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Abstract—The acceleration in the field of the Internet of
things had increased security problems, so we find ourselves
in need of effective ways to protect IoT systems From
intrusions. Recently Machine learning plays an active role in
network security and detecting attacks. in this research, we
propose a Machine learning method (AE-LSTM) for intrusion
detection which uses Autoencoder with LSTM. Our method
has 6-layer Autoencoder (AE) model with LSTM that is
effective in anomaly detection. To avoid the bias in our
model which occur from imbalanced data in the NSL-KDD
dataset, we use Standard Scaler in our AE-LSTM model To
delete the outliers from the input. AE-LSTM uses the best
reconstruction function. It is critical in discovering whether
network traffic is normal or abnormal. We use the NSL-
KDD test dataset to evaluate our proposed model. Our Model
achieved the highest accuracy over other methods with f1-
score micro and weight at 98.69% and 98.70% for 5 classes
in detection methods (Dos, Probe, R2L, U2R, Normal). Also,
we evaluated it with two classes (Malicious, Normal) with
f1-score micro and weight at 98.78% and 98.78%.

Index Terms—Long short-term memory, Machine learning,
Internet of Things, Intrusion Detection, Deep Learning,
Autoencoder

I. INTRODUCTION

IoT is a network of interconnected computing devices
which had unique IDs and transfer data between each
other without human interaction. These devices (Things)
can be any physical object that has an ID and connects
to the internet. These devices connected to the internet
are constantly increasing. According to a new Statistic
report, by 2022, there will be approximately 16.4 billion
connected things on the planet. By 2025, this number is
predicted to reach 30.9 billion. These numbers indicate
that IoT is one of the major markets that could become a
cornerstone of the growing digital economy. Smart cities,
smart homes, smart healthcare, autonomous vehicles,
smart farming, smart education, smart grid, and other
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IoT systems are examples of existent IoT systems. In
light of the complexity and development of IoT systems,
many new security challenges have emerged.

In the last year, deep learning approaches have sig-
nificantly improved the results of several computer vi-
sion challenges, including medical applications such as
cancer diagnosis, object detection [1]-[3], classification
[4], and medical question answers [5]-[7], as well as
applications in software engineering field like Time op-
timization and schedule of software projects [8], [9], and
handwritten recognition for various languages [10]-[14].

Recently, there have been many academic researchers
interested in the field of IoT security. we can divide the
network traffic Into two classes (normal and abnormal)
traffics, OR To Five classes: Normal, DoS (Denial of
Service), R2L (Root to Local), U2R (User to Root), and
Probe (Probing) attacks.

in this work, we proposed an autoencoder (AE) model
with LSTM that determines which network traffic is
normal or not. We train and test our Method on the NSL-
KDD dataset [15] which achieves the best results among
other models.

The following section defines the related work on in-
trusion detection using Machine Learning(ML) and Deep
Learning(DL). Section III proposed Method. Section IV
provides Experiment Results and the conclusion is given
in Section. V.

II. RELATED WORK

W. Xu, J. Jang-Jaccard, et al [16] used Autoencoder
(AE)-based model and a new Method for deleting the
outliers to avoid the bias that occurred by imbalanced
data for each input sample. They got an accuracy was
90.61% and an F-score of 92.26% on the NSL-KDD test
dataset. T. Su, H. Sun, J. Zhu, et al [17] proposed the BAT
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which consists of BLSTM (Bidirectional-LSTM) and At-
tention Methodology which achieves an accuracy reach
of 84.25% on the NSL-KDD test dataset. Wang, H., and
Li, W. [18] developed a hybrid neural network DosTC
structure that combines efficient and scalable transform-
ers with a CNN (convolutional neural network) to detect
DDoS (distributed denial-of-service) assaults on SDN,
which was evaluated on the CICDD0S2019 dataset. M. S.
Elsayed, et al [19]proposed DDoSNet to detect the DDoS
(distributed denial-of-service) attacks in SDN (Software
Defined Network). They depend on Deep Learning (DL)
to build their method which consists of a Recurrent
Neural Network(RNN) with an autoencoder. They eval-
uate their model on the CICDDo0S2019 dataset. S. M.
Taghavinejad, M. Taghavinejad, et al [20] developed a
method consisting of a mixture of three decision trees
To be used in intrusion detection. They evaluate their
model on the NSL-KDD dataset.

