the

standard daily norm). For full time developers, this

indicator will be equal to 1.

- Size Metric is the project size estimation metric.

Since estimation using the Use Case points or

Feature points methodologies is associated with a

large amount of work and is not always possible,

and the sources of all projects were available, the

LOC (count of lines of code) metric was chosen

for compiling the dataset. Size is the project size

in LOC.

- Development Mode is the type of work – a

completely new project or reworking/fixing an

existing one.

- Code Reuse means an indicator of re-use of code,

modules, or libraries. It is estimated from 0% to

100%.

- Architecture is the software architecture of the

project. The analyzed projects were mostly based

on a multi-layer or micro-service architecture.

- Customer Quality is an indicator of the

customer’s «quality». Despite the absence of this

parameter in most existing works, the frequency

and quality of communication with the customer,

the number of additional requests and

requirements for the project, put forward after the

start of development, directly affects the final

period of project implementation. This parameter

varies from 1 to 3.

- Project Management Quality is an indicator of

the experience and suitability of the project

manager, his/hers assistants, administrators (if

available), and the maturity of project

management in the team and company.

- Duration means the actual period of project

implementation from initiation to delivery to the

customer.

Fig. 2 show the dataset features correlation with project’s

duration.

d. Model

Based on the collected dataset we have built a

deep learning model to predict the duration of the project.

Deep neural networks can re-use the features computed in

each hidden layer in higher hidden layers. This enables a

deep neural network to exploit compositional structure in

a function, and to approximate many natural functions

with fewer weights and units.

Our models contain 6 layers: the first and fifth

layers contain 64 features with SELU [24] and linear

activation function [25], the second and fourth layers

contain 128 features with RELU activation function, the

third layer contains 256 features, and the output layer to

predict the duration of the project.

Figure 2. Dataset features correlation with project’s duration

The training of the networks was achieved with

the Stochastic Gradient Descent algorithm [26] using

mini batches of size 16. The data were divided into

training (70%) and testing (30%), and the networks were

Authorized licensed use limited to: Chungbuk National Univ. Downloaded on October 31,2025 at 02:23:08 UTC from IEEE Xplore. Restrictions apply.

all regularized using early stopping and gradient norms,

and the dropout mechanism and weight decay for some of

the networks. Network parameters have all been

randomly initialized from a uniform distribution, which is

a good initialization technique for deep networks.

e. Experiments

The proposed and tested models have all been

implemented using the Pytorch library for Python, which

enables the straightforward use of highly optimized

mathematical operations on GPUs via Python. PyTorch

[27] is a Python package with two high-level features:

tensor computing (like NumPy) with heavy GPU

acceleration and deep neural networks built on a tape-

based auto-grade framework. The tests were performed

on a computer with 2x-Intel(R) Xeon(R) E-5-2680 and 4x

"NVIDIA Tesla k20x" CPUs.

IV. RESULT

The average error value and standard deviation

were recorded as parameters that reflect the quality of the

model and the achievement of results.

Our model achieves an average error is 0.38 and a

standard deviation is 3.35. The results of model

validation on a test sample are presented in Table.1.

TABLE 1 MODEL VALIDATION ON TEST DATASET

Real

duration 12 68 12 24 16 32 3 36

Predicted

duration 12 67 18 28 16 26 2 37

Project Evaluation Survey is base part for the
stage of selecting problems and methods of its resolution.

During the survey, 50 respondents were interviewed and

answers to 7 questions were collected.

72% of respondents work in information

technology, 16% in Finance and Economics, 4% in

Healthcare, and 2% in Education. Most respondents

participated in projects as Project manager/Assistant

(46.7%), Analyst (42.2%), Developer (62.2%), Teamlead

(20%), see Fig. 3.

Figure 3. Project roles

According to the respondents’ answers, most

projects used expert estimation methods by a large

margin (82.2%), to a lesser extent – Delphi or algorithmic

evaluation shown in Fig 4. Whereas the average accuracy

of the preliminary estimation according to the opinions of

the respondents was 3.22 (see Fig. 5).

According to the survey’s data, the majority

(55.6%) of respondents believe that the use of automated

tools, artificial intelligence models and machine learning

can significantly improve the accuracy of the preliminary

estimation of the duration and complexity of the project.