III. PROPOSED METHOD

In this section, we explain the method of Auto-
Encoder and LSTM. We describe Our Proposed model
called Autoencoder methods with the LSTM model (AE-
LSTM) for IoT Intrusion Detection. In the following
section, we will describe how each component of our
proposed models works. The Autoencoder (AE), and
LSTM will be discussed. for the network Intrusion de-
tection tasks, The reconstruction error is used by the
Autoencoder model to identify whether or not a net-
work traffic sample is uncommon [16]. In this study,
We present an autoencoder with three encoder layers
and three decoder layers. in the encoder and decoder,
Dense layer followed by batch normalization [21] and
the LeakyReLu [22] activation function before passing
the decoder output features to the LSTM model for
Intrusion Detection. Figure 1 depicts our Autoencoder
(AE), while Figure 5 depicts our LSTM model.

A. Auto-Encoder Method

To reconstruct data, A form of unsupervised neural
net especially feed-forward called an autoencoder (AE)
. An AE is made up of three levels: input, output , and
hidden layers levels. First two have the exact number of
neurons, but any buried layers have fewer neurons.

Generic autoencoder architecture have the follow-
ing operations: encoding in addition to decoding.
[x1; x2; x3;...; xm] is an m-dimensional vector for every
input sample x. In the encoding operation, linked to
buried layer representation (y), as the following formula.

y = fi(wx+10) (1)

Activation function of the encoder symbolized by f;.
Bias vector is symbolized by b, while the weight matrix
is symbolized by w.

Inside the decoding procedure, hidden representation
of (y) is transformed into a new rebuild X , as shown in
the equation

x=fo(w'y+b) )

{2 is the activation function of the decoder. The output
layer’s weights in addition to bias are denoted by w’
and b’. During these two methods, neural network’s
parameters D (w; w’; b; b’) are constantly modified by
minimizing the reconstruction error. Loss reconstruction
(L) is calculated using non-linear functions to minimize
the reconstruction error of x.

L(x,f) = % Z(X] — J?]‘)z (3)
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Fig. 1. Auto-Encoder model with 6 layers.

B. Recurrent neural network

The Neural Network is an extremely strong model, yet
it is not without restrictions. One advantage is that it is
a memoryless model, which means that for each input,
the network has no knowledge of prior inputs. This
characteristic, on the other hand, can be accomplished
by employing a “Recurrent Neural Network” (RNN).
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RNNSs are similar to NNs with the exception that each
layer [ will not only transfer its output to the following
layer / 41, but will also pass it to itself, resulting in a
“recurrent connection.” This is depicted in Figure 2.

Input Hidden

Hidden Output

Fig. 2. A 3-layer recurrent neural network with inzput and output is
visualised. the input is x € R® and output is y € R? .

A popular method for visualising RNNss is to “unfold”
the network and openly show the recurrent connections
between each time-step t. Figure 2 shows an unfolded
version of the network illustrated in Figure 3.

Fig. 3. An unfolded 3-layer recurrent neural network (2 recurrent
layers and 1 output layer) with input sequences of length T is shown,
with x(1) representing the initial input at time-step t = 1 of a given
observation x and z(2,T) representing the final output at time-step
t=T.

Let the input variables be sequences of length T, e.g.
x = x(1),x(2), hdots, x(T)For example, designate each
character in a sentence with length T.
u={u®,u®,.  ut-v} “)
the set of weights for the recurrent connections (the
outyut layer has no recurrent connections) with U(!) =
[ugl ,ugl),...,u;l]{l)] and u,(cl) e RNY, Then, at a given
time-step t, represent the activation of neuron k in
layer 1 by expanding (5) with a term for the recurrent
connection.
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with (5,1C'T+1Vk,l for a complete definition of the recur-
rency. Finally the BPTT algorithm defines the gradients

as summing the error terms for each time-step ¢

OL(x,y) & (L) ()
o - Z(Sk 2k (6)
awk/]. t=1

C. Long short-term memory

As indicated in the preceding section, the typical RNN
architecture has several issues with processing recur-
rent information in the network. Learning long-term
dependencies, in particular, has proven to be a serious
challenge for conventional RNNs in reality. Furthermore,
the fact that information is transmitted back into its own
hidden layer on each time-step has been proven to either
blow up or degrade the outputs exponentially, making
training extremely difficult. This is referred to as the
“exploding gradient problem” or “vanishing gradient
problem.”

To address these issues, the widely utilised “Long
Short-Term Memory” (LSTM) architecture might be
adopted. The LSTM design handles long-term depen-
dencies and keeps gradient information over time better
than normal RNN architectures, making it the favoured
RNN architecture over regular RNN architectures.

Because the LSTM extends the ordinary RNN neuron
to include several operations, each neuron in the RNN
is referred to as a ”block.” Figure 4 shows a simple
illustration of a typical RNN block.

Fig. 4. A typical RNN block with x(t) as the input and z(1,t) as the
output, and z(1,t — 1) as the output from the previous time-step.

The LSTM extends the simple block depicted in Figure
4 in a variety of ways. First, a “cell state” c(t)inR is
introduced, with C denoting the state’s dimensionality,
that is capable of storing information throughout time if
necessary. This can be thought of as the LSTM block’s
“memory.” Second, a variety of “gates” are established,
each of which takes the concatenated input x(t) and
previous output.

z(t — 1) as input and returns a C-dimensional vector
with values in the range ]0, 1[ with the sigmoid function
with learning weights and biases Wf, Wi, W,, andb s b;, b,.
Using g and h to represent non-linear functions, which
are frequently used as tanh, and @ and @ to represent
element-wise addition and multiplication, respectively.
A visualization of the LSTM block can be seen in Figure
5
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Fig. 5. LSTM block with x(t) and z(t) as input and output, and c(t)
as cell state at time step f. o represents sigmoid functions, whereas g
and h represent non-linear functions. bigoplus represents element-wise
addition, whereas bigotimes represents element-wise multiplication.

IV. EXPERIMENT RESULTS
A. Dataset

In our research, the NSL-KDD database is usually
used to test and determine strategies. Many researchers
use NSL-KDD dataset, which is considered one among
the most popular databases in intrusion detection that’s
available.

Because of concerns regarding numerous train and test
data samples, as well as relevant issues, the NSL-KDD
database has been updated from the KDD’99 database.
Compared to the KDD’99 data collection, the NSLKDD
data set offers a few benefits. As a result, in the train
and test parts, A collection of duplicate records is not
included in NSL-KDD. This is because if you don’t
follow this guideline, the classifier will likely repeat
records.

Total number of records in this collection from every
set, on the other hand, has the same difficulty level as
the proportion of records in the primary data collection.

Furthermore, inside the train and test parts, the num-
ber of recordings is realistic and sufficient for testing,
allowing the entire data set will be utilized instead of
a random sample of a tiny portion of the dataset. As a
result, the outcomes of numerous studies based on this
data will be consistent [23], [24].

Each attribute vector in the database comprises 43
components, and each class has 41 attributes. Element
42 set the assault’s form, whereas element 43 set a
difficulty’s level. Handful of DOS, Probe, R26 and U2R
attacks are also included.

Figure 6 displays how many assaults and how many
typical situations there are in the dataset. Detecting an
attack or non-attack as well as determining the sort of
assault has two steps. Detecting an assault or not for
every data sample described in this study.