Based on the analysis of the survey results, the following

conclusions can be made:

1. The vast majority of IT professionals have

participated in project implementation one or more times.

2. During the course of a career, a person

performs different roles, sometimes even within the same

project (for example, simultaneously the role of team

leader and analyst, or project manager and administrator,

developer and analyst, etc.)

3. Despite the rapidly developing industry and

general trends towards automation, many components of

project management still use classical methods. For

example, most projects used top-down evaluation or

expert evaluation. Proven methods such as the COCOMO

algorithm, parametric estimation, and others are rarely

used in current projects.

4. The accuracy of classical methods is

susceptible to systematic errors.

5. Applying new and improving old methods of

preliminary project estimation can significantly improve

the accuracy of the assessment. The use of methods based

on neural network models and machine learning,

according to the results of the survey, can give a good

boost in this area.

Figure 4. Methods used for project evaluation

V. CONCLUSION

The main research papers in the field of

estimating the time and complexity estimation of the

project were analyzed in this work. In the process of the

analysis, as well as based on the results of the survey, the

need to improve estimating methods and to develop new

models was identified.

Authorized licensed use limited to: Chungbuk National Univ. Downloaded on October 31,2025 at 02:23:08 UTC from IEEE Xplore. Restrictions apply.

Neural network architecture was chosen as the

basis for the model as a promising technology. The

developed model, consisting of 6 layers, showed fairly

high results on a test sample from the dataset compiled by

the author.

Of course, the developed model needs further

improvement, training, and validation on large amounts

of real data from projects. However, it can be used for

parallel estimation of real future projects in experimental

mode already now.

Figure 5. Accuracy of preliminary project estimation

The big advantage of the developed architecture

is that input data can be easily collected from completed

projects if there is a certain amount of project

documentation, logs, and version control system data.

This makes it easier to integrate the model into the

pipeline for estimating and implementing software

development projects in teams and companies.

Two scientific articles that revealed the

differences and features of existing datasets, as well as

recommendations on the process of collecting data on the

project, were written during the research process.

This work makes a large contribution and has

high scientific novelty in the area of project management

and information technology.

ACKNOWLEDGEMENT

I’d like to express my gratitude to Buravov

Alexey who participated in the section of model

development using python programming.

REFERENCES

[1] Al-Qutaish, Rafa & Abran, Alain. (2010). Halstead Metrics:

Analysis of their Design. 10.1002/9780470606834.ch7.
[2] Albrecht, A.J. and Gaffney, J.E., Jr. (1983) Software Function,

Source Lines of Code, and Development Effort Prediction: A
Software Engineering, IEEE Transactions on Software

Engineering, 9(6):639-648

[3] Nageswaran, Suresh. "Test effort estimation using use case
points." Quality week. Vol. 6. 2001.

[4] D. Nurseitov, K. Bostanbekov, M. Kanatov, A. Alimova, A.

Abdallah, G. Abdimanap "Classification of Handwritten Names of
Cities and Handwritten Text Recognition using Various Deep

Learning Models", Advances in Science, Technology and

Engineering Systems Journal, vol. 5, no. 5, pp. 934-943 (2020).
[5] Abdallah A, Hamada M, Nurseitov D. Attention-Based Fully

Gated CNN-BGRU for Russian Handwritten Text. Journal of

Imaging. 2020; 6(12):141.
https://doi.org/10.3390/jimaging6120141

[6] Abdallah, Abdelrahman, et al. "Automated Question-Answer
Medical Model based on Deep Learning Technology."

Proceedings of the 6th International Conference on Engineering &

MIS 2020. 2020.
[7] Hamada, Mohamed A., et al. "Sentimental text processing tool for

Russian language based on machine learning algorithms."

Proceedings of the 5th International Conference on Engineering
and MIS. 2019.

[8] Hamada, Mohamed Ahmed, and Lyazat Naizabayeva. "Decision

Support System with K-Means Clustering Algorithm for Detecting
the Optimal Store Location Based on Social Network Events."

2020 IEEE European Technology and Engineering Management

Summit (E-TEMS). IEEE, 2020.
[9] Hamada, Mohamed A., Yeleussiz Kanat, and Adejor Egahi

Abiche. "Multi-Spectral Image Segmentation Based on the K-

means Clustering." Int. J. Innov. Technol. Explor. Eng 9 (2019):
1016-1019.