B. Experiment Settings

All of the models were trained using Tensorflow [25],
a deep learning toolkit written in Python applied in

Pie chart distribution of normal and abnormal labels

== normal
= Dos
2L
. Probe
. 2R

normal

UZR

Probe

R2L

Fig. 6. Percentage of Attacks and Non- Attacks in the dataset.

training all models. Tensorflow enables the use of ex-
tremely efficient mathematical processes on GPUs in a
transparent manner. Also, all actions necessary for the
provided calculations are defined by a computational
graph.

A Core i7 CPU, one NVIDIA RTX2060 graphics card,
and 16 GB of RAM were used in the testing. The time for
the model to train is decreased by third when the GPU
is used. However, because speedup was not properly
assessed during the project, it is possible that it has
altered.

In all AutoEncoder and LSTM models, the value of
the validation loss is kept to a minimum. The stochastic
gradient descent optimization is accomplished by Adam
technique [26] in addition to a learning rate of 0.0001
and 128 mini-batches.

C. Results

64% of the dataset was used to train our AE-LSTM
model, verified using the residual 16%, and tested using
20% of the dataset. Our model has been trained for a total
of 100 epochs. To avoid overfitting, at the start of every
epoch, the training set is randomized. Because there was
no pre-trained or transfer model from a previous dataset,
we had to train our network from scratch. we trained our
model in two experiments.

In the first experiment, we used binary classification
to train our model to detect intrusions and categorize
them as malicious or benign. We also trained the model
to categorize it as Dos, Probe, R2L, U2R, or Normal using
multi-classification. In Fig 7 and 8 show the validation
dataset’s loss and accuracy while training model for
binary classification.

In Fig 9 and 10 show the validation dataset’s loss and
accuracy while training model for multi-classification.

We compared our model’s performance to other simi-
lar models. Accuracy, precision, recall, and F1 score were
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utilized in comparing findings. Our AE-LSTM model has
a maximum f1-score of 98.88% and an accuracy of greater
than 98.88%, as shown in Table 1.

TABLE 1
PERFORMANCE COMPARISON WITH OTHER AE MODELS

Model Precision | Recall | Fl-score | Accuracy
AE-LSTM 98.89% 98.89% 98.88% 98.88%
Al-Qatf et al. [27] 96.23% 76.57% | 85.28% 84.96%
Cosimo et al. [28] 87% 80.37% | 81.98% 84.21%

Quamar et al. [29] 85.44% 95.95% 90.4% 88.39%

Kishwar et al. [30] 87.92% 93.48% 90.61% 88.98%

WEN XU et al. [16] 86.83% 98.43% 92.26% 90.61%

Yousefi et al. [31] - - - 83.34%

Figure 11 shows our model’s ROC curve (curve of
receiver operating characteristic). AUC (area under the
ROC curve) result (AUCAE D 0.999) demonstrates its
excellent performance, with a very high true positive rate
in addition to a low false-positive rate.

ROC curve
10 's -
’{”
-
08 /,"
v -
06 -
g L
3 04 ,f/
= -~
= //
-
02 L
4"
00 L= — Keras (area = 0.999)
0.0 0.2 0.4 0.6 0.8 10

False positive rate

Fig. 11. ROC curves of AE-LSTM

V. CONCLUSION

This work entails, 6-layer autoencoder (AE) model
is a novel model with LSTM for intrusion detection.
In our AE-LSTM model, we also use a unique data
Standard Scaler approach to modify and eliminate the
input samples’” most affected outliers, decreasing model
bias induced by data imbalance in the feature set across
distinct data types. On the NSL-KDD test dataset, we
assessed our suggested model and compared it with the
previous models and our model achieved the highest
accuracy over other methods with fl-score macro and
weight at 93.13% and 98.92% for 5 classes in detection
methods (Dos, Probe, R2L,, U2R, Normal). Also, we
evaluated it with two classes (Malicious, Normal) with
f1-score macro and weight at 98.88% and 98.89%.
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of automatic screening and hybrid detection system for
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