[10] Nurseitov, Daniyar, et al. "Hkr for handwritten kazakh & russian

database." arXiv preprint arXiv:2007.03579 (2020).
[11] Hidmi, Omar, and Betul Erdogdu Sakar. "Software development

effort estimation using ensemble machine learning." International

Journal of Computing, Communication and Instrumentation
Engineering 4.1 (2017): 1-5.

[12] Braga, Petrônio L., Adriano LI Oliveira, and Silvio RL Meira.

"Software effort estimation using machine learning techniques
with robust confidence intervals." 7th international conference on

hybrid intelligent systems (HIS 2007). IEEE, 2007.

[13] Subandri, M. A. and Sarno, R. (2017) “Cyclomatic Complexity for
Determining Product Complexity Level in COCOMO II,”

Procedia Computer Science. Elsevier B.V., 124, pp. 478–486. doi:

10.1016/j.procs.2017.12.180.
[14] Boehm, B. et al. (1995) “Cost models for future software life cycle

processes: COCOMO 2.0,” Annals of Software Engineering, 1(1),

pp. 57–94. doi: 10.1007/BF02249046.
[15] Hihn, Jairus; Menzies, T. (2006) NASA93 PROMISE data

repository. Available at:

http://promise.site.uottawa.ca/SERepository/datasets/cocomonasa_
2.arff.

[16] ISBSG (2020) ISBSG Project Data. Available at:
https://www.isbsg.org/software-project-data/.

[17] Valerdi, R. (2011) “Convergence of expert opinion via the

wideband delphi method: An application in cost estimation
models,” 21st Annual International Symposium of the

International Council on Systems Engineering, INCOSE 2011, 2,

pp. 1238–1251.
[18] Boehm, B. (1981) COCOMO 81 Dataset. Available at:

http://promise.site.uottawa.ca/SERepository/datasets/cocomo81.ar

ff.
[19] Kuldin, S. P. (2010) “Genetic approach to the problem of

estimation the timing and complexity of software development

with specified quality requirements.”
[20] Gonzalez-Ladron-De-Guevara, F. and Fernández-Diego, M.

(2014) “ISBSG variables most frequently used for software effort

estimation: A mapping review,” International Symposium on
Empirical Software Engineering and Measurement, pp. 0–3. doi:

10.1145/2652524.2652550.

[21] Kemerer, C. F. (1987) Kemerer dataset. Available at:
https://zenodo.org/record/268464.

[22] Maxwell, K. . (2002) Maxwell dataset, 2002. Available at:

https://zenodo.org/record/268461.
[23] Albrecht, A. J. and Gaffney, J. E. (1983) Albrecht dataset.

Available at: https://zenodo.org/record/268467.

[24] Klambauer, Günter, et al. "Self-normalizing neural networks."
arXiv preprint arXiv:1706.02515 (2017).

[25] Nwankpa, Chigozie, et al. "Activation functions: Comparison of

trends in practice and research for deep learning." arXiv preprint
arXiv:1811.03378 (2018).

[26] Bottou, Léon. "Stochastic gradient descent tricks." Neural

networks: Tricks of the trade. Springer, Berlin, Heidelberg, 2012.
421-436.

[27] Paszke, Adam, et al. "Automatic differentiation in pytorch."

(2017). URL:https://pytorch.org

Authorized licensed use limited to: Chungbuk National Univ. Downloaded on October 31,2025 at 02:23:08 UTC from IEEE Xplore. Restrictions apply.

[28] Hamada, Mohamed A., and Abdelrahman Abdallah. "Estimate
The Efficiency Of Multiprocessor's Cash Memory Work

Algorithms." arXiv preprint arXiv:2102.03848 (2021).

[29] Abdelhalim, Ibrahim Saad Aly, Mamdouh Farouk Mohamed, and
Yousef Bassyouni Mahdy. "Data augmentation for skin lesion

using self-attention based progressive generative adversarial

network." Expert Systems with Applications 165 (2021): 113922.

Authorized licensed use limited to: Chungbuk National Univ. Downloaded on October 31,2025 at 02:23:08 UTC from IEEE Xplore. Restrictions apply.